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1. INTRODUCTION 

 The following result is usually called 

the Greguš fixed point theorem. 

 Theorem  G. (Greguš ,1980) Let C be a closed 

convex subset of a Banach space X. If T is a 

map from C into itself satisfying the inequality 

(1.1)||Tx-Ty||  a || x-y|| + b || x - Tx || + c || y - Ty ||≤  

for all x, y  ∈ C, where 0 < a <1, b > 0, c > 0 

and a + b + c = 1 . Then T has a unique fixed 

point.  

A map satisfying the inequality (1.1) 

with a = 1,   b = c = 0  (respectively 

 a = 0,   b = c = ½ ) is called non-expansive 

(respectively Kannan map) and it was 

considered by Kirk (1965) (respectively Wong 

,1975). Further, Fisher and Sessa, 1986 

established a generalization of Theorem G as 

follows:  

Theorem FS (Fisher and Sessa, 1986 ) Let C 

be a nonempty closed convex subset of a 

Banach space X and T, ƒ two weakly 

commuting maps from C into itself satisfying 

the following condition:
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 || Tx - Ty||  a ||  fx -  fy|| + ≤ (1 )max{ , }a Tx - fx Tx - fy−   

for all x, y ∈ C, where  0 < a <1 . If ƒ is linear 

and nonexpansive in C such that fC  contains 

TC, then T and ƒ have a unique common fixed 

point in C.  

 In recent years, fixed point theorems for 

Greguš type maps have been obtained by Ćirić, 

1972, Ćirić,1991, Davies and Sessa,1992, 

Diviccaro et al.1987, Jungck ,1990, Khan and 

Imdad 1983, Mukherjee and Verma, 1988, 

Murthy et al. 1995, and Pathak et al. 1998. 

Some results closely related to Theorem G have 

also been extended to multivalued maps (see, 

for instance, Li-Shan 1992, Li-Shan 

1993,Rashwan and Ahmed, 2002 and Singh et 

al. 1989).   

2. PRELIMINARIES 

  We generally follow the definitions and 

notations used in Nadler 1969, Naimpally et. Al 

1986, Singh & Hashim 2005, Singh & Hashim 

2004 and Singh & Mishra 2001. Given a metric 

space (X, d), let (CL(X), H) and (C(X), H) 

denote respectively the hyperspaces of 

nonempty closed and nonempty compact 

subsets of X, where H is the Hausdorff metric 

inducted by d. Throughout, d(A, B) will denote 

the ordinary distance between subsets A and B 

of X and d(x, B) will stand for  d(A, B) when A 

is singleton {x}. Further, let Y be an arbitrary 

nonempty set and ( , ) { : },C f S u fu Su= ∈  
the collection of coincidence points of maps 

:f Y X→ and : ( .S Y CL X)→   

The following result is well-known (see, 

for instance, [Ćirić, 1972, Nadler 1969, Singh 

et al. 1989]. 

 Lemma 2.1.  Let A, B ∈ CL(X) and a  A. ∈
Then there exists ,an element b ∈ B such that 

d(a, b) <λ  H (A, B) for some  λ  > 1. 

We remark that if A, B are compact then this 

lemma is true with λ  = 1. 

The following definition is due to Ito 

and Takahashi 1977 (see also  Singh & Hashim 

2005, Singh & Mishra 2001 ).  

Definition 2.2. Let :f Y Y→  and YS:Y 2→ , 

the collection of nonempty subsets of Y .  Then 

hybrid pair of maps of ),( Sf  is IT-commuting 

at a point Yu∈ if SfufSu ⊂ . They are IT-

commuting on Y  if fSu Sfu⊂   for each 

u Y.∈
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Maps S and f  are commuting at a point 

u Y∈  if Sfu=fSu . Clearly a commuting 

hybrid pair of maps is IT-commuting and the 

reverse implication is not true. For details, one 

may refer to Singh & Mishra 2001. 

Example 2.3.  Let Y = [0, ∞ ), fx = 3 + 

5x  and  Sx = [2 + 3x, ∞ ), x  Y∈ . Then Sfx = 

[11 + 15x, ∞ ) ≠ [13 + 15x,  ∞ ) = fSx. So f and 

S are not commuting, but they are IT-

commuting as fSx  ⊂ Sfx. 

Definition 2.4 [Singh & Hashim 2005].  Let  

)(: XCLYS → and XYf →: . Then S and f  

satisfy the (EA)-property if there exists a 

sequence }{ nx  in Y such that 

)(lim XCLMSxnn
∈=

∞→
 and lim .nn

fx t M
→∞

= ∈   

 For the definition of (EA)-property for a 

pair of self-maps of a metric space, one may 

refer to  Aamri and El Moutawakil 2002. 

 Let Ø denote the class of maps φ 

from [0, ∞) into itself  such that φ iis non-

decreasing upper semi-continuous and φ(t) < t 

for all t > 0.  Also let ψ denote the class of 

maps φ from [0, ∞) into itself  such that φ is 

non-decreasing upper semi-continuous and φ(t) 

≤  qt for some q ∈(0, 1). The following lemma 

is due to Matkowski 1977 . 

Lemma 2.5.  If φ ∈  Ø then  ( )n

n
lim t 0,φ
→∞

=
 

whereφn

Theorem 3.1 Let Y be an arbitrary nonempty 

set and (X, d) be  a metric space, 

 is the n times composition of φ. 

3. MAIN RESULTS 

)(:, XCYTS → and XYgf →:,  such that

 

(3.1.1)  fYTYgYSY ⊂⊂ , ; 

(3.1.2)  p p p pH  (Sx, Ty)    (ad ( fx, g y) + (1- a) max {d  ( fx, Sx), d ( gy, Ty)})
 

φ≤  

for all x , y Y , p 0∈ > , where a (0,1)∈  and φ 

∈  Ø. If one of SY ,  TY , fY or gY  is a 

complete subspace of X then C( f ,S ) and 

C( g,T )  are nonempty. Further, if Y = X then: 

(i) Maps S and f  have a common fixed 

point provided that S  and f are 

(IT)-commuting at some 

u C( f ,S )∈  and ffu fu= ; 

(ii) Maps T  and g  have a common 

fixed point provided that T and g
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are (IT)–commuting at some 

u C( g,T )∈  and ggu gu= ; 

(iii)       Maps S ,T , f and g  have a 

common fixed point provided that 

(I) and (II) are true. 

Proof.  Pick 0 .x Y∈  Construct two sequences  

{ }nx Y⊂  and { }ny X⊂  in the following 

manner. Since 0x Y∈  and SY gY⊂ , there exists 

a point 1x Y∈ such that  

 1 =   1 oy g x   Sx . ∈ SinceTY fY⊂ , in view of 

the remark following Lemma 2.1, we can 

choose 2x Y∈  such that 2 2 1y fx Tx= ∈  and

 2, y ) , ) , )1 1 2 0 1d(y d(gx fx H(Sx Tx= ≤  

Inductively, having already chosen 2n 2n 2n-1y = fx   Tx , ∈ we choose 2n+1 2n+1 2ny =gx   Sx  ∈ and 

2n+2 2n+2 2n+1y = fx   Tx∈  such that  

2n 2n+1 2n-1 2nd(y , y )  H(Tx , Sx )  ≤ and  2n+1 2n+2 2n 2n+1d(y , y )  H(Sx , Tx ).  ≤  

 For the sake of convenience, assume that ( )n n n 1d d y , y .+=  We claim that dRn+1 R ≤  dRnR for each n. 

Suppose that  dR2n R > dR2n-1R for some n. Then by (3.1.2),  

( )

( ) ( )

2n 2n 2n 1

1
p p p p

2n 2n 1 2n 2n 2n 1 2n 1

d H Sx ,Tx

                       [ ( ad ( fx ,gx ) (1 a )max{ d fx ,Sx ,d gx ,Tx })]φ

−

− − −

≤

≤ + −  

            ( )
1

p p p p
2 n 2 n 2 n 1[ ( ad 1 a max{ d ,d })]φ −≤ + −

 

  ( )
1

p p p p
2n 2n 2n[ ( ad 1 a max{ d ,d })]φ< + −  

         
( )

1
p p p

2n 2n

1 1
p p pp p

2n 2n 2n

[ ( ad 1 a ad )]

[ ( d )] [ d ] d ,

= + −

= < =

φ

φ

 

a contradiction, and  dR2n R ≤  dR2n-1R.  Similarly we 

obtain dR2n+1 R≤  dR2nR. This establishes our claim 

that dRn+1 R ≤  dRnR for each n.   

By Lemma 2.5, it follows that  

( )p
n n 1n

lim d y , y 0.+→∞
=   3.1.3  
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In order to prove that { }ny  is a Cauchy 

sequence, it is sufficient to show that { }2ny  is a 

Cauchy sequence. Suppose that { }2ny  is not a 

Cauchy sequence. Then there is an 0>ε  such 

that for each positive integer 2k  there exist 

integers 2n(k) and 2m(k)  such that

          2k < 2n(k) < 2m(k)                                      3.1.4    

and  ( )2n( k ) 2m( k )d y , y ε≥ .                 3.1.5    

Let ( ), ,i j i jd d y y=   and ( )i i i 1d d y , y += .  Then for each integer 2k. , 

2n( k ),2m( k ) 2n( k ),2m( k ) 2 2m( k ) 2 2m( k ) 1d d d dε − − −≤ ≤ + +                   3.1.6 

Let 2m(k) denote the smallest integer satisfying (3.1.4) and (3.1.5), so that 

2n( k ),2m( k ) 2d ε− <  , and it follows from (3.1.6) that  

  2n( k ),2m( k )k
lim  d ε= .                       3.1.7 

By the triangle inequality,   

                    

2n( k ),2m( k ) 1 2n( k ),2m( k ) 2m( k ) 1

2n( k ) 1,2m( k ) 1 2n( k ),2m( k ) 2n( k ) 2m( k ) 1

| d d | d ,
| d d | d d

− −

+ − −

− <

− < +
 

These relations in view of (3.1.3) and (3.1.7) yield  

 2n( k ),2m( k ) 1 2n( k ) 1,2m( k ) 1k k
lim   d lim  d ε− + −= = .                                 3.1.8 

Using (3.13) and (ii), we have  

   2n( k ),2m( k ) 2n( k ) 2n( k ) 1,2m( k )d d d +≤ +  

                  ( )2n( k ) 2n( k ) 2m( k ) 1d H Sx ,Tx −≤ +   

         ( )( )p
2n( k ) 2n( k ) 2m( k ) 1d ad fx ,gxφ −

 ≤ +    



AMAL  M. HASHIM                                                                           NEW COINCIDENCE AND …. 
 

 

26 

                                ( ) p p 1/ p
2n( k ) 2n( k ) 2m( k ) 1 2m( k ) 11 a max{ d ( fx ,Sx ),d ( gx ,Tx )})− −+ −  

                           ( ) ( )( p p
2n( k ) 2n( k ) 2m( k ) 1 2n( k ) 2n( k ) 1d ad fx ,gx 1 a max{ d ( fx ,gx ),φ − +

≤ + + −    

                                            p 1/ p
2m( k ) 1 2m( k )d ( gx , fx )})−  

                  
( )p p p 1/ p

2n( k ) 2n( k ),2m( k ) 1 2m( k ) 2m( k ) 1d ( [ ad 1 a max{ d ,d }])φ − −≤ + + −
 

Taking k → ∞ and using (3.1.3) and (3.1.8) with upper semi-continuity of φ  it follows that  

 ( ) 1/ pp ,ε φ ε ε ≤ <    

a contradiction. So 2n{ y }  is a Cauchy 

sequence in X.  Consequently n{ y }  is Cauchy 

sequence in X .  

Now suppose that fY  is complete. Then the 

subsequence 2n 1{ y } fY+ ⊂  has a limit in fY . 

Call it z.  Let 1u f z.−∈   So z fu= .  

Notice that the subsequence 2n{ y }  also 

converges to z , and we claim that  

fu Su.∈  Suppose otherwise. Then ( )d Su, fu

> 0, and 

( ) ( )
( ) ( )

p p
2n 2 2n 1

p p p
2n 1 2n 1 2n 2

d Su, y H Su,Tx

                       ( ad ( fu, y ) (1 a )max{ d fu,Su ,d y , y }).φ
+ +

+ + +

≤

≤ + −  

Making n →∞ , ( ) ( )p pd Su, fu d fu,Su< ,  a 

contradiction. 

Consequently   C( f ,S )  is nonempty. Since 

SY gY ,⊂  there is a point v Y∈ such that

gv fu Su.= ∈ . So by (ii), 

( ) ( ) ( )
( ) ( )

p p p

p p p

p

d gv,Tv d fu,Tv H Su,Tv

                       ( ad ( fu,gv ) (1 a )max{ d fu,Su ,d gv,Tv })

(1 a )d ( gv,Tv ).

φ

φ

= ≤

≤ + −

= −
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This yields that C( g,T )  is nonempty. 

Analogous arguments establish that C( f ,S )

andC( g,T )are nonempty when gY  or SY  

or TY  is a complete subspace of X . 

Notice that fu Su∈ , fu ffu fSu Sfu= ∈ ⊂ . 

So fu is a common fixed point of S as well. 

This proves (i) and (ii) comes in a similar way. 

Now, (III) is immediate. 

 Multivalued maps in Theorem 3.1 are 

compact-valued. We may dispense with this 

requirement by changing a slightly the 

condition " ( t ) t"φ <  of Theorem 3.1. We, 

indeed inspired by Rhoades et al.(1984) and 

Singh et al. (1989) do so below. 

Theorem 3.2. Let Y be an arbitrary nonempty 

set and (X, d) a metric space. Let 

)(:, XCYTS → and XYgf →:,  be such that 

conditions (3.1.1) and (3.1.2) of Theorem 3.1 

are satisfied, where a (0,1)∈  and φ ∈ψ. If one 

of SY ,  TY , fY or gY  is a complete subspace 

of X then C( f ,S ) and C( g,T )  are nonempty. 

Further, if Y = X then all other conclusions of 

Theorem 3.1 are also true. 

Proof.  We give only a brief sketch of it. Pick 

x0 ∈  Y. Choose a point x1 ∈  Y such that y1 = 

gx1 = Sx0. Now, in view of Lemma 2.1, choose 

a point x2 ∈  Y such that     2 2 1y fx Tx= ∈ , and

    2, y ) , ) , )
1- 
2

1 1 2 0 1d(y d(gx fx q H(Sx Tx= ≤ .  

In general, we construct sequences  { }nx Y⊂  and { }ny X⊂ in such a way that  

2n+1 2n+1 2ny =gx   Sx  ∈ and 2n+2 2n+2 2n+1y = fx   Tx∈  satisfying 

1- 
2

2n 2n+1 2n-1 2nd(y , y ) q H(Tx , Sx )  ≤ and  
1- 
2

2n+1 2n+2 2n 2n+1d(y , y ) q H(Sx , Tx ).  ≤  

Now, in view of the proof of Theorem 3.1, it  is enough to show that { }ny  is a Cauchy sequence. Using 

(ii) and simplifying, we get 

( )

( )

1 1- - p2 2
2n 2n 2n 1 2n 1

1
p p p

2n 2n 1

d q H Sx ,Tx q [ ( ad

1 a max{ d ,d })] .

φ− −

−

≤ ≤

+ −
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This gives 2nd  ≤ q 2n 1d − . Similarly we obtain

2n 1d +  ≤ q 2nd . So dRn+1 R≤ q dRnR for each n.  

Hence the sequence { }ny  is Cauchy, and this 

complete  the proof. 

 As regards the coincidence parts of 

maps f ,S  and g, T in Theorems 3.1 & 3.2, we 

remark that the sets C( f ,S ) and C( g,T )may 

be different, that is, the maps f ,S  and g, T may 

have different coincidence points. This may 

easily be verified by using [Singh & Mishra 

2001, Example 4]. Further, this observation 

remains true even if S = T (see Example 3.5 

below). However, if f = g, then maps f ,S  and 

T have a common coincidence point. So, we 

have a slightly improved version of the above 

theorems. 

Theorem 3.3. Let Y be an arbitrary nonempty 

set and (X, d) a metric space. Let 

)(:, XCYTS →  (respectively 

S ,T :Y CL( X )→  and ƒ: Y → X such that 

 (3.3.1)   SX   f X  ⊂ and TX    fX;⊂  

(iv)  p p p pH  (Sx, Ty)  (ad (f x, f y) + (1- a) max {d  ( fx, Sx), d ( fy, Ty)}),≤ φ                       

for all x, y in X , p > 0 where a   (0, 1), ∈ and φ ∈ Ø (respectively φ ∈ψ). 

If one of SY , TY or fY  is complete subspace 

of X  then the maps ƒ, S  and T  have a 

common coincidence point. Further, if Y = X 

and f is (IT)-commuting with each of S  and T  

at a common coincidence point z then the maps 

ƒ, S and T , have a common fixed point 

provided that ƒz is a fixed point of ƒ.  

Proof.  It comes from the Theorems 3.1 and 3.2 

with f = g.  

 We remark that Theorem 3.3 extends 

and generalizes several fixed point theorems for 

multivalued maps (see, for instance, Li-shan 

1992, Negoescu 1989, Rashwan and Ahmed 

2002, Singh et al 1989 and references thereof). 

Several results for single-valued maps 

satisfying Greguš type 

conditions may also be derived from the above 

theorems (see, for instance Davies &sessa 

1992, Greguš 1980,Jungck 1990, Murthy et al 

1995, Pathak et al 1998 and Singh et al 2001 ). 

Now we prove a common fixed point theorem 

of Greguš type maps using a strict condition.
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 Theorem 3.4.  Let ( X ,d )  be a metric space,  S ,T :Y CL( X )→  and  f ,g :Y X→  satisfying (3.1.1) 

and  

  (v)       H( Sx,Ty ) M( axy ),<  x, y  in Y   when M( axy ) > 0,  

for some p 0>  and 0 < a< 1, where 

M( axy ) = ( ) ( ) ( ) ( )ad fx,gy 1 a max{ d fx,Sx ,d gy,Ty }+ −  

 Suppose that ( , )f S  or ( , )g T  satisfies the 

(E.A)-property and one of S Y,TY , fY  or gY is 

a complete subspace of X, then ( , )C f S and 

( , )C g T are nonempty. 

Further, if Y X ,=  then the conclusions (i), (ii) 

and (iii) of Theorem 3.1 are true. 

   Proof: Suppose that ( , )g T  satisfies the 

(E.A)-property then there exists a sequence 

{ }nx inY such 

that  lim( ) , lim ( )n nn n
gx t M Tx M CL X

→∞ →∞
= ∈ = ∈   

Since TY fY⊂  , there exists in  Y  a sequence 

{ }ny  ,such that n nfy Tx∈   and 

lim limn nn n
fy t M Tx

→∞ →∞
= ∈ = .We show that 

lim .
n

Sy M
→∞

=   If not then there exists a 

subsequence{ }ky   of { }nSy  , a positive integer 

N, and real number 0ε >  such that for same

k N≥   we have ( , ) .kH Sy M ε≥  From (v)

( , ) ( , ) ( , ).k k k kH Sy M H Sy Tx H Tx M≤ +   

                ( , ) (1 ) max{ ( , ), ( , )} ( , )k k k k k k kd fy gx a d fy Sy d gx Tx H Tx M≤ + − +     

Taking the limit k →∞ . 

( 1 a ) max{ } .ε ε ε≤ − < which is a contradiction. 

Hence nn
0 i .e lim Ay M .ε

→∞
= =     

Suppose TY or fY  is a complete subspace of 

X , then there exists a point u Y∈  such that 

t fu=  . To show that fu Su∈ , we suppose 

otherwise and use the condition (v) to have
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( , ) ( , ) ( , ) (1 ) max {( , ), ( , )}n n n n nd Su Tx H Su Tx ad fu gx a d fu Su d gx Tx≤ < + −
 

Taking the limit n →∞   

( , ) (1 ) ( , ) ( , ) ( , )H Su M a d fu Su d fu Su H Su M< − < ≤  

Which is a contradiction. Then ( , )C f S is 

nonempty. Since SY gY⊂  ,there exists the 

point v Y∈ such that fu gv Su ,= ∈  so by (v), 

( , ) ( , ) ( , ) ( , ) (1 ) max {( , ), ( , )}H gv Tv d fu Tv H Su Tv ad fu gv a d fu Su d gv Tv= ≤ < + −

 

( , ) (1 ) ( , ) ( , ),d gv Tv a d gv Tv d gv Tv< − <  

Which is a contradiction . Then ( , )C g T  is 

nonempty. 

Further, ffu fu=  and (IT)-commutativity of S  

and f   at ( , )u C f S∈  imply that  

.fu fSu Sfu∈ ⊂  so fu   is common fixed point 

of  S   and  .f      

The proof of (ii) is similar. Now (iii) is 

immediate .analogous argument establishes the 

theorem when SY or gY is a complete 

subspace of X . 

We remark that if =f  g  in theorem 3.4, then 

the maps S, T  and f  have a common 

coincidence point. The following example 

shows that Theorems 3.1 & 3.2 with S = T  and 

≠f  g  need not guarantee the existence of a 

point z  such that ∈fz = gz Tz .   

Example 3.5. Let X=  [ 0,2]  be endowed with 

the usual metric. Let S = T = {0, 2}, fx = x  and 

gx = 2-x . Then for any  a (0,1)∈ ,  

≤H(Tx, Ty) = 0 ad(fx, gy).   

So, all the hypotheses of Theorems 3.1 & 3.2 

are satisfied.  Notice that fz Tz∈  and gz Tz∈   

but fz gz≠  when z =0   or 2 . 

We remark that (theorem 3.2 and 3.3  is false 

under the following condition:   

(3.1.3)  ( , ) ( ( , ) (1 ) max{ ( , ), ( , ),p p p pH Sx Ty ad fx gy a d fx Sx d gy Tyφ≤ + −  

1\ 2[ ( , ) ( , )]})p pd fx Ty d gy Sx+                  

Which is more general than the condition(3.1.2) 

for details, one may refer to Rhoades 1977.       

Example 3.6. Let 

{ , , , }, ( , ) 0, ( , ) ( , ) ( , ) ( , ) 1,X a b c d d x x d a b d a d d b c d c d= = = = = =  

( , ) ( , ) 2d a c d b d= = .and Y X=  Further, let

fx g xx= =  for each x Y∈  and  

let { }, { }, { }Sa Sd c Sb Sc a Ta Tb d= = = = = =  

and { }Tc Td b= = Then evidently fY  is a 

complete metric space and (3.1.1) is satisfied. If 

1\ 2, 4a p= = and ( ) \ 2,  t tφ =  then 

    Ø.φ ∈  and (3.1.3) is satisfied, too. However,  

evidently ( , )C f S  and ( , )C g T are empty. 
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 والمتطابقة  للدوال مبرهنات جديدة نظرية النقطة الصامدة             

 الهجينية من  النوع
   

 

 د.أمل محمد هاشم البطاط
 

 قسم الرياضيات – كلية العلوم – جامعة البصرة- البصرة - العراق
 

 

 الملخص 
 

لقد تم توسيع               . ه   في هذا البحث حصلنا على النقطة الصامدة للدوال الاحادية والمتعددة القيم والتي حققت الشرط الذي وضع
 وتعميم بعض النتائج التي حصل عليها العديد من الباحثين.

Greguš  


