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Abstract

In this paper, we obtain coincidence and fixed point theorems for single-valued and multivalued maps

satisfying Gregus$ type contractive conditions. We extend and generalize some well known results

obtained by many authors.
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1. INTRODUCTION
The following result is usually called

the Gregus fixed point theorem.

Theorem G. (Gregus,1980) Let C be a closed
convex subset of a Banach space X. If T is a
map from C into itself satisfying the inequality

QDITTYIL < allxyll +b I x-Tx|[+c[y-Ty||

forall X,y € C,where 0<a<1,b>0,c>0

and a+b+c=1. Then T has a unique fixed

point.

A map satisfying the inequality (1.1)

with a=1, b=c=0 (respectively

21

a=0, b=c=%) is called non-expansive

(respectively Kannan map) and it was
considered by Kirk (1965) (respectively Wong
,1975).  Further, Fisher 1986

established a generalization of Theorem G as

and Sessa,

follows:

Theorem FS (Fisher and Sessa, 1986 ) Let C
be a nonempty closed convex subset of a
Banach space X and T, f two weakly
commuting maps from C into itself satisfying
the

following condition:
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| Tx-Ty|| <

forall X,y € C,where 0<a<1.Iffislinear

and nonexpansive in C such that fC contains
TC, then T and f have a unique common fixed

point in C.

In recent years, fixed point theorems for
Gregus$ type maps have been obtained by Ciri¢,
1972, Ciri¢,1991, Davies and Sessa,1992,
Diviccaro et al.1987, Jungck ,1990, Khan and
Imdad 1983, Mukherjee and Verma, 1988,
Murthy et al. 1995, and Pathak et al. 1998.
Some results closely related to Theorem G have
also been extended to multivalued maps (see,
instance,  Li-Shan 1992,  Li-Shan
1993,Rashwan and Ahmed, 2002 and Singh et
al. 1989).

for

2. PRELIMINARIES

We generally follow the definitions and
notations used in Nadler 1969, Naimpally et. Al
1986, Singh & Hashim 2005, Singh & Hashim
2004 and Singh & Mishra 2001. Given a metric
space (X, d), let (CL(X), H) and (C(X), H)
denote respectively the hyperspaces of
nonempty closed and nonempty compact
subsets of X, where H is the Hausdorff metric

inducted by d. Throughout, d(A, B) will denote
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all fx- fyll + (1—a)max{|[Tx - fx|,[Tx - fy[}

the ordinary distance between subsets A and B
of X and d(x, B) will stand for d(A, B) when A
is singleton {x}. Further, let Y be an arbitrary
nonempty set and C(f, S)= {u: fue Su},
the collection of coincidence points of maps
f:Y > Xand S:Y — CL(X).

The following result is well-known (see,
for instance, [Ciri¢, 1972, Nadler 1969, Singh
et al. 1989].

Lemma 2.1. LetA B e CL(X)and a € A.
Then there exists ,an element b e B such that

d(a, b) <A H (A, B) forsome A >1.

We remark that if A, B are compact then this

lemma is true with A = 1.

The following definition is due to Ito
and Takahashi 1977 (see also Singh & Hashim
2005, Singh & Mishra 2001 ).

Definition 2.2. Let f:Y —Y and S:Y — 2,
the collection of nonempty subsets of Y . Then
hybrid pair of maps of (f,S) is IT-commuting
at a point ueYif fSucSfu. They are IT-
if fSuc Sfu

commuting on Y for each

ue.
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Maps S and f are commuting at a point
ueY ifSfu=fSu. Clearly a commuting

hybrid pair of maps is IT-commuting and the
reverse implication is not true. For details, one
may refer to Singh & Mishra 2001.

Example 2.3. LetY =0, o), fx=3+
5x and Sx =[2+ 3x, ©), X € Y .Then Sfx =
[11 + 15X, o0) #[13 + 15%, o) =1fSx. So fand
S are not commuting, but they are IT-

commuting as fSx < Sfx.

Definition 2.4 [Singh & Hashim 2005]. Let
S:Y ->CL(X)and f:Y > X.Then S and f

satisfy the (EA)-property if there exists a

sequence  {X,} in Y such that

limSx, =M € CL(X) and lim

nN—o0 n—o0

fx,=t e M.

(3.1.1) SY cgY, TY cfY;

For the definition of (EA)-property for a
pair of self-maps of a metric space, one may
refer to Aamri and EI Moutawakil 2002.

Let @ denote the class of maps ¢
from [0, o) into itself such that ¢ iis non-
decreasing upper semi-continuous and #(t) <t
for all t > 0. Also let v denote the class of
maps ¢ from [0, o) into itself such that ¢ is
non-decreasing upper semi-continuous and ¢(t)
< gt for some q (0, 1). The following lemma
is due to Matkowski 1977 .

Lemma 25. If ¢ € @ then

lim 4" (t) =0,

n—owo

whered' is the n times composition of ¢.
3. MAIN RESULTS

Theorem 3.1 Let Y be an arbitrary nonempty
set and (X, d) be a metric space,
S, T:Y >C(X)and f,g:Y — X such that

(3.1.2) HP (Sx,Ty) < ¢ (adP(fx,gy)+(1-a) max {dP (fx, Sx),dP(gy, TY)})

for all x,yeY ,p>0, where ae(0,1) and ¢

€ @. If one of SY, TY, fYor gY is a
complete subspace of X then C(f,S)and

C(g,T) are nonempty. Further, if Y = X then:

23

0] Maps Sand f have a common fixed

point provided that S and f are

(IT)-commuting at some
ueC(f,S) and ffu= fu;
(i) Maps T and g have a common

fixed point provided that T and g
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are  (IT)-commuting at some manner. Since x, €Y andSY gy , there exists

ueC(g,T) andggu=gu; a point x, €Y such that

(iii) Maps S,T,fand g have a
common fixed point provided that Yi= g% € Sx. SinceTY < Y, in view of
(1) and (11) are true. the remark following Lemma 2.1, we can
Proof. Pickx, Y. Construct two sequences choose x,eY such that y,=fx, eTx and

{x,}cY and {y,}=X in the following
d(y,,y,) =d(gx,, fx,) < H(Sx,,Tx,)

Inductively, having already chosen Y,,= fX,, € TXy,.1, We choose Y,,,1=0Xon+1 € SX,, and

Yon+2= 1:)(2n+2 = Tx2n+1 such that

d(Yon, Yone1) < H(TXo01, SXon ) and d(Yopeq, Yoneo ) < H(SXon, TXop4q )

For the sake of convenience, assume that d, =d(y,,y,,,). We claim that dps1 < d, for each n.

Suppose that dy, > dap.1 for some n. Then by (3.1.2),

d,, <H (S%,,,T%,1)

2n?

< [#(ad (X, ¥y 1 )+(1—a)max{d " ( fx,,, %0 ), 0 (PKon s/ TXon s ) DI P
<[¢(ad®,, +(1-a)max{d®,,,d",,, NI°®
<[(ad®,, +(1-a)max{d®,,,d", N]°

=[#(ad’,, +(1-a)ad",,)]"

=[4(d",,)]° <[d°,,1° =d®,,,

a contradiction, and dz, < dzn.1. Similarly we By Lemma 2.5, it follows that
obtain d,,+1 < dj,. This establishes our claim

limd?® , =0. 3.1.3
that dn+1 < dn for each n. N (yn yn+1)

24
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In order to prove that {y,} is a Cauchy Cauchy sequence. Then there is an ¢ >0 such

that for each positive integer 2k there exist

sequence, it is sufficient to show that {y,,} isa
integers  2n(k) and  2m(k) such that

Cauchy sequence. Suppose that {y,,} is not a

2k < 2n(k) < 2m(k) 3.1.4

and d(yZn(k),yZm(k))zg. 3.15

Let d; j =d(yi,yj) and d; =d(y;,y;,). Then for each integer 2k.,

S d2n(k),2m(k) < d2n(k),2m(k)—2 + d2m(k)—2 + d2m(k)—1 3.16
Let 2m(k) denote the smallest integer satisfying (3.1.4) and (3.1.5), so that
Auneiy2miy-2 < € » and it follows from (3.1.6) that

Iikm Aunky2me) = € - 3.1.7
By the triangle inequality,

| d2n(k),2m(k)7l - d2n(k),2m(k) < d2m(k)71’

| d2n(k)+1,2m(k)—1 - d2n(k),2m(k) |< dZn(k) + d2m(k)—l
These relations in view of (3.1.3) and (3.1.7) yield

“km Aan(iy2m(i)-1 = I'km Aangiyerzmiy-1 =€ - 3.18

Using (3.13) and (ii), we have
d2n(k),2m(k) < d2n(k) + d2n(k)-¢—l,2m(k)

< d2n(k) +H (SXZn(k) ’TXZm(k)—l)

650 (s 9]

25
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+(1_ a) max{ d °( fXZn(k) 'SXZn(k) ),d?( OXom(k)-1 ’TXZm(k)—l )})1/ P

= d2n(k) +(¢[ad P ( fXZn(k)'gXZm(k)—l)+(1_a) max{d"( fXZn(k)1gX2n(k)+1 ):

d p( gXZm(k)—l’ fX2m(k) )})l/ P

<dyn +(¢[adzpn(k),2m(k)—1 +(1_ a) max{dzpm(k) ’dem(k)—l 3 D

Taking k — oo and using (3.1.3) and (3.1.8) with upper semi-continuity of ¢ it follows that

83|:¢(8p):|1/p <e&,

a contradiction. So {y,,} is a Cauchy
sequence in X. Consequently {y,} is Cauchy

sequence in X .

Now suppose that fY is complete. Then the

subsequence { Y, .1 } < fY hasalimitin fY .

Callitz. Letue f 1z. Soz = fu.

dP (Su’y2n+2) <HP (SU ’TX2n+1)

Notice that the subsequence {Y,,} also

converges to z, and we claim that

fu e Su. Suppose otherwise. Then d(Su, fu)

>0, and

S¢(ad p( fu7y2n+l)+(1_a)max{d p(fU,SU),d p(y2n+l'y2n+2)})'

Making n — oo, d”(Su,fu)<d”(fu,Su), a

contradiction.

d?(gv,Tv)=dP(fu,Tv)<HP(Su,Tv)

Consequently C( f,S) is nonempty. Since
SY cgY, there is a point VeY such that

gv = fu e Su.. So by (i),

<¢(ad®( fu,gv)+(1-a)max{d®(fu,Su),d”(gv,Tv)})

=¢(1-a)d’(gv,Tv).
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This yields that C(g,T ) is nonempty.

Analogous arguments establish that C( f,S)
andC(g,T )are nonempty when gY or SY

or TY is a complete subspace of X .

Notice that fu e Su, fu= ffue fSu cSfu.

So fuis a common fixed point of S as well.
This proves (i) and (ii) comes in a similar way.

Now, (I11) is immediate.

Multivalued maps in Theorem 3.1 are
compact-valued. We may dispense with this
by changing a slightly the
condition "¢(t)<t" of Theorem 3.1. We,
indeed inspired by Rhoades et al.(1984) and
Singh et al. (1989) do so below.

requirement

Theorem 3.2. Let Y be an arbitrary nonempty
and (X, d) space. Let
S, T:Y >C(X)and f,g:Y — X be such that
conditions (3.1.1) and (3.1.2) of Theorem 3.1

are satisfied, where ae(0,1) and ¢ ey. If one

set a metric

of SY, TY, fY or gY is a complete subspace
of X then C(f,S)and C(g,T) are nonempty.

Further, if Y = X then all other conclusions of
Theorem 3.1 are also true.

Proof. We give only a brief sketch of it. Pick
Xo € Y. Choose a point x; € Y such that y; =
gx1 = SXo. Now, in view of Lemma 2.1, choose

apoint x, € Y such that vy, = fx, €Tx;, and

1

d(yp yz) = d(gXp fX2) < q-EH(SXO’Txl) -

In general, we construct sequences {xn} cY and {y,}< X in such a way that

Yone1=Xons1 € SXon and Yon,o= Xonin € TXy,4q satisfying

1

1

d(Yons Yone1) < q_ EH(szn-r SXon ) and d(Yons1s Yone2 ) < q_ EH(szn s TXon+1)-

Now, in view of the proof of Theorem 3.1, it is enough to show that {y,} is a Cauchy sequence. Using

(i) and simplifying, we get

1

d,, <q

n

N =

H (SXZn ’TXZn—l) < q E[¢( ad p2n—1

1

+(1-a)max{d®,,.d",,, H]".

27
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This givesd,, < \/a d,, ,. Similarly we obtain

yris <4/ dyye SO dnes < .fqdn for each n.
Hence the sequence {y,} is Cauchy, and this

complete the proof.

As regards the coincidence parts of
maps f,S and g, T in Theorems 3.1 & 3.2, we
remark that the sets C(f,S)and C(g,T)may
be different, that is, the maps f,S and g, T may
have different coincidence points. This may
easily be verified by using [Singh & Mishra

(331) SX c fX and TX < fX;

2001, Example 4]. Further, this observation
remains true even if S = T (see Example 3.5
below). However, if f = g, then maps f,S and
T have a common coincidence point. So, we
have a slightly improved version of the above

theorems.

Theorem 3.3. Let Y be an arbitrary nonempty
set and (X, d) a metric space. Let

S,T:Y - C(X) (respectively
S,T:Y -»CL(X) and f: Yy — X such that

(iv) HP (Sx, Ty) < g(ad P(f x, fy) + (1- a) max {d P (fx, Sx), d P(fy, Ty)}),

forall x,y in X ,p>0where a € (0,1), and ¢ € @ (respectively ¢ €y).

If one of SY, TY or fY is complete subspace

of X then the maps f, S and T have a
common coincidence point. Further, if Y = X
and f is (IT)-commuting with each of S and T
at a common coincidence point z then the maps
f, S and T, have a common fixed point

provided that fz is a fixed point of f.

Proof. It comes from the Theorems 3.1 and 3.2
with f = g.

conditions may also be derived from the above
theorems (see, for instance Davies &sessa
1992, Gregus 1980,Jungck 1990, Murthy et al
1995, Pathak et al 1998 and Singh et al 2001 ).

28

We remark that Theorem 3.3 extends
and generalizes several fixed point theorems for
multivalued maps (see, for instance, Li-shan
1992, Negoescu 1989, Rashwan and Ahmed
2002, Singh et al 1989 and references thereof).
Several for

results single-valued maps

satisfying Gregus type

Now we prove a common fixed point theorem

of Gregu$ type maps using a strict condition.
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Theorem 3.4. Let ( X,d) be a metric space, S,T:Y -»CL(X) and f,g:Y — X satisfying (3.1.1)

and

(V) H(Sx,Ty)<M(axy), x,y inY when M(axy)> 0,

forsome p>0 and 0 < a<1, where

M (axy)=ad ( fx,gy)+(1—a)max{d( fx,Sx),d(gy,Ty)}

Suppose that (f,S) or (g,T) satisfies the
(E.A)-property and one of SY,TY,fY or gY is
a complete subspace of X, then C(f,S)and

C(g,T) are nonempty.

Further, if Y =X, then the conclusions (i), (ii)

and (iii) of Theorem 3.1 are true.

Proof: Suppose that (g,T) satisfies the

(E.A)-property then there exists a sequence
{x,}inY such

that lim(gx,)=teM ,limTx, =M eCL(X)

Since TY <fY ,thereexistsin Y asequence

{y,} such that fy eTx, and

limfy, =teM =IlimTx,.We show that

n—o0

limSy =M. If not then there exists a

n—oo

H@Ey,,M)<HSY, Tx, )+HTx,,M).

subsequence{y,} of {Sy,} , a positive integer

N, and real number ¢ >0 such that for same

k>N we have H(Sy,,M)>¢. From (v)

<d(fy,,gx)+@-a)max{d(fy,,Sy,),d(gx,, Tx)}+H(Tx,M)

Taking the limit k — oo.
e<(1-a)max{ e} <e.which is a contradiction.

Hence e=0ielimAy =M.

n—ow

Suppose TY or fY is a complete subspace of

X, then there exists a point u €Y such that

29

t =fu . To show that fu eSu, we suppose

otherwise and use the condition (v) to have
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d(Su,Tx,) <H(Su,Tx,) <ad(fu,gx,)+@—a)max d({u,Su),d(gx,, Tx,)}

Taking the limit n — o

H (Su,M )< (1-a)d (fu,Su) <d (fu,Su) <H (Su,M)
Which is a contradiction. Then C(f,S)is
nonempty. Since SY < gY ,there exists the
pointv €Y such that fu =gv eSu, so by (v),

H (gv, Tv) =d(fu,Tv) <H(Su,Tv) < ad(fu, gv) +(1-a) max d{fu,Su),d(qv,Tv)}

d(gv,Tv)<(@—-a)d(gv,Tv)<d(gv,Tv),

Which is a contradiction . Then C(g,T) is

nonempty.

Further, ffu =fu and (IT)-commutativity of S
and f atueC(f,S) imply that

fu efSu < Sfu. so fu is common fixed point
of S and f.

The proof of (ii) is similar. Now (iii) is
immediate .analogous argument establishes the
theorem when SY or gY is a complete
subspace of X .

We remark that if f = g in theorem 3.4, then
the maps S, T and f have a common

coincidence point. The following example
shows that Theorems 3.1 & 3.2 with S=T and

f # g need not guarantee the existence of a

point z such that fZ =gz €Tz .

30

Example 3.5. Let X= [0,2] be endowed with
the usual metric. Let s=1={0,2},x=x and

gx =2-x . Then forany ae(0,1),
H(Tx, Ty) =0 <ad(fx, gy).

So, all the hypotheses of Theorems 3.1 & 3.2

are satisfied. Notice that fz €Tz and gz €Tz

but fz #g9z when z=0 or 2.

We remark that (theorem 3.2 and 3.3 is false
under the following condition:

(3.1.3) HP(Sx,Ty)<g(ad " (fx,qy)+(l-a)max{d " (fx,Sx),d*(qy,Ty),

N2 (i Ty)+d* (g, S
Which is more general than the condition(3.1.2)

for details, one may refer to Rhoades 1977.

Example 3.6. Let
X ={a,b,c,d},d(x,x)=0,d(a,b)=d(a,d)=d(b,c) =d(c,d) =1,

d(a,c)=d(b,d)=2and Y = X. Further, let
fx=g =xx foreach xeY and
let Sa=Sd ={c},Sb =Sc ={a},Ta=Th ={d}
and Tc =Td ={b}Then evidently fY isa
complete metric space and (3.1.1) is satisfied. If
a=1\2, p=4 and ¢(t)=t\2, then

¢ . and (3.1.3) is satisfied, too. However,

evidently C (f ,S) and C(g,T ) are empty.



Basrah Journal of Science (A)

Vol.29(1),21-33, 2011

REFERENCES

Aamri M. and ElI Moutawakil D., Some
new common fixed point theorems under
contractive condition, J. Math. Anal.
Appl., 270(2002), 181-188.

2. Ciri¢, Lj. B. , Fixed points for generalized

multivalued contractions, Mat. Vesnik,
9(24)(1972),265-272.

Ciri¢, Lj. B., On a common fixed point
theorem of a Gregu$ type, Publ. Inst.
Math. (Beograd) 49, No. 63 (1991), 171-
178.

Ciri¢, Lj. B, On Diviccro, Fisher and
Sessa open questions, Arch. Math.
(Brno) 29. No. 3-1 (1993), 145 — 152.

Davies R. O., and Sessa. S. A, A
common fixed point theorem of Gregus
type for compatible mappings, Facta
Univ. Ser. Math. Inform. 7 (1992), 99 -
106.

6. Diviccaro M. L., Fisher B. and Sessa S., A

common fixed point theorem of Gregus
type, Publ. Math. Debrecen 34 (1987),
no. 1-2, 83-89.

Fisher B. and Sessa S.. On a fixed point
theorem of Gregus, Int. J. Math. Math.
Sci. 9 (1986), no. 1, 23-28.

Gregus, Jr. v, A fixed point theorem in
Banach space, Boll. Un. Mat. Ital. A(S)
17 (1980), no. 1, 193-198.

Ito S. and Takahashi W., Single-valued
mappings and multivalued mappings
and fixed point theorems, J. Math. Anal.
Appl. 59(1977), 514-521.

31

10.

11.

12.

13.

14.

15.

16.

17.

18.

Jungck G., On a fixed point theorem of
Fisher and Sessa, Int. J. Math. Sci. 13
(1990), 497-500.

Khan M. S. and Imdad M.., A common
fixed point theorem for a class of
mappings, Indian J. Pure Appl. Math. 14
(1983), 1220-1227.

Kirk W. A., A fixed point theorem for
mappings which do not increase
distances, Amer. Math. Monthly 72
(1965), 1004-1006.

Li-shan Liu, On common fixed points of
single—valued mappings and set-valued
mappings, J. Qufu Norm. Univ. Nat. Sci.
Ed. 18. No. 1 (1992), 6 — 10.

Li-shan Liu, Common fixed point
theorems for (sub) compatible and set-
valued generalized nonexpansive
mappings in complete convex metric
spaces. Appl. Math. Mech. (English Ed.)
14(1993), no. 7, 685—692.

Matkowski J., Fixed point theorems for
mappings with a contractive iterate at a
point, Proc. Amer. Math. Soc. 62 (1977),
no. 2, 344-348.

Mukherjee R.N. and Verma V., A note
on a fixed point theorem of Gregus,
Math. Japon. 33 (1988), no 5, 745-749.

Murthy P. P.. Cho Y. J., and Fisher B.,
Common fixed points of Gregus type
mappings, Glas. Mat. Ser. 1l 30 (50),
1995), no. 2, 335-341.

Nadler, Jr. S. B., Multivalued contraction
mappings, Pacific J. Math 30 (1969),
475-488.



AMAL M. HASHIM

NEW COINCIDENCE AND ....

19.

20.

21.

22,

23

24,

Naimpally S. A., Singh S. L. and
whitfield J. H., Coincidence theorems for
hybrid contraction, Math. Nachr. 127
(1986), 177-180.

Negoescu N., Observations on pairs of
multivalued mappings of a certain
contraction type, Bul. Inst. Politeh. lasi,
Sect. 1 35(39), No.3/4, 21-25 (1989).

Pathak H. K., Cho Y. J., Kang S. M. and
Madharia B., Compatible mapping of
type (C) and common fixed point
theorems of Gregus type, Demonstratio
Math. , 31(3)(1998), 499-518.

Rashwan R. A. and Ahmed M. A,
Common fixed points of Gregus type
multivalued mappings, Arch. Math.
(Brno) 38 (2002), 37-47.

Rhoades B.E., A comparison of various
definitions of contracting mapping,
Trans, Amer. Math. Soc, 226(1977)257-
290.

Rhoades B. E., Singh S. L. and
Kulshrestha Chitra, Coincidence

32

26.

217.

28.

29

30.

theorems  for some  multivalued
mappings. Internat. J. Math. Math. Sci. 7
(1984), no. 3, 429--434.

Singh S. L., Ha K. S. and Cho Yeol Je,
Coincidence and fixed points of
nonlinear hybrid contractions. Internat.
Journal of Math. & Math. Sci. 12
(1989), 247-256.

Singh S. L. and Hashim Amal M., New
coincidence and fixed point theorems for
strictly contractive hybrid maps, J.
Austral. Math. Anal. And Appl.
(AJMAA), 2(1)(2005), 1-7.

Singh S. L. and Hashim Amal M., New
coincidence and fixed point of
reciprocally continuous and compatible
hybrid maps. J.Natur.
phs.sci.18(2004),n0.2,97-104.

Singh S. L. and Mishra S. N,
Coincidences and fixed points of nonself
hybrid contractions. J. Math.
Anal. Appl. 256 (2001), no. 2, 486—497

Wong C.S., On Kannan maps, Proc.
Amer. Math. Soc., 47(1975), 105-111


http://www.zentralblatt-math.org/zmath/en/search/?q=au%3ANegoescu%2C+N%2A�

Basrah Journal of Science (A) Vol.29(1),21-33, 2011

Jigall daUatal) g 5aalial) Ada8il) 4, 8% Sasas <iliA yua
Gregus £ sill (a Agiiagdl

LiLul) adils dane Jof

ALl - 5 yad] -5 parl) Lnala — o plal) TulS — Clopnidly J arad

gailall

foi s 3 il Gregui gy o) Ja a1 5 ) sasaial 5 dusla¥) J1sall saeliall Al e Ulias Caad) 138 3
OBl el lgle Jaas ) AU ang agen 5

33



