Monoidal ($\mathbf{k}, \mathbf{q}+\mathbf{m} ; \boldsymbol{f})-\operatorname{arcs}$ of type $(\mathbf{m}, q+m)$ in $P G(2, q)$

Dr. F.K. Hameed
University of Basrah - Education College - Mathematics Department

Abstract

In this paper we discuss a Monoidal ($\mathbf{k}, \boldsymbol{q}+\boldsymbol{m} ; \boldsymbol{f}$)-arcs of type ($m, q+m$) in the projective plane of order q and we proved that the points of weight 0 form $a\left(q^{2}-(m-1) q, q\right)$ - arc in which $\mid \mathrm{q}$-secants $|=q-(m-l)| \mathrm{q}-,(\mathrm{m}-1)$-secants $\left|=q^{2},\right| 0$-secants $\mid=m$ and $\mid i-$ secants $\mid=0, i \neq q, q$ $-(m-1), 0$. Also we proved that the points of weight 1 form $a(m q, q)-\operatorname{arc}$ with $\mid \mathrm{q}-$ secants $\mid=$ $m, \mid \mathrm{m}$-secants $\left|=q^{2}, \quad\right| 0$-secants $\mid=q-(m-1)$ and $\mid i-$ secants $\mid=0, i \neq q, m, 0$, and we gave some examples when $q=3,5,7$.

Introduction

$\mathrm{A}(k, n)$-arc \mathbf{k} in $\operatorname{PG}(2, \mathrm{q})$ is a set of k points such that some line of the plane meets \mathbf{k} in n points but such that no line meets \mathbf{k} in more than n points, where $n \geq 2$. A line ℓ in $\mathrm{PG}(2, \mathrm{q})$ is an i-secant of $\mathrm{a}(k, n)$-arc \mathbf{k} if $|\ell \cap k|=i$. Let τ_{i} denote the total number of i -secants to \mathbf{k} in $\pi=\mathrm{PG}(2, q)$, then we have the following lemma :
Lemma [J.W.P. Hirschfeld, 1979]
For a (k, n)-arc \mathbf{k}, the following equations hold :
(1) $\sum_{i=0}^{n} \tau_{i}=$ $\mathrm{q}^{2}+\mathrm{q}+1$;
(2) $\sum_{i=1}^{n} i \tau_{i}=k(q+1)$;

$$
\text { (3) } \sum_{i=2}^{n} \frac{i(i-1)}{2} \tau_{i}=\frac{k(k-1)}{2} \text {; }
$$

Def.A $(k, n)-\operatorname{arc}$ is complete if there is no $(\mathrm{k}+1, \mathrm{n})-$ arc containing it .
Let \boldsymbol{K} be the set of k points in a finite projective plane of order q. Assume that \boldsymbol{K} is partitioned into subsets $W_{i}(i=0,1,2, \ldots, g)$ and that to each point of W_{i} has given a weight $w_{i}>0$. The set \boldsymbol{K} is defined to be a $\left(k, n ;\left\{w_{i}\right\}\right)-\operatorname{arc}(n \geq q)$ if n is the maximum value of $\sum w_{i} p_{i}^{(s)}$, where
s is any line of the plane and $p_{i}^{(s)}$ denote the number of points of W_{i} which belong to the line s. Note that if $g=1$ and $w_{i}=1$

We obtained the definition of a $(k, n)-\operatorname{arc}$. If \boldsymbol{K} is a $\left(k, n ;\left\{w_{i}\right\}\right)-\operatorname{arc}$ and $p \in K$, the weight of p will be denoted by $w(p)$. A line s of the plane such that $\sum w_{i} p_{i}^{(s)}=m_{j} \quad$ will be called an $m_{j}-$ secant .If $m_{j}=1$, then s is called a tangent. If s does not intersect the set \boldsymbol{K}, will be called an external line. Let $\left\{m_{1}, m_{2}, \ldots, m_{i-1}, n\right\},\left(m_{1}<m_{2}<\ldots<m_{i-1}<n\right)$
be the set of values taken by the integers $\sum w_{i} p_{i}^{(s)}$, where s describes the set of the lines in the plane. Then \boldsymbol{K} is said to be of type $\left(m_{1}, m_{2}, \ldots, m_{i-1}, n\right)$.

Barnabei in 1979, has proved to be a necessary condition for the existence of a $\left(k, n ;\left\{w_{i}\right\}\right)-\operatorname{arc}$ of type $(m, n) 0<m<n$
$q \equiv 0 \bmod (n-m) \ldots$ (i)
and $g \leq n-m \quad \ldots$ (ii)
The case of $m=n-2$ was discussed by (D'Agostini, 1979). The case of $m=n-3$ was discussed by (B. J. Wilson, 1986) and (F.K.Hameed, 1989) . The case of $m=n-5$ was discussed by(Raida D. Mahmood, 1990) .

Monoidal arcs

In this section we consider $\left(k, q+m ;\left\{w_{i}\right\}\right)-\operatorname{arc}$ of type $(m, q+m)$ in which only one point p whose weight m and $1<m \leq q$, while all other points of the arc have weight one. Such arcs will be called monoidal arcs.

Note that, deleting the point p from our monoidal arc, we obtain an ordinary $(k, n)-\operatorname{arc}$. Let t_{i} be the number of lines of weight i in $\operatorname{PG}(2, \mathrm{q})$, then in the monoidal arc of type ($\mathrm{m}, \mathrm{q}+\mathrm{m}$) which have minimal weight $W=m(q+1)$, we get :

Since there are only m - secants and $(q+m)$ secants in the monoidal arc then is that

$$
\begin{gathered}
t_{m}+t_{q+m}=q^{2}+q+1 \\
m t_{m}+(q+m) t_{q+m}=W(q+1)=m(q+1)^{2}=m q^{2}+2 m q+m \\
m t_{m}+m t_{q+m}=m q^{2}+m q+m, \text { then we get } \\
q t_{q+m}=m q \Rightarrow t_{q+m}=m \Rightarrow t_{m}=q^{2}+q-(m-1)
\end{gathered}
$$

Let \boldsymbol{K} be a $\left(k, n ;\left\{w_{i}\right\}\right)-\operatorname{arc}$ of type $(m, n), m>0$ and let v_{m}^{s} and v_{n}^{s} respectively the number of lines of weight m
and the number of lines of weight n passing through a point of weight s . Then

$$
\begin{aligned}
& (n-m) v_{m}^{s}=(n-s)(q+1)-(W-s) \\
& (n-m) v_{n}^{s}=(W-s)-(m-s)(q+1)
\end{aligned}
$$

From the above and $\operatorname{Im} f=\{0,1, m\}$, we deduce the following :

$$
\begin{align*}
& v_{m}^{0}=q+1 \\
& v_{m}^{1}=q \tag{*}\\
& v_{m}^{m}=q-(m-1)
\end{align*}
$$

Since the number of points of weight m in the monoidal arc is one, then on $(q+m)$ - secant one point of weight m and since there is no point of weight 0 on it then the number of points of weight 1 on it are q. Suppose that on m - secant of the monoidal arc are u points of weight $0, v$ points of weight 1 and

$$
\left.\begin{array}{l}
v_{q+m}^{0}=0 \\
v_{q+m}^{1}=1 \\
v_{q+m}^{m}=m
\end{array}\right\}
$$

w points of weight m, then by counting the points on m - secant we get :

$$
\begin{equation*}
u+v+w=q+1 \tag{1.a}
\end{equation*}
$$

and by counting the weights of its points we get :

$$
\begin{equation*}
v+m \cdot w=m \tag{1.b}
\end{equation*}
$$

From (1.a), (1.b) and the above results we obtain

Table (1)

Type of lines	The number of points of weight m	The number of points of weight 1	The number of points of weight 0	Total number
$(\mathrm{q}+\mathrm{m})-$ secant	1	q	0	m
$\mathrm{m}-$ secant Through \boldsymbol{p}	1	0	q	$\mathrm{q}-(\mathrm{m}-1)$
$\mathrm{m}-$ secant Through $\mathrm{Q} \neq \boldsymbol{p}$	0	m	$\mathrm{q}-(\mathrm{m}-1)$	q^{2}

Lemma(1) no $\mathrm{q}+1$ points of weight zero can be collinear.
Proof: From Table (1) .

Let l_{j} be the number of points of weight j . Then we have
$l_{m}=1 \Rightarrow l_{1} v_{q+m}^{1}=q t_{q+m} \Rightarrow l_{1}=m q \Rightarrow l_{0}+l_{1}+l_{m}=q^{2}+q+1 \Rightarrow l_{0}=q^{2}-(m-1) q$
Then we get the following theorem .

Theorem(1)

There is a monoidal $(\mathrm{mq}+1, \mathrm{q}+\mathrm{m} ; f)-\operatorname{arc}$ of type $(\mathrm{m}, \mathrm{q}+\mathrm{m})$ in $\mathrm{PG}(2, \mathrm{q})$ with $\quad \operatorname{Im} f=\{$ $0,1, \mathrm{~m}\}$ and the points of weight 0 form a $\left(q^{2}-(m-1) q, q\right)-$ arc in which $\mid q-$ secants $|=q-(m-1), \quad| q-(m-1)-$ secants $\left|=q^{2},\right| 0-$ secants $\mid=m$ and $\mid i-$ secants $\mid=0, i \neq \mathrm{q}, \mathrm{q}-(\mathrm{m}-1), 0$.

Corollary : The points of weight 1 form $\mathrm{a}(\mathrm{mq}, \mathrm{q})-\operatorname{arc}$ with $\mid \mathrm{q}-$ secants $|=m| \mathrm{m}-$, secants \mid $=q^{2}, \quad \mid 0-$ secants $\mid=q-(\mathrm{m}-1)$ and $|i-\operatorname{secants}|=0, i \neq \mathrm{q}, \mathrm{m}, 0$.

Examples of ($k, \mathbf{q}+\mathbf{2}, f)-\operatorname{arcs}$ of type (2,

 $\mathbf{q}+2)$ in $\operatorname{PG}(2, q), q=3,5$(1) Now, when $q=3$, then from (i) we must have $q=3^{h}, h \geq 1$ and then (ii) requires that $g \leq 3$. In order to have an arc which is not simply a $(k, n)-\operatorname{arc}$ we must have that

$$
2(q+1) \leq W \leq q(q+1)+2
$$

It may easily be shown that from theorem(1) the following result :
The points of weight zero form $(6,3)$-arc of type $(2,9,0,2)$ in $\operatorname{PG}(2,3)$.
For $W=2(q+1)$ and from $\left({ }^{*}\right)$ we get :

$$
\begin{array}{cc}
V_{2}^{0}=4 & V_{5}^{0}=0 \\
V_{2}^{1}=3 & V_{5}^{1}=1 \\
V_{2}^{2}=2 & V_{5}^{2}=2
\end{array}
$$

proposition

For the existence of $(7,5 ; f)-$ arc \boldsymbol{K} of type $(2,5)$, and the point of weight 0 form $(6,3)$ - arc in $P G(2,3)$ we must have the following:

The number of 5 -secants of K is 2 .
The number of $2-$ secants of K is 11 .
The number of points of weight 2 is 1 .
The number of points of weight 1 is 6 . From the above we get the following example in $\operatorname{PG}(2,3)$
Let $\mathrm{p}=(1,0,0)$ be the point of weight 2 , the points of weight 1 are
$(0,1,0),(1,1,0),(1,2,0),(1,0,1),(1,0,2)$, $(0,0,1)$ and the points of weight 0 are
$(1,2,2),(0,1,1),(0,1,2),(1,2,1),(1,1,2)$, $(1,1,1)$.
(2) No six points of weight zero in $\operatorname{PG}(2,5)$ can be collinear.

When $q=5$, then from (i) we must have $q=5^{h}, h \geq 1$ and then (ii) requires that $g \leq 5$. In order to have an arc which is not simply $a(k, n)-a r c$ we must have that

$$
2(q+1) \leq W \leq q(q+1)+2
$$

It may easily be shown that from theorem (1) the following result :

The points of weight zero form (20,5)-arc of type ($4,25,0,0,0,2$) in $\operatorname{PG}(2,5)$.

From (*) we get :

$$
\begin{array}{ll}
V_{2}^{0}=6 & V_{7}^{0}=0 \\
V_{2}^{1}=5 & V_{7}^{1}=1 \\
V_{2}^{2}=4 & V_{7}^{2}=2
\end{array}
$$

Lemma(2)

Through a point of weight 2 there are four 5secant zero 4 -secant and two 0 -secant.

Proof

Since $V_{7}^{2}=2$ and $V_{2}^{2}=4$ suppose p is a point of weight two and pass through p zero 5 -secant, five 4 -secant and one 0 -secant of the $(20,5)$-arc, since the i-secant $(i=4,5)$ of the $(20,5)$-arc are 2 - secant of K and the 0 secant of $a(20,5)$-arc which have point of weight 2 are 7 -secant of K . therefore through p there pass 52 -secant and one 7 -secant which is contradiction .

Hence the points of type zero 5 -secant, five 4secant and one 0 -secant are not point of weight 2.

Suppose Q is a point and through Q there pass four 5 -secant, zero 4 -secant and two 0 -secant (which are 2 -secant of K) and two 0 -secant of $(20,5)$-arc which are either 7 -secant or 2 secant with respect to K according to Q is a point of weight one respectively. Hence Q is possibly a point of weight 2 .

Theorem(2)

For the existence of $(11,7 ; f)-\operatorname{arc} \boldsymbol{K}$ of type $(2,7)$, and the point of weight 0 form $(20,5)$ - arc in $P G(2,5)$ we must have the following:

The number of $7-$ secants of K is 2 . The number of 2 -secants of K is 29 . The number of points of weight 2 is 1. The number of points of weight 1 is 10 . Remarks If $\boldsymbol{q}=5$, the points of weight one are
$(\mathbf{0 , 1 , 0}),(0,0,1),(1,0,1),(1,3,0),(1,0,3)$, $(1,2,0),(1,0,4),(1,1,0)$,
$(\mathbf{1 , 0 , 2}),(\mathbf{1 , 4 , 0})$, the point of weight 2 is $($ $\mathbf{1 , 0 , 0}$) and the remaining points of $P G(2,5)$ are assigned weight zero .

Monoidal (29, 11; f) - arcs of type (4,11)

 in PG(2, 7)In this section we discuss a monoidal arc with $\operatorname{Im} f=\{0,1,4\}$ in $\operatorname{PG}(2,7)$. From theorem(1) we get the following result :

The points of weight zero form $(28,7)-\operatorname{arc}$ of type ($4,49,0,0,0,0,0,4)$ in $\operatorname{PG}(2,7)$.

Then from (*) we get :

$$
\begin{array}{ll}
V_{4}^{0}=8 & V_{11}^{0}=0 \\
V_{4}^{1}=7 & V_{11}^{1}=1 \\
V_{4}^{4}=4 & V_{11}^{4}=4
\end{array}
$$

Lemma(3)

For the existence of $(29,11 ; f)$-arc \boldsymbol{K} of type $(4,11)$, and the point of weight 0 form $(28,7)$-arc in $P G(2,7)$ we must have the following:

1) The number of 11 -secants of K is 4 .
2) The number of $4-$ secants of K is 53 .
3) The number of points of weight 4 is 1 .
4) The number of points of weight 1 is 28

From the above we get the following example in $\operatorname{PG}(2,7)$
Let $\mathrm{p}=(1,0,0)$ be the point of weight 4 , the points of weight 1 are the points of the equations $x_{2}=0, \quad x_{3}=0, \quad x_{2}+x_{3}=0, \quad x_{2}+2 x_{3} \nexists 10 \mathrm{D}$. and the remaining points of $P G(2,7)$ are having weight zero .

References

Barnabei, M., On arcs with weighted points,

Journal of statistical planning and Inference, 3 (1979), 279-286 .
Barlotti, A. (to appear). Recent results in Galois geometries useful in coding theory . Proc. C.N.R.S. Colloquium . E.N.S.E.T. Cachan, July 4-8 1977 .
B. J. Wilson, " (k,n;f) - arcs and caps in finite projective spaces " ${ }^{\prime}$, Annals of Discrete mathematics, 30 (1986), 355-362 .

D'Agostini, E. , Alcune osservazioni sui (k,n;f) - archi di un piano finito, Atti dell ' Accademia della scienze di Bologna, Rendiconti, serie XIII, 6 (1979), 211-218 .

D'Agostini, E., Sulla caratterizzazione delle (k, n; f)-calotte di tipo ($\mathrm{n}-2, \mathrm{n}$), Atti sem.
Mat. Fis. Univ. Modena , XXIX , (1980), 263-275.
F.K.Hameed, " Weighted (k,n)-arcs in projective plane of order nine " , (1989), J.W.P. Hirschfeld, "projective geometries over finite fields ", Oxford, 1979 .

Raida D. Mahmood, " (k,n;f) -arcs of type $(n-5, n)$ in $\operatorname{PG}(2,5)$ " , M. SC, (1990)

في هذا البُحثِ بر هنا على وجود الأقو اس الموزونة (k, n) الأحادية من النوع (m, q+m) التي يكون فيها عدد النقاط من الوزن

 المستوي الاسقاطي من الرتبة 7,5,3 ه

