Jornal of Kerbala University, Vol. 5 No. 2 Scientific .June 2007

Direct Estimation For Multivariate Polynomial APPROXIMATION

Eman Samir Bhaya, Mathematics Department, Babylon University. Hussein Ali
Mohammed, Computer Department, Karbala University.

Abstract

The Bramble-Hilbert lemma is a fundamental result on multivariate polynomial approximation .It is frequently applied in the analysis of finite element methods used for numerical solutions. Our main result is to improve the following Bramble-Hilbert lemma to the case $0<p<1$:let $\Omega \subset R^{n}$ be abounded convex domain and let $g \in \mathcal{W}_{p}^{m}(\Omega)$, $m \in \mathrm{~N}, 0 \leq p \leq \infty$, where $w_{p}^{m}(\Omega)$ is the Sobolev spaces , then there exists a polynomial P of degree $m-1$ for which $$
|g-P|_{k, p} \leq \mathrm{c}(\mathrm{n}, \mathrm{~m})(\operatorname{diam} \Omega)^{m-k}|\mathrm{~g}|,
$$ $k=0,1, \ldots, m$, where $|\cdot|_{k, p}=\sum_{|\alpha|=k}\left\|D^{\alpha}\right\|_{\mid p(\Omega)}$ is the Sobolev semi norm of order k.

As a consequence we get that for $f \in L_{p(\Omega)}, p<1$.

$$
E_{m-1}(f, \Omega)_{p} \leq \mathrm{c}(m, n) \tau_{m}(f, t)_{p}
$$

where

$$
E_{m-1}(f, \Omega)_{p}=\inf _{p \in \pi_{m-1}}\|f-p\|_{\not p(\Omega)}
$$

is the rate of polynomial approximation of degree $m-1$, and $\tau_{m}(f, t)_{p}$ is the averaged modulus of smoothness, and $t>0$.

1. Introduction

We begin by recalling classical smoothness measure over multivariate domains . Here and throughout the paper we assume that the domain $\Omega \subset R^{n}$ is compact with a nonempty interior . A first notion of smoothness uses the Sobolev spaces $\mathcal{W}_{p}^{m}(\Omega)$. These are spaces of functions $\mathrm{g} \in L_{p}(\Omega)$ which have all their distributional derivatives of order up to m,

$$
D^{\alpha} g=\frac{\partial^{k} g}{\partial x_{1}^{\alpha 1} \ldots \partial x_{n}^{\alpha n}}, \alpha=(\alpha 1, \alpha 2, \ldots, \alpha n), \alpha \in Z_{+}^{n} \quad,|\alpha|=\sum_{i=1}^{n} \alpha i=k, 0 \leq k \leq 1
$$

In $L p(\Omega)$. the semi norm of $W_{p}^{m}(\Omega)$ is given by

$$
|g|_{m, p}=\sum_{|\alpha|=m}\left\|D^{\alpha} g\right\|_{L_{p(\Omega)}}<\infty,
$$

and may be regarded as a measure of the smoothness of order m of a function in $\mathcal{W}_{p}^{m}(\Omega) \cdot K-$ functional of order m of $f \in \operatorname{Lp}(\Omega)[4,6]$ is defined by

$$
K_{m}(f, t)_{p}=K\left(f, t, L p(\Omega), \mathcal{W}_{p}^{m}(\Omega)\right)=\inf _{g \in \mathcal{W}_{p}^{m}(\Omega)}\left\{\left.\left|f-g \|_{p}+t\right| g\right|_{m, p}\right\}
$$

Since we assume Ω to be compact we may denote $K_{m}(f, \Omega)_{p}=K_{m}\left(f, d^{m}\right)_{p}$, where $d=\operatorname{diam}(\Omega)$ the diameter of Ω.
For $f \in L p(\Omega), 0<p \leq \infty, h \in R^{n}$ and $m \in N$, we recall the m th order difference operator $\Delta_{h}^{m}(f,):. \Omega \rightarrow R, \quad \Delta_{h}^{m}(f, x)=\Delta_{h}^{m}(f, \Omega, x)=\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k} f(x+k h)$ if $[x, x+m h] \subset \Omega$, otherwise, where $[x, y]$ denotes the line segment connecting any two points $x, y \in R^{n}$. The modulus of smoothness [5,7] is defined by

$$
\begin{equation*}
\omega_{m}(f, t)_{p}=\sup _{|h| \leq t}\left\|\Delta_{h}^{m}(f, \Omega, .)\right\| L p(\Omega), t>0 \tag{1.1}
\end{equation*}
$$

for $h \in R^{n},|h|$ denotes the norm of h. We also denote

$$
\omega_{m}(f, \Omega)_{p}=\sup _{h \in R^{n}}\left\|\Delta_{h}^{m}(f, \Omega, .)\right\|_{L p(\Omega)}
$$

It is known that the K-functional of order m of $f \in L p(\Omega), 1 \leq p \leq \infty$ and the modulus of smoothness in (1.1) are equivalent [8]. That is ,there exists $c_{1}, c_{2}>0$, such that for any $t>0$,

$$
\begin{equation*}
c(\Omega) K_{m}\left(f, t^{m}\right)_{p} \leq \omega_{m}(f, t)_{p} \leq c(m) K_{m}\left(f, t^{m}\right)_{p} \tag{1.2}
\end{equation*}
$$

The so called τ-modulus (or Sendov-Popov modulus), an averaged modulus of smoothness , defined for bounded measurable functions by

$$
\begin{equation*}
\tau_{m}(f, t, \Omega)_{p}=\left\|\omega_{m}(f, ., t)\right\|_{L p(\Omega)} \tag{1.3}
\end{equation*}
$$

where

$$
\omega_{m}(f, x, t)=\sup \left\{\left|\Delta_{h}^{m}(f, \Omega, y)\right|: y \pm \frac{m h}{2} \in\left[x-\frac{r t}{2}, x+\frac{r t}{2}\right] \cap \Omega\right\},
$$

where $t>0, \Omega \subset R^{n}, h \in R^{n}, x, y \in R^{n}$.
However, while it is easy to prove the following result
Lemma1.4 Let $\Omega \subset R^{n}$, and Ω_{i} be a bounded measurable disjoint subsets of Ω satisfying $\bigcup_{i=1}^{n} \Omega_{i}=\Omega$, and $x^{i} \in \Omega_{i}$. Using measure of $\Omega_{i}=\delta_{i}$ we have

$$
\begin{equation*}
\left(\sum_{i=1}^{n} \omega_{m}\left(f, x^{i}, t\right)^{p} \delta_{i}\right)^{1 / p} \leq c(p)\left(\sum_{i=1}^{n} \int_{\Omega_{i}} \omega_{m}\left(f, x^{i}, t\right)^{p}\right)^{1 / p} \leq c(p) \tau_{m}(f, t)_{p} \tag{1.5}
\end{equation*}
$$

where $c(p)$ denote constants which depend on p only, and are not necessarily the same even when they occur on the same line.
Let $\prod_{m-1}=\prod_{m-1}\left(R^{n}\right)$ denote the multivariate polynomials of total degree $m-1$ in n variables.
Given a nontrivial multivariate domain, our goal is to estimate the degree of approximation of a function $f \in L p(\Omega), 0<p<1$,

$$
E_{m-1}(f, \Omega)_{p}=\inf _{p \in \Pi_{m-1}}\|f-p\|_{L_{p}(\Omega)}
$$

Before we introduce the Bramble-Hilbert lemma we require the following definitions :

Jornal of Kerbala University, Vol. 5 No. 2 Scientific .June 2007

A domain Ω is star-shaped with respect to a ball $B \subseteq \Omega$, if for each point $x \in \Omega$, the closed convex-hull of $\{x\}\} B$ is contained in Ω. Let

$$
\rho_{\max }=\max \{\rho: \Omega \text { is star- shaped with respect to a ball } B \subseteq \Omega \text { of radius } \rho\},
$$

the chunkiness parameter of Ω is defined by

$$
\gamma=\frac{d}{\rho_{\max }},((d=\operatorname{diam} \Omega) .
$$

This leads to the following formulation of the Bramble - Hilbert lemma [2]. Let Ω be star shaped with respect to some ball B and let $g \in W_{p}^{m}(\Omega), 1 \leq p \leq \infty, m \in N$, then there exists a polynomial $P \in \prod_{m-1}$ for which

$$
|g-p|_{k, p} \leq c(n, m, \gamma) d^{m-k}|g|_{m, p}, k=0, \ldots, m .
$$

Earlier, Dechevski and Quak improved the Bramble lemma in some cases their result applies to the larger class of domains that are star-shaped with respect to a point. A domain Ω is aster-shaped with respect to a point $x_{0} \in \Omega$ if for any point $x \in \Omega$ the line segment $\left[x_{0}, x\right]$ is contained in Ω.
The following is a modified version of their result :
Proposition 1.6 [3] let Ω be a Lipshitz domain which is star-shaped with respect to a point $x_{0} \in \Omega$, and let $g \in W_{2}^{m}(\Omega)$.then for $m \in N$ and $2 \leq n<p \leq \infty$, there exists a polynomial $P \in \prod_{m-1}$ for which

$$
|g-p|_{k, p} \leq c(n, m, p) d^{m-k}|g|_{m, p}, k=0,1, \ldots, m
$$

Our approach differs from previous work in the case $0<p<1$. Our main result is
Theorem I: Let $\Omega \subset R^{n}$ be convex, and let $g \in W_{p}^{m}(\Omega), m \in N, 0<p<1$.
Then there exists a polynomial $P \in \prod_{m-1}$ for which

$$
|g-p|_{W_{p}^{k}(\Omega)} \leq c(n, m, p, \Omega)|g|_{W_{o(\Omega)}^{k}} .
$$

A direct consequence from the proof of theorem I is the following :
Corollary II: For all convex domains $\Omega \subset R^{n}$ and a function $g \in L p(\Omega), 0<p<1$. there exists a polynomial $P \in \prod_{m-1}$ for which

$$
\|g-P\|_{p} \leq c \tau_{m}(g, t)_{p},
$$

where c is a constant depending on p, m, n, Ω.
Corollary III: for all convex domains $\Omega \subset R^{n}$ and function $f \in L p(\Omega), p<1$,

$$
E_{m-1}(f, \Omega)_{p}=K_{m-1}(f)_{p}
$$

2. The averaged Taylor polynomial [3]

We recall some basic definitions of multivariate polynomials, differentials and Taylor series thought this section we use the notation of section 2 in [3]. For multi index $\alpha \in Z_{+}^{n}$
$\alpha!=\prod_{i=1}^{n} \alpha_{i}!$ and denoted by $x^{\alpha}=\prod_{i=1}^{n} x_{i}^{\alpha-i}$, the multivariate monomial of total degree $|\alpha|$. Denote the set of all multivariate polynomials of total degree $m-1$ by

$$
\pi_{m-1}\left(R^{n}\right)=\sum_{|\alpha| \leq m-1} c_{\alpha} x^{\alpha}
$$

Jornal of Kerbala University, Vol. 5 No. 2 Scientific .June 2007

The classical Taylor polynomial of order m (degree $m-1$) of a function $g \in C^{m}(\Omega)$ at $x \in \Omega$, about the point $y \in \Omega$, is given by

$$
T_{y}^{m}(g(x))=\sum_{|\alpha|<m} \frac{D^{\alpha} g(y)}{\alpha!}(x-y)^{\alpha} .
$$

The Taylor remainder of order m of a function $g \in C^{m}(\Omega)$ at $x \in \Omega$ about the point $y \in \Omega$, is given by

$$
T R_{y}^{m} g(x)=m \sum_{|\alpha|=m} \frac{(x-y)^{\alpha}}{\alpha!} \int_{0}^{1} S^{m-1} D^{\alpha} g(x+s(y-x)) d s
$$

It is meaningful provided the segment $[y, x]$ is contained in Ω. Then we have

$$
g(x)=T_{y}^{m} g(x)+T R_{y}^{m} g(x) .
$$

Next we introduce the averaged Taylor polynomial . It can be shown that for a ball
$B\left(x_{0}, \rho\right)=\left\{z \in R^{n}:\left|z-x_{0}\right| \leq \rho\right\}$ there exists a cut-off function ϕ_{β} with the following properties
(i) $\int_{R^{n}} \phi_{\beta}(x) d x=1$
(ii) $\sup p\left(\phi_{\beta}\right)=\beta$
(iii) $\phi_{\beta} \in C^{\infty}\left(R^{n}\right)$
(iv) $\left\|\phi_{\beta}\right\|_{\infty} \leq \rho^{-n}$.

Given $g \in C^{m}(\Omega)$ the averaged Taylor polynomial of order m (degree $m-1$) (average over a ball $B \subseteq \Omega$) is defined by

$$
Q^{m} g(x)=\int_{B} T_{y}^{m} g(x) \phi_{\beta}(y) d y \quad x \in \Omega .
$$

We also define the averaged Taylor remainder, namely

$$
R^{m} g(x)=g(x)-Q^{m} g(x)
$$

The following lemma is a special case of the classical Bramble-Hilbert which estimate the simultaneous degree of approximation of the averaged Taylor polynomial in normalized setting .
Lemma 2.1 [3] let $B(0,1) \subseteq \Omega \subseteq B(0, n)$, be star shaped with respect to $B(0,1)$. Then for any $g \in C^{\infty}(\Omega), m \in N$ and $1 \leq p \leq \infty$, we have

$$
\left|g-Q^{m} g\right|_{k, m} \leq c(n, m)|g|_{m, p}, k=0,1, . ., m,
$$

where Q^{m} is averaged over $B(0,1)$

3.John's theorem [3]

In this section we also use the notation in section 3 of [3]. An ellipsoid E is the image of the closed unite ball in R^{n} under a nonsingular affine map
$A(x)=M x+b, m \in M_{n \times n}(R), b \in R^{n}$, the center of $\quad E \quad$ is $\quad b=A(0) \quad$.Now let $c+n(E-c)=\{c+n(x-c): x \in E\}$. Then we need the following result from [1],[3]
Lemma 3.1 (John's theorem) . let $\Omega \in R^{n}$ be convex .then there exists an ellipsoid $E \subseteq \Omega$ such that if x_{0} is the center of E then $E \subseteq \Omega \subseteq x_{0}+n\left(E-x_{0}\right)$. By the definition above and John's theorem implies that for each convex domain Ω we can find an affine map such that $B(0,1) \subseteq A^{-1}(\Omega) \subseteq B(0, n)$.
For the proof of our main result we also need the following lemma from [3]
Lemma 3.2 let $\Omega \subseteq R^{n}$, and let A be a nonsingular affine map such that $B(0,1) \subseteq A^{-1}(\Omega)$. Then for $g \in C^{m}(\Omega)$ and $\alpha \in Z_{+}^{n},|\alpha|=k, 1 \leq k \leq m-1$

$$
\begin{equation*}
D^{\alpha}\left[Q^{m}(g(A .))\left(A^{-1} x\right)\right]=Q^{m-k}\left(\left(D^{\alpha} g\right)(A .)\right)\left(A^{-1} x\right) \tag{3.3}
\end{equation*}
$$

where Q^{m} is with respect to $B(0,1)$.

4. The proof of the main results

One may take $P(x)=Q^{m}(g(A)).\left(A^{-1} x\right)$, where Q^{m} is the averaged Taylor polynomial over the ball $B(0,1) \subset R^{n}$, and A is an affine transformation related to Ω.
Using lemma 2.1. ,(1.2),(1.5) and (1.3) to obtain

$$
\begin{aligned}
\left|g-Q^{m} g\right| & \leq c(n, m)|g|_{m, \infty} \\
& \leq c(n, m, \Omega) K_{m}\left(g, t^{m}\right)_{\infty} \\
& \leq c(n, m, \Omega) \omega_{m}(g, t)_{\infty}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left\|g-Q^{m} g\right\|_{p} \leq c(n, m, \Omega)\left(\int_{\Omega} \omega_{m}(g, t)_{\infty}^{p}\right)^{1 / p} \\
& \quad \leq c(n, m, \Omega)\left(\sum_{i=1 \Omega_{i}}^{n} \omega_{m}\left(g, x_{i}, t\right)^{p}\right)^{1 / p}, t>0 \\
& \quad \leq c(p, n, m, \Omega) \tau_{m}(g, t)_{p}(\text { corollary } 1.2) \\
& \quad \leq c(p, n, m, \Omega)|g| \\
& \quad \leq c(p, n, m, \Omega)\|g\|_{L p(\Omega)} .
\end{aligned}
$$

For $1 \leq k \leq m-1$ take $\alpha \in Z_{+}^{n},|\alpha|=k, 1 \leq k \leq m-1$ and $h=D^{\alpha} g$, then (3.3) yields
$\left\|D^{\alpha}(g-p)\right\|_{L p(\Omega)}=\left\|h(x)-Q^{m-k}(h(A .))\left(A^{-1} x\right)\right\|_{L p(\Omega)}$.
By the case $k=0$ proved above we have
$\left\|h(x)-Q^{m-k}(h(A .))\left(A^{-1} x\right)\right\|_{L p(\Omega)} \leq c(p, n, m, \Omega)\|h\|_{p}$.
Then
$\left\|D^{\alpha}(g-p)\right\|_{L p(\Omega)} \leq c(p, n, m, \Omega)\|h\|_{p} \leq c(p, n, m, \Omega) \sum_{|\alpha|=m}\left\|D_{x}^{\alpha} g\right\|_{L p(\Omega)}$
Then by the definition of Sobolev semi norm we get
$|g-p|_{W_{p}^{k}(\Omega)} \leq c(n, m, p, \Omega)|g|_{W_{p}^{m}(\Omega)}$

Jornal of Kerbala University, Vol. 5 No. 2 Scientific .June 2007

References

[1] J.H.Bramble , S.R.Hilbert (1970): Estimation of liner functional on Sobolev spaces with applications Fourier transforms and spline interpolations SIAM.J.Numer. Anal. ,7;113-124.
[2] S.C.Brenner , L.R. scott(1994): The mathematical theorem of finite elements methods .Springer-Verlag.
[3] L.T.Dechevski, E.G Quak (1990): On the Bramble-Hilbert lemma . Numer.Func. Anal. Optim.,11;485-495.
[4] R.A.Devare (1976): Degree of approximation . Approx . Theory 2.New york Academic Press,117-167
[5] R.A.Devore, J.lorenz (1993): Constructive approximation .Springer - Verlag , Bertin Heidelberg
[6] Z .Ditzian , V.Totik(1987): Moduli of smoothness . New york, Springer - Verlag.
[7] K.G.Ivanov (1986): On the behavior of two moduli of functions 2 , Serdica, 12; 196203.
[8] H . Jonen , K.Scherer (1976): On the equivalence of the K-functional and the moduli of continuity and some applications . Lecture notes in Math. 571 Springer-Verlag , Berlin ; 119-140.

