On Almost Open Sets In Metric Spaces

حول المجمو عات المفتوحة تقريبا في الفضاءات المترية Mohammed Yahya Abid Basim Karim Al-Saltani

Computers Dept.,/Science College,/Kerbalaa University/

Abstract

In this paper we present a new notion the almost open sets, to define

the almost dense and almost perfect sets in metric space X. furthermore

we prove some theorems related by these concepts _

الخلاصه

في هذا البحث قدمنا مفهومين جديدين باستخدام المجموعة المفتوحة تقريبا، وهذين المفهومين هو المجموعة الكثيفة بنفسها تقريبا و المجموعة التامة تقريبا في الفضاءات المترية و أثبتنا بعض النظريات المتعلقة بهذين التعريفيين الجديدين

1. INTRODACTION

Before we present the almost dense-in-itself we give some definitions and	
remarks .	
 Definition(1-1) : Let (X,d) be a metric space and E ⊆ X we say that E is <i>almost open</i> iff E ⊆ (Ē)[°], where (Ē)[°] is denoted to the closure of E [1],[2] Remark (1-2) : Every open set in (X,d) is almost open . Definition (1-3) :The complement of almost open set will be called <i>almost</i> 	interior of the
closed.	
Definition (1-4): A point $y \in X$ is called <i>almost limit point</i> of $E \subseteq X$ if for each almost open set U of X with $y \in U$, $E \cap (U - \{y\}) \neq \emptyset$, set of all almost limit points of E by E^* which we cal derived set of E.	we denote the l the almost
Remark (1-5) : Since every open set in (X,d) is almost open set, so every almost limit point of $E \subseteq X$ is Limit point of E. That is E' is the set of all limit points of E.	$\mathbf{E}^* \subseteq \mathbf{E}^{'}$, where
Definition (1-6) : let $E \subseteq X$, a point $b \in X$ is called <i>almost interior point</i> of E if there is an almost open set U such that $b \in U$ and	$U \subseteq E$.
Definition (1-7): let (X,d) be a metric space and $A \subseteq X$ the <i>almost</i>	
closure of A denoted by acl A defined as the set	acl $A = \cap \{ F \}$
\subseteq X:F almost closed ;A \subseteq F }.	
Theorem (1-8) [1], [2]: let A, B are subsets of a metric space X. then	
1) aclA $\subseteq \overline{A}$ where \overline{A} is the closer of A.	
2) $A \subseteq B$ implies $aclA \subseteq aclB$.	

4) $\operatorname{acl}(A \cap B) \subseteq \operatorname{acl} A \cap \operatorname{acl} B$. 5) acl(aclA) = aclA. 6) aclA is almost closed set. 7) A is almost closed set iff aclA = A. 8) acl A = A \cup A^{*}. 2. ALMOST DENSE- IN- ITSELF Definition (2-1): A subset E of a metric space (X,d) is called *almost dense- in-itself* if $E \subset E^*$ that is every points of E is almost limit point of E Remark (2-2) : Every almost limit point is a limit point. Theorem (2-3) : Every almost dense -in-itself set is dense - in - itself Proof : let A be almost dense-in-itself set that is (every point in A is almost limit point of A), since every almost limit point is a limit point, then each point of A is a limit point, therefore A is dense-initself ■ Theorem (2-4): If E is almost dense -in -itself set then aclE is almost dense-in-itself. Proof: acl $E = E \cup E^*$ since E is almost dense -in -itself that is (every point of E is almost limit point of E) then $E \cup E^* = E$ hence aclE = E, therfore aclE is almost dense-in-itself Theorem (2-5) : The union of any family of almost dense - in-itself sets is almost dense - in-itself. $E_i \subset E_i^*$ Proof : let $\{E_i\}$, $i \in I$, be a family of almost dense-in-itself sets . so , \forall i∈I. Let $p \in \bigcup E_i$ then $p \in E_i$.for some $i \in I$. Hence for each almost open set U with $p \in U$, $E_i \cap U \{p\} \neq \emptyset$. Thus $(\bigcup E_i) \cap U \{p\} \neq \emptyset$, hence $p \in (\bigcup E_i)^*$ therefore $\cup E_i \subseteq (\cup$ E_i)^{*} hence $\cup E_i$ is almost denes-in-itsef **3. ALMOST PERFECT** Definition (3-1) : A subset $E \subseteq X$ is called *almost perfect* if it is almost closed & almost dense -in-itself. Theorem (3-2) : $E \subseteq X$ is almost perfect iff $E = E^{\uparrow}$. Proof : since E almost perfect then E almost closed and almost densein- $E=E \cup E^*$ if and itself then by theorem (1-8) we have aclE=E if and only if

3) $\operatorname{aclA} \cup \operatorname{aclB} \subseteq \operatorname{acl}(A \cup B)$.

only if $E=E^{\bullet}$

REFERENCES

1-Burgess, D. C. J. "Analytical Topology", Van Nostrand, Princeton, 1966.

- 2- Prakash , A. "Anote On Weak Continuity And Almost Continuity " Yokohama, Math., Journals , XX(1972), PP.331-334.
- 3- Singal, M.K., Singal, "Almost Continuous Mapping" Yokohama, Math., Journals 16(1980) .PP.63-73