On Almost Open Sets In Metric Spaces
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Abstract
In this paper we present a new notion the almost open sets, to define
the almost dense and almost perfect sets in metric space X. furthermore
we prove some theorems related by these concepts
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1. INTRODACTION

Before we present the almost dense-in-itself we give some definitions and

remarks .

Definition(1-1) : Let (X,d) be a metric space and E < X we say that E is
almost open iff E < (E) ,where (E) is denoted to the interior of the
closure of E [1],[2]
Remark (1-2) : Every open set in (X,d) is almost open .
Definition (1-3) :The complement of almost open set will be called almost
closed .
Definition (1-4) : A pointy € X is called almost limit point of E < X if
for each almost open set U of X with ye U ,EN(U-{y}) #9, we denote the
set of all almost limit points of Eby E which we call the almost
derived set of E .

Remark (1-5) : Since every open set in (X,d) is almost open set, so every
a'lmost limit point of E < X is Limit point of E .That is E*g E’, where
E is the set of all limit points of E.

Definition (1-6) : let E < X, apoint b € X is called almost interior point
of E if there is an almost open set U such thatb € U and Uc E.

Definition (1-7): let (X,d) bea metric space and A < X the almost
closure of A denoted by acl A defined as the set acl A=N{F
< X:Falmostclosed ;Ac F}.
Theorem (1-8) [1] ,[2] : let A, B are subsets of a metric space X. then
1) aclA c A where A is the closer of A .
2) A < B implies aclA c acIB .



3) aclA v aclB c acl(AuB) .
4) acl(ANB) c aclA N acIB .
5) acl(aclA) = aclA .
6) aclA is almost closed set .
7) Ais almost closed set iff aclA = A..
8) acl A = AUA" .
2. ALMOST DENSE- IN- ITSELF

Definition (2-1) : A subset E of a metric space (X,d) is called almost
dense- in-itself if E  E that is every points of E is almost limit point of E

Remark (2-2) : Every almost limit point is a limit point .
Theorem (2-3) : Every almost dense -in-itself set is dense - in - itself

Proof : let A be almost dense-in-itself set that is (every pointin A is almost
limit point of A ), since every almost limit point is a limit point, then each point
of A is a limit point, therefore A is dense-in- itself m

Theorem (2-4): If E is almost dense -in -itself set then aclE is almost
dense-in-itself.
Proof: aclE=E UE " since E is almost dense -in -itself that is ( every
point of E is almost limit point of E) then EUE =E  hence
acle = E, therfore aclE is almost dense-in-itself m
Theorem (2-5) : The union of any family of almost dense - in-itself
sets is almost dense - in-itself .
Proof : let {E;}, iel, be a family of almost dense-in-itself sets . so EicE;
NViel.
Let peUE; then peE;.for someiel.
Hence for each almost open set U with peU, E;N U-{p} # @.
Thus (UE) N U-{p}#@, hence pe (UE) therefore UEi < (U
Ei) hence U E; is almost denes-in-itsef m

3. ALMOST PERFECT
Definition (3-1) : A subset E < X is called almost perfect if it is almost
closed & almost dense -in-itself .
Theorem (3-2) :E < X is almost perfect iff E=E .

Proof : since E almost perfect then E almost closed and almost dense- in-
itself then Qy theorem (1-8) we have aclE=E if and only if E=EUE if and
onlyif EFE m
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