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Abstract 

In this paper, we modify a new approach based on variational techniques for solving 

fractional differential equations of the form: 

y
()

  F(x, y) 

          y
(1)

(x0)  y0,        

where   0 <  < 1 

This approach has its bases on using Magri’s approach (see [8] )for every linear 

operator, the results are established using direct Ritz method as well as optimization method 

to solve these fractional differential equations numerically. 

 الخلاصة

 الهدددددددذذ هدددددددي  سدددددددطا ال جدددددددل سدددددددى لاسدددددددتخذام  ةري دددددددة  ذيدددددددذ  لجدددددددل الوعدددددددادلات التفاضدددددددلية  الكسدددددددرية       

Fractional Differential Equations ) (  : والوعرفة بالشكل الاتي- 

y
()

  F(x, y) 

          y
(1)

(x0)  y0,        

where   0 <  < 1 

( لجددل الوعددادلات التفاضددلية الكسددرية و يفيددة  Variational Approachتغدداير)  الاسددلىا ال تسددتخذم وسددط  اليري ددة  

( علد   Operator Formصياغة هثل سدطا الودىم هدي الوعدادلات التفاضدلية الكسدرية والتدي يوكدي  تابتهدا بصديغة الود  ر  

 شكل صياغة التغايريه .

ع هراعات الاصالة في ةري ة الجل بذوى تجىيل الوعدادلات تن ايجاد الصياغة التغايريه لجل الوعادلات التفاضلية الكسرية ه

 التفاضلية الكسرية ال  هعادلات تكاهلية  سريه .

 

 

1.Introduction 

In opposite to differential equations of integer order in which derivatives depends only 

on the local behavior of the function, an important type of differential equations is the so-called 

fractional differential equations in which the differentiation is of non-integer order, hence 

fractional differential equations accumulate the whole information of the function in a weighted 

form, this is so called memory effect and has many applications in physics [1], chemistry [2], 

engineering [3], etc. for that reason, we need a method for solving such  equation, which is 

effective, easy to use and applied for fractional differential equations. 
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However, will known method used for solving such type of equations have more 

disadvantages. Analytical methods [6], which uses the multivariate Mittag-Leffer function and 

generalizes the previous result, can be used only for linear type of equations.  

The initial value problem of the fractional differential equation, considered in this paper 

is of the form: 

y
()

  F(x, y) .................................................................................................. (1) 

with the initial condition: 

 y
(1)

(x0)  y0 

 where   0 <  < 1, yo R, F(x, y) is given linear function in y on the interval [0, x], y(x) is 

known function which is to be determined as the solution of the problem. 

The fractional derivative operator D

 is defined using the Riemann-Liouville fractional 

derivative of order  [5].  Other definitions related to fractional differential equations could be 

found in Caputo[6], Grunwald-Letnikov[6], and weyl-Mochand[5], Riemann-Liouville 

derivative of function y(x) at x0 is defined by order : 

                  dttxty
dx

d

)1(

1
)x(yD

x

0




 


   ................................ (2) 

where (1-)  is the gamma function.    

2. FRACTIONAL DIFFERENTIAL EQUATION 

2.1 Basic Concepts 

This paper gives at some of the primary problems with fractional calculus, as it is now 

embodied, and attempts some of these with a modified embodiment. The basic approach that 

will bee taken in this work is to make the defined mathematics as maximally applicable to the 

problems of engineering and science as possible. To this end, basic distributed, dynamic 

systems have been developed for use as reference fractional system [7].  

The problem that the researches perceive to bar widespread of applications of fractional 

calculus in the engineering sciences. The operative basic definitions for this section will be the 

contemporary, Rirmann-Liouville definition, which is that integration of arbitrary order, given 

by: 

      dttxty
1

xy
dx

d
xyD

1x

0








 



)(

)()(  .....................(3) 

where   0 <  < 1 and    is the gamma function. 

For simplicity, in this paper   is constrained to be real number between 0 and 1. The 

contemporary differentiation is defined as: 
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   xy
dx

d
xyD




   

where   0 <  < 1. 

One of the fundamental problems of contemporary fractional calculus is the requirement 

that the function f(x) and its derivatives to be identically equal to zero for x  x0 [4], or lacking 

this, to limit the functions handled to special classes. This is needed to assure that the 

composition rule (the index law) holds, that is, to assure that: 

)()()( xyDxyDDxyDD xxxxx
   

It is difficult, in engineering sciences, to always require that the functions and its 

derivatives to be equals zero at initialization. 

This fundamental rule says that; there can be either no initialization or the composition is 

lost. Thus, it is not in general true that: 

0
dx

yd

dx

d
y 









 ........................................................................................(4) 

(See [4] for more details). 

Thus, when solving a fractional differential equation of the form: 

F
dx

yd






, 0 <  < 1 

Additional terms must be added to equation (4), after applying D

 to both sides gives:  

1
1xc

dx

yd

dx

d
y 









  

where c1 is arbitrary constant. to achieve the most general solution of eq(1), given by: 

1
1xcF

dx

d
y 





  

The reader is referred to [4] for detailed exposition in this area. The added constant of 

integration in the integer order calculus. 

Following, some examples to illustrate the solution of fractional differential equations.  

  

 

 Example (1): 

Consider the fractional differential equation: 
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2/1

2/1

2/1

xy
dx

d
  ..............................................................................................(5) 

with the initial condition: 

y
(1/2)

(x0)  y0 

Applying 
2/1

2/1

dx

yd




 to both sides of equation (5), we get:  

y  
21

2121

dx

xd
/

//





 + c1x
1/2

  

and from the initial condition, we have 
)2/1(

y
c 0

1


 , therefore: 

)2/1(

xy
)2/3(xy

2/1
0






. 

 

Example (2): 

Consider the fractional differential equation: 

y
(2/3)

(x)  x
5
 

with initial condition 

y
(1/3)

(x0)  0 

and upon applying 
3/2

3/2

dx

yd




 to both sides, then similarly as in example (1), we get that: 

)3/26(

x)6(
)x(y

3/17




 . 

 

3. Variational Approach for Solving Fractional Differential 

Equations 

As it is pointed previously, the most important difficulty of the subject of calculus of 

variation is how to find the variational formulation which corresponds to the linear fractional 

differential 

Lu=F  ............................................................................................................. (6) 
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One of the most important approaches for evaluating this functional F [u] is the non-classical 

variational approach which is proposed by Magri in 1974 [8], which is of evaluating the 

functional F[u] defined on the domain of the linear operator L (satisfying certain conditions) 

whose critical points are the solution of the given equation (6). 

The problem may be called the inverse problem of calculus of variation. If the given 

linear operator L is symmetric with respect to the chosen bilinear form <u, v> which is non 

degenerate, then u is the solution of eq. (6) if and only if u is a critical point of the functional: 

 
T

0

T

0
2
1 dttutfdttLutuuF )()()()(][  ............................................................... (7) 

Hence, if a given linear operator L is symmetric with respect to a non degenerate bilinear 

form <u, v>, then there is a variational formulation of the given linear equation (6), (this is 

called the classical variational formulation). The main difficulty, which may arise frequently in 

this subject, is when the given linear operator L is not symmetric with respect to the chosen 

bilinear form, and the problem is to find the variational formulation in such cases, we can 

proceed into two approaches. 

The first approach is to retain the bilinear form <u,v>and look for methods of modifying 

the given equation so as to a new equation which is symmetric with respect to the chosen 

bilinear form, [8]. This is usual procedure when one make use of the Cartesian bilinear form: 

(u, v)  

T

0

dx)x(v)x(u
,          

where, u, v: C[0,T]  R. such that C[0,T] continuous function. 

The second approach is to retain the given linear operator and attempt to change the 

bilinear form so that the given operator is symmetric with respect to the new bilinear form, [8]. 

In order to construct a bilinear form that makes the given linear operator L symmetric, let us 

consider, as a preliminary tool, an arbitrary symmetric bilinear form: 

                       (u,v)=<u,Lu> .................................................................................... (8) 

which is defined for every pair of elements v  V and u  D(L). Now, it is so simple to show 

that the bilinear form equation (8) makes the given linear operator symmetric whatever the 

choice of the first symmetric bilinear form. 

Therefore, we can make use of the bilinear form equation (6) to given a variational 

formulation corresponding to the linear equation (6). Because of the symmetric of L therefore 
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by using the above in connection with equation (7). The solution of equation (6) is the critical 

points of the functional: 

F [u] 
2

1
<Lu, u>  <f, u> 

        
2

1
 (Lu, Lu)  (f, Lu) 

Now, to our problem under consideration, consider fractional differential equation:  

 y
()

   f(x, y), 0 <  < 1 

And f(x, y) = g (x), then applying the operator 



1

1

dx

d to both sides of the last equation by 

techniques like those discussed in section fractional differential equations, and by using the 

initial conditions, we get: 

 
20

1

1

x
1

y
)x(g

dx

d

dx

dy 






  

 
201 x

1

y
)x(gD 


  

 F (x),       

where D is the differential operator. 

Therefore, the related equation in operator form is given by: 

Ly  F(x), 

Note:      L  D  
dx

d
    and           F  

 
201 x

1

y
)x(gD 


  

While, the related variational formulation is given by: 

J (y)  
2
1  (Ly, Ly)  (F, Ly) 

 
  










 

1

0

2012 dx)Ly)(x
1

y
)x(gD(2)Ly(

2

1
 ....................... (9) 

This is the related functional corresponding to the linear equation Ly  F. 

Therefore, one can find the critical of (9), which the desired solution of fractional differential 

equations. 

Consider the fractional differential equation given in example (1): 
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y
(1/2)

(x)  x
1/2

 , 

with initial condition 

y
(1/2)

(0)  0.1 , 

By applying the operator 2/1

2/1

dx

d  to both sides of the fractional differential equation and 

carrying out the initial conditions, we get: 

2/3x
)2/1(2

1.0
)2/3(

dx

dy 


  

and by letting  

L  
dx

d
     and         F  

2/3x
)2/1(2

1.0
)2/3( 


  

Then the related variational formulation takes the form:  

dx
dx

dy
x

212

10
232

dx

dy
50yJ

1

0

23

2








































  /

)/(

.
)/(.)(  

Carrying out and the computer program  with approximate solution by using Ritz 

method: 

y(x)  0.1x
-1/2

/ (1/2) + (a1x + a2x
2
) 

We get the results presented in table (3) with its comparison with the exact solution: 

y(x)= 0.1x
-1/2

/ (1/2) + (0.8880001x  0.001999791x
2
). 

 

x Approximate solution Exact solution 

0.1 

0.2 

0.3 

0.2671024 

0.3035267 

0.3690165 

0.267 

0.303 

0.369 

(Table1) 
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