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Abstract 

This research  permits to use a numerical method for Viscoelastic stress analysis , by using a 

three parameter model for linear incompressible material and assuming thermorehologically 

simple material with lower  Poison's ratio. The profit of the method is included in this 

research using finite element method. Thermal effect is indicated here using WLF equation , 

and this increase the computational efficiency by taking a large time steps.   Examples is 

indicated and comparison of the results with a software program (NASTRAN) and another 

references which used another methods for solutions will be done , as well as, the efficiency 

of the method will be discussed.  

 

 خلاصةال   

   three parameterتاستؼًال انًُىرج  Viscoelasticهزا انثحث َسًح تاستؼًال اسهىب نتحهُم الاخهاداخ نهًىاد  

انثسُظ يغ قُى   thermoreohologicallyنهًىاد انخطُح غُش انقاتهح نلاَضغاط ػهً فشض أٌ انًادج هٍ يٍ َىع 

نحم انًؼادلاخ تؼذ تطىَش الاسهىب نُشًم   finite elementاستخذاو اسهىب حم ػذدٌ  تى   . vيُخفضح َسثُا يٍ 

يًا َضَذ فؼانُح انؼًهُح انحساتُح. َسًح هزا انثحث تادخال )∆ (tكًا وًَكٍ اخز خطىاخ صيٍ اكثش Viscoelasticانًىاد 

 .   WLFواخز انتأثُش انحشاسٌ تُظش الاػتثاس ػٍ طشَق انًؼادنح 

لاسهىب ػهً ايثهه ويقاسَتها تأسانُة حم أخشي يغ يقاسَح تانثشَايح انخاص تتحهُم انتشاكُة تى تطثُق ا

(NASTRAN.ورنك نغشض يقاسَح انُتائح وانتأكذ يٍ كفاءج الاسهىب. كًا َتضًٍ انثحث يُاقشح فؼانُح اسهىب انحم ) 

 

 

1-Introduction  

In the present work a simple and efficient special purpose solution for Viscoelastic 

stress analysis of incompressible solids is developed using two – dimensional plane strain 

isoparametric elements.  

Some assumptions have been developed for this case [1] :  

1- linear Viscoelastic with stress – strain relation and integral transform techniques  .  

2- bulk modulus is constant in time.  

3- homogeneous and isotropic material.  

Lakes[2] has used a method for measuring Viscoelastic properties of solids. He 

showed that the time – temperature superposition principle is not appropriate for all materials 

i.e. not all materials are thermo- rheologically simple.  

Lee. and Rogers [3] solved stress analysis problems for linear Viscoelastic materials 

on basis of integral operator stress – strain relations by using the method  of simple finite – 

difference numerical integration . They recommend to take the integral from 0 to t and 

consider the material is undisturbed for t<0 .  

Taylor and Pister [4] developed a computational algorithm for the solution of 

uncoupled , quasi – static boundary value problem for a linear Viscoelastic solids undergoing 

thermal mechanical deformation, they showed that the stresses at a high temperature will 
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decrease faster than at a lower temperature. 

 Ozza and Mccable [5] developed a method for measuring long – term creep and 

relaxation testing for viscoelastic material . They made studies for materials which do not 

obey time – temperature superposition . 

Thermal effect is important in viscoelasticity, there is really drastic temperature effect 

of a kind that has never been considered in classical theories that the mean relaxation time of 

material depends very strongly on temperature[6] .  

In observing the mechanical viscoelastic behavior of solids, it is common experience that  the 

stress at  a particle depends on both the localized motion of the solid, as well as, the 

temperature[7].  

         The conduction equation is assumed to be unaffected by the deformation and therefore 

solved separately , but simultaneously , with the mechanical field problem, assuming  

thermorheologically simple material [8].  

         The influence of temperature can be characterized conveniently by defining a reduced 

time   which incorporates the temperature – dependents time scale factor, so that in term of 

 , the laws of thermal viscoelastic are applied correspondingly  to some chosen temperature 

Ts which called the reference temperature.  

       A computational method based on finite element technique with using isoparametric 

element and local coordinate (natural coordinate) will be applied [9].viscoelastic solution is 

obtained using Laplace transform technique[10].  

       The Laplace transform technique is not directly applicable for the problems of non – 

homogenous transient temperature distributions, to circumvent this problem, conditions of 

constant temperature over time increments are imposed and the correspondence principle is 

applied on an incremental basis.  

     A discussion of mechanical constitutive Eqn for viscoelastic solids undergoing (small or large 

) deformations and subjected to temperature change are indicated. 

     As an application of the method , a problem which studied by Zienkwicz [11] is examined, 

as will as, a checking with a software program (NASTRAN) is done in order to know the 

efficiency of the procedure. 

2-Material and method  

2-1- Material  representation  

     For a viscoelastic material , a model can be used to relate components of strain to 

components of stress. 

     For incompressible Viscoelastic solid material , the more convenient famous model to 

represent is called “three parameter model”[12], generally, this model used to represent most 

standard linear Viscoelastic solids as shown in Fig1.  

    E2 

 E1  1 

σ                                                                          σ 

 

 

 

                                          ε1                             ε2 

ε 

 

 

Fig 1. The three parameter model 

µ 
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This model which is consistently used in subsequent applications,  it is useful to establish 

systematically its relaxation modules G and creep compliance J using Laplace transform 

techniques [13] as following in table 1 : 

 

 

 

Table1 : The Laplace transform technique 

Constitutive equation. Laplace transform 
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Where:  -strian  -stress E -elasticity modulus  -viscosity   s- Laplace transform factor. 

Applying the inverse Laplace transform and simplifying Egn 2,3 can be reduced to :  

 

                                                                                         …4 

                                                                                        ….5 

                                                                                      

 

 

2-2-Method of work (finite element method ) 

      The displacement based finite element method is one such numerical procedure ,the 
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effectiveness of the method is due to its conceptual simplicity, assuming that the nodal point 

displacement of the finite element mesh completely specify the displacement in the body.  

     This finite element technique , which has demonstrated to provide an excellent analysis 

method for elastic case , has been extended to provide analysis capability for the Viscoelastic 

case in this research . 

 The relation of stress- strain for plane strain case are [14] :  

                                                 …….6 

                                                 …….7                                           
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Then we can obtain from Eqns 6 ,7, 8 the stress matrix {D}(matrix of properties) in 

term of relaxation G and bulk K module.  

        The global coordinate {X} of the node in terms of local coordinate (, ) and 

displacement field  { } in isoparametric element is [9] :  

 

{ X} = [ N] {Xiί } =                      … ..11                                          

 

} =  [N]   {i} =                        ….12                                         { 

 

{N} is a matrix of shape function, which is a function of local coordinate  and . 

     By differentiation of shape function with respect to global coordinate we can obtain strain 

quantities. This can be done by a transformation using Jacobian matrix{J}  which can be 

obtained by differentiate Eqn 11 using chain rule.  
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For plane strain case the relation between strain and displacement is [14] 
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     It is incorrect to vary only stress matrix {D} with time (the Quasi – static solution) since 

properties of viscoelastic material varies with time, but it is convenient to differentiate this 

matrix with respect to time depending on the superposition theory of linear viscoelasticity :  

So that :  
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  is the current and past shifted time respectively which can be calculated from WLF 

Eqn which have the formula [15]:  

                                                                                    ….   21    

                           

     Where Ts is the reference temperature (which represent material’s specific constant for the 

position of the glass transition of the material).  

C1 , C2 are constants relating  to the choice  of reference temperature.  
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undergoes environmental temperature change, the total stress will be: 

              thermalicviscoelastelastictotal                       ----------   22 

                          

t
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11 0[3][][            ----------   23 

 - thermal expansion which is constant in time . 

     By minimizing the equation of potential energy we can solve Eqn.- 23  

     The minimum potential energy M can be expressed as [16]:  

    
1

[ ( )] ( ) v [ ]  v [ ]
2

T T T

v v s

M t t d Fv d Fs ds                                  -----------  24     

Fv : is the body force  per unit volume   

Fs : is the load of surface traction  

     By substituting Eqns 23 , 12 into Eqn 24 and minimization  with respect to nodal 

displacements the total potential energy can be written as :  
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     Solving Eqn 25 will give the values of displacements for all nodes in the structure of 

interest.  

     Then stresses can be obtained by solving Eqn 23.  

      For incompressibility conditions it is more convenient to separate the stress matrix {D} 

into two components (shear and bulk) as[10] :  

     bs
DDD                                          ---------   26 

       And by  applying a selective integration procedure , which is third order Gauss rule for 

shear components and second order Gauss rule for bulk components.  

     This will make some equilibrium between shear and bulk components. 

 

 

3- Result and Discussion  

 
The first step is obviously to test the rate of convergence and the other features of the 

process. The process of numerical analysis described in this research is applied to the problem 

in Fig 2 which was solved by Zienkiewicz[11] . 

The problem is a cylinder of Viscoelastic material surrounded by a case of steel and subjected 

to an internal pressure suddenly applied at t = 0 and maintained thereafter at a magnitude Po.  
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 The Viscoelastic material is assumed  to be isotropic with the following properties: 
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 + 3* 10
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e 

-0.57     

Ts=75 C 

     The properties of steel case is taken as :  

E= 206.73 GPa  

 = 0.3015  

 

     The results of applying the method of Viscoelastic technique is compare with the solution 

by Zienckiewicz  in Figs 3 and 4, where the variation of radial and circumferential stresses 

with time is shown. There are very small differences from the values of the solution of 

reference[11] .  

The points from finite element solution are obtained by averaging stresses across the 

element boundaries .  
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 The curves presented are obtained by taking a time step of ∆ t = 0.5  

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 Another comparison is made by comparing the results with a software NASTRAN (NASA 

structural analysis) as shown in table 2:  

Table 2 : Comparison of results with software NASTRN at   = 1  

       r/ro  Viscoelastic 

Solution FEM 

 r

P  

Software  

NASTRAN 

 r

P   

Viscoelastic  

Solution FEM  


P


 

Software  

NASTRAN 

 


P


 

0.5 0.96 0.99 0.12 0.14 

0.6 0.87 0.9   0.24 0.25 

0.7 0.79 0.81 0.33 0.34 

0.8 0.77 0.79 0.41 0.42 

0.9 0.75 0.77 0.45 0.456 

1 0.74 0.75 0.48 0.492 

_______Solution by Zienckwicks 

Fig3 Reinforced Cylinder Under Internal 

Pressure. Variation of Radial Stress
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 Fig4 Reinforced Cylinder Under Internal Pressure. Variation 
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The main computational advantage of this method over others lies in the fact that 

larger time steps can be taken.  For example in reference[11] to obtain the curve in Fig3 

at = 3,a thirty time steps is used, and this required thirty solutions of a set of equations, the 

same curve is obtained by the method of this research using six time steps, as well as, the 

method can cover the environmental phenomenon. To capture the transient phenomenon for 

temperature displacements and applied loads , the time steps was taken small enough. The 

using of the shifted time   in Viscoelastic solution enables us to include the thermal effect 

by using WLF Eqn ,  as well as, using isoparametric element with local coordinates (, ) 

enable us to use an element with curvilinear shape and cover the change in displacements with 

time.  

     Using of selective integration and separation of bulk from shear components will improve 

the values of results for all permissible values of Poissons ratio( ). 

 

4-Conclusion and Recommendations  

 4-1- Conclusion: the present method of Viscoelastic problem permits the use of a general 

Viscoelastic material representation and allows to take the thermal effects into accounts .  

     This permits to increase the computational efficiency by taking a large  time steps than 

with step by step process.  

 

4-2- Recommendations  

- Extending the solution to thermo mechanical coupling case.  

- Extending the case for non-linear solution .  
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