Existence Of $(\mathbf{1 8 , 9 ; f})$-Arc Of Type $(\mathbf{4}, 9)$ In PG(2,5)

Makbola J.
 Civil Engg. Department/College of Engineering/University of Mosul

Received	Accepted
$\mathbf{3 / 9 / 2 0 0 6}$	$21 / 2 / 2007$

الخلاصة
تث في هذا البحث اثبات وجود القوس -- (18,9;f) من النوع (4,9) عندما L 13 في المسنوي الاسقاطي ذي الرتبة الخامسة وأعطينا وصف شامل له مع مثلل تفصبلي .وباستخدام الحاسبة الثخصية
 18,9;f

Abstract

In this paper we prove the existence of $(18,9 ; f)$-arc of type $(4,9)$ when $L_{0}=13$ in the projective plane of order five , and classified it then give an example of this case. Then by personal computer we construct some projectively distinct $(13,4)$-arc in $\operatorname{PG}(2,5)$ and compare the results with $(18,9 ; f)$-arc of type $(4,9)$.Also this paper conclude the proves of the theorems that deduced.

1. Introduction:

Let $\mathrm{PG}(2, \mathrm{q})$ be a projective plane π of order $\mathrm{q}, \mathrm{a}(\mathrm{k}, \mathrm{n})$-arc A in the projective plane is a set of k points, such that some n, but no $n+1$ of them are collinear. The following lemma are well-known and the proof found in [8].

Lemma-1:

Let T_{i} denote the total number of i-secants of A in the plane π and R_{i} the number of i-secants of A through a point p in the plane, and S_{i} the number of i secants to A through a point Q of $\pi \backslash \mathrm{A}$, then for a (k,n)-arc A the following equations holds:

$$
\begin{align*}
& \sum_{i=0}^{n} T_{i}=q^{2}+q+1 \\
& \sum_{i=1}^{n} i T_{i}=k(q+1) \tag{1-2}\\
& \sum_{i=2}^{n} \frac{i(i-1) T_{i}}{2}=\frac{k(k-1)}{2} \tag{1-3}\\
& \sum_{i=1}^{n} R_{i}=q+1 \tag{1-4}\\
& \sum_{i=2}^{n}(i-1) R_{i}=k-1 \tag{1-5}
\end{align*}
$$

$$
\begin{align*}
& \sum_{i=0}^{n} S_{i}=q+1 \tag{1-6}\\
& \sum_{i=1}^{n} i S_{i}=k \tag{1-7}\\
& i T_{i}=\sum_{p} R_{i} \tag{1-8}\\
& (q+1-i) T_{i}=\sum_{Q} S_{i} \tag{1-9}
\end{align*}
$$

If f is a function from the set of points of the projective plane π into the set of natural number N, the value $f(p)$ is called the weight point p and if F is a function from the set of lines of π into N, the value $F(r)$ is called the weight line r, that is $F(r)=\sum_{p \in r} f(p)$.

A ($k, n ; f$)-arc K of π is a set of k points such that K does not contain any points of weight zero. The line r of π is called i-secant if the total weight of r is $i . L_{j}$ denotes the number of points having weight j for $j=0,1,2, \ldots, w$ and we used $V_{i}{ }^{j}$ for the number of lines of weight i through a point of weight j, we also denote the number of lines of weight i by t_{i}, the integers t_{i} are called the characters of K.If the points in the plane are only of weight zero and one ,then K is a (k, n)-arc.

The development of the theory of $(\mathrm{k}, \mathrm{n} ; \mathrm{f})$-arcs is due ,essentially, to D’Agostini [1] \& [2]. Also [3] \& [5] proves the existence of this arc for different projective planes. [6] study (k,n;f)-arcs of type (m,n) in $\operatorname{PG}(2,5)$ and show that this arc does not exist when $\mathrm{L}_{0}=13$.

In this paper we prove the existence of this arc when $L_{0}=13$, and classified it, then give an examples of this case.

Let W denote the total weight of K, so by [1] we have :

$$
\begin{equation*}
\mathrm{m}(\mathrm{q}+1) \leq \mathrm{W} \leq(\mathrm{n}-\mathrm{w})(\mathrm{q}+1)+\mathrm{w} \tag{1-10}
\end{equation*}
$$

Arcs for which equality holds on the left are called minimal and arcs for which equality holds on the right are called maximal .Also [1] proved to be a necessary condition for the existence of $a(k, n ; f)-\operatorname{arc} K$ of type $(m, n), 0<m<n$ is that

$$
\begin{equation*}
\mathrm{q} \equiv 0 \bmod (\mathrm{n}-\mathrm{m}) \tag{1-11}
\end{equation*}
$$

And

$$
\begin{equation*}
\mathrm{w} \leq \mathrm{n}-\mathrm{m} \tag{1-12}
\end{equation*}
$$

Theorem-1:

Let K be a $(\mathrm{k}, \mathrm{n} ; \mathrm{f})$-arc of type $\left(\mathrm{t}_{1}=\mathrm{m}, \ldots, \mathrm{t}_{\mathrm{r}}=\mathrm{n}\right)$ for which the maximum weight of any point is w. Define a new ($k, n ; f$)-arc K by $f(p)=w-f(p)$ for each point p in the plane. Then K^{\prime} is maximal iff , K is a minimal .

Proof : See [6]

Theorem-2:

For a minimal $(k, n ; f)$-arc of type $(\mathrm{n}-5, \mathrm{n})$ in $\mathrm{PG}(2,5)$, we have :

$$
\begin{array}{ll}
V_{n-5}^{0}=q+1 & V_{n}^{0}=0 \\
V_{n-5}^{1}=\frac{4}{5} q+1 & V_{n}^{1}=\frac{1}{5} q
\end{array}
$$

$$
\begin{array}{ll}
V_{n-5}^{2}=\frac{3}{5} q+1 & V_{n}^{2}=\frac{2}{5} q \\
V_{n-5}^{3}=\frac{2}{5} q+1 & V_{n}^{3}=\frac{3}{5} q \tag{1-13}\\
V_{n-5}^{4}=\frac{1}{5} q+1 & V_{n}^{4}=\frac{4}{5} q \\
V_{n-5}^{5}=1 & V_{n}^{5}=q
\end{array}
$$

Proof : See[4]

2. ($\mathbf{k}, \mathbf{n} ; \mathbf{f}$)-arcs of type ($\mathbf{n}-5, n$) with $L_{i}>0, i=0,1,2 \& L_{i}=0, j=3,4,5$:

Let t_{n-5} be the number of lines of weight $n-5$ and t_{n} be the number of lines of weight n, then

$$
\begin{align*}
& \mathrm{t}_{\mathrm{n}-5}+\mathrm{t}_{\mathrm{n}}=\mathrm{q}^{2}+\mathrm{q}+1 \tag{2-1}\\
& (\mathrm{n}-5) \mathrm{t}_{\mathrm{n}-5}+\mathrm{nt}_{\mathrm{n}}=\mathrm{w}(\mathrm{q}+1)=(\mathrm{n}-5)(\mathrm{q}+1)^{2}
\end{align*}
$$

Solving (2-1) \& (2-2) gives
$\mathrm{t}_{\mathrm{n}}=(1 / 5)(\mathrm{n}-5) \mathrm{q}$
$\mathrm{t}_{\mathrm{n}-5}=(1 / 5)\left(5 \mathrm{q}^{2}+10 \mathrm{q}-\mathrm{nq}+5\right)$
Now let M be an n -secant which has no point of weight 0 and suppose that on M there are α points of weight 2 and β of weight 1 , then counting points of M gives:

$$
\alpha+\beta=\mathrm{q}+1
$$

and the weight of points on M gives:

$$
2 \alpha+\beta=\mathrm{n}
$$

that is

$$
\left.\begin{array}{l}
\alpha=\mathrm{n}-(\mathrm{q}+1) \\
\beta=2(\mathrm{q}+1)-\mathrm{n}
\end{array}\right\}
$$

Counting the incidences between points of weight 1 and n-secants gives :

$$
\mathrm{L}_{1} \mathrm{~V}_{\mathrm{n}}{ }^{1}=\mathrm{t}_{\mathrm{n}} \beta
$$

By using (1-13) and the equations (2-3) and (2-5) we have

$$
\begin{equation*}
\mathrm{L}_{1}=(\mathrm{n}-5)(2 \mathrm{q}+2-\mathrm{n}) \tag{2-6}
\end{equation*}
$$

Similarly ,counting incidences between points of weight 2 and the n-secants gives:

$$
\mathrm{L}_{2} \mathrm{~V}_{\mathrm{n}}^{2}=\mathrm{t}_{\mathrm{n}} \alpha
$$

Hence, using (1-13) and the equations (2-3) and (2-5) we have

$$
\mathrm{L}_{2}=[(\mathrm{n}-5)(\mathrm{n}-\mathrm{q}-1)] / 2
$$

Since

$$
\mathrm{L}_{0}+\mathrm{L}_{1}+\mathrm{L}_{2}=\mathrm{q}^{2}+\mathrm{q}+1
$$

Then by equations (2-6) and (2-7) we get

$$
\begin{equation*}
2 q^{2}-(17-3 n) q+n^{2}-8 n+17-2 L_{0}=0 \tag{2-8}
\end{equation*}
$$

3-The case when the number of points of weight 0 is thirteen :

Applying equation (2-8) when $\mathrm{L}_{0}=13$, we get

$$
\begin{equation*}
2 q^{2}-(17-3 n) q+n^{2}-8 n-9=0 \tag{3-1}
\end{equation*}
$$

we know that the discriminant of algebraic equation of degree two is
$\Delta=\mathrm{b}^{2}-4 \mathrm{ac}$, where $\mathrm{b}=(17-3 \mathrm{n}), \mathrm{a}=2$, and $\mathrm{c}=\mathrm{n}^{2}-8 \mathrm{n}-9$, then Δ becomes
$\Delta=(\mathrm{n}-19)^{2}$
From equations (2-6),(2-7), it is clear that $5<n \leq 12$, and all the possibilities of solutions of (3-1) are given in the following table-1 .

Table-1

n	6	7	8	9	10	11	12
Δ	169	144	121	100	81	64	49
q	$1.5,-7$	$4,-2$	$-1,4.5$	0,5	$1,5.5$	2,6	$3,6.5$

Hence the only solution of these compatible with $\mathrm{n} \& \Delta$ being non-negative integers and $\mathrm{q} \equiv 0 \bmod (\mathrm{n}-\mathrm{m})$ is $\Delta=100$ and $\mathrm{n}=9$.
From equation (1-10) and equation (1-12), we get the following for our case:

1) $\quad 1 \leq w \leq 5$
2) $24 \leq \mathrm{W} \leq 44$

From theorem-1 we get the maximum case.
Now we discuss the minimum case when $\mathrm{W}=24$, from theorem- 2 we have the following results:

$$
\left.\begin{array}{ll}
V_{4}^{0}=6 & V_{9}^{0}=0 \tag{3-2}\\
V_{4}^{1}=5 & V_{9}^{1}=1 \\
V_{4}^{2}=4 & V_{9}^{2}=2
\end{array}\right\}
$$

Since 9 -secant does not contain any point of weight 0 , then we give the following lemma:

Lemma-2:

No point of weight zero lies on any 9 - secant of a $(18,9 ; f)$-arc of type $(4,9)$.
Proof: From (table-1) when $n=9$. It is clear by theorem-2 and equation (3-2), $V_{9}^{0}=0$.

Theorem-3:

No five points of weight zero can be collinear.
Proof: Suppose that there is a 4-secant line r, such that r have five points of weight zero. Then the other point on r has at most weight 2 , means that the weight of r is two which is a contradiction.

Corollary:

The points of weight 0 form a $(13,4)$-arc

Lemma-3:

Makbola J.

For the existence $\operatorname{of}(18,9 ; f)$-arc K of type $(4,9)$ and the points of weight 0 form (13,4)-arc in $\operatorname{PG}(2,5)$, we must have the following:

1) The number t_{9} of 9 -secants of K is four
2) The number t_{4} of 4 -secants of K is twenty seven
3) The number L_{2} of points of weight 2 is six
4) The number L_{1} of points of weight 1 is twelve

Proof: Follows from equations (2-3),(2-4),(2-6) \& (2-7).

4- Classification of the lines of the plane with respect to an (18,9;f)-arc of type (4,9) :

Let X be an 9 -secant of $(18,9 ; \mathrm{f})$-arc K , since $V_{9}{ }^{0}=0$, then on X there are only
points of weight 2 and points of weight 1 , suppose that on X there are α points of weight 2 and β points of weight 1 , then

$$
\alpha+\beta=6
$$

Counting the points of weights $2 \& 1$ on X , we get
$2 \alpha+\beta=9$
Hence the unique solution of these equations is

$$
\alpha=3, \quad \beta=3
$$

Suppose that r_{1} be a 4 -secant having one point of weight $0, \alpha$ points of weight 2 and β points of weight 1 , then

$$
\alpha+\beta=5
$$

$$
2 \alpha+\beta=4
$$

There is no solution of these equations. Hence there does not exist 1 -secant of K
Suppose that r_{2} be a 4 -secant having two points of weight $0, \alpha$ points of weight 2
and β points of weight 1 , then
$\alpha+\beta=4$
$2 \alpha+\beta=4$
So $\alpha=0, \beta=4$
Suppose that r_{3} be a 4-secant having three points of weight $0, \alpha$ points of weight 2
and β points of weight 1 , then

$$
\begin{aligned}
& \alpha+\beta=3 \\
& 2 \alpha+\beta=4
\end{aligned}
$$

So $\alpha=1, \beta=2$
Suppose that r_{4} be a 4 -secant having four points of weight $0, \alpha$ points of weight 2 and β points of weight 1 , then
$\alpha+\beta=2$
$2 \alpha+\beta=4$
So $\alpha=2, \beta=0$
These are the possible solutions

Existence Of (18,9;f)-Arc Of Type (4,9) In PG(2,5)...
From the above we conclude the following table-2

Table-2

Type of the lines	Points of weight 0	Points of weight 1	Points of weight 2
r_{2}	2	4	0
r_{3}	3	2	1
r_{4}	4	0	2
X	0	3	3

Hence, we have proved the following lemma-4 :

Lemma -4:

The lines of $\mathrm{PG}(2,5)$ are partitioned into four classes with respect to a minimal $(18,9 ; f)$-arc of type $(4,9)$ as follows:

1) r_{2} which contains two points of weight 0 , and four points of weight 1
2) r_{3} which contains three points of weight 0 ,two points of weight 1 and
one points of weight 2
3) r_{4} which contains four points of weight 0 , and two points of weight 2
4) X which contains three points of weight 1 , and three points of weight 2

Corollary -1:

There is no point of weight 1 on the 4 -secant of $(13,4)$-arc

Corollary -2:

There is no point of weight 2 on the 2 -secant of (13,4)-arc

5-The Projectively distinct (13,4)-arc in PG(2,5):

Since the numbers of probabilities for finding the projectively distinct (k, n)-arcs is very large, it is impossible to construct these arcs by hand, so we used computer program. The program used in Fortran 77 which was taken from [7] and update it to be suitable for the plane $\operatorname{PG}(2,5)$, then we find some projectively distinct $(13,4)$-arc listed in the following table-3

Table-3

$\begin{aligned} & (13,4)- \\ & \operatorname{arc} \mathrm{Y}_{\mathrm{i}} \end{aligned}$	Points of Y_{i}													Number of T_{4}
	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}	A_{8}	A_{9}	A_{10}	A_{11}	A_{12}	A_{13}	
Y_{1}	29	30	0	22	1	3	6	8	10	14	17	23	27	5
Y_{2}	29	30	0	22	3	4	6	8	10	14	17	23	27	4

Makbola J.

Y_{3}	29	30	0	22	2	3	4	5	6	13	14	23	28	8
Y_{4}	29	30	0	22	1	2	3	4	13	14	17	23	28	7
Y_{5}	29	30	0	22	2	3	4	5	6	14	17	23	28	8
Y_{6}	29	30	0	22	1	2	3	4	8	12	15	17	18	6
Y_{7}	29	30	0	22	1	2	3	6	9	12	23	24	26	3
Y_{8}	29	30	0	22	1	2	3	4	6	9	14	17	23	6
Y_{9}	29	30	0	22	1	2	3	4	6	10	14	17	23	7
Y_{10}	29	30	0	22	1	2	3	4	6	14	17	23	28	9
Y_{11}	29	30	0	22	2	6	13	14	18	21	23	27	28	5

6- Notations on $(13,4)$-arc:

Let $\mathrm{p} \in \mathrm{K}$ and suppose that through p there are α (4-secant), β (3-secant), γ (2-secant) and δ (1-secant) then by using equations (1-4) \& (15) of lemma-1 we get

$$
\begin{align*}
& \alpha+\beta+\gamma+\delta=6 \tag{6-1}\\
& 3 \alpha+2 \beta+\gamma=12
\end{align*}
$$

From (6-1) \& (6-2) we have seven non-negative solutions explained in table-4 below :

Table-4

Type of the points	α	β	γ	δ
type -1	0	6	0	0
type -2	1	4	1	0
type -3	2	2	2	0
type -4	2	3	0	1
type -5	3	0	3	0
type -6	3	1	1	1
type -7	4	0	0	2

If there are:
X_{1} points of type 1
X_{2} points of type 2
X_{3} points of type 3
X_{4} points of type 4
X_{5} points of type 5
X_{6} points of type 6
X_{7} points of type 7
Then from equation (1-8) of lemma-1 and (table-4), we have:

$$
\begin{align*}
& X_{1}+X_{2}+X_{3}+X_{4}+X_{5}+X_{6}+X_{7}=13 \tag{6-3}\\
& X_{2}+2 X_{3}+2 X_{4}+3 X_{5}+3 X_{6}+4 X_{7}=12 \tag{6-4}\\
& 6 X_{1}+4 X_{2}+2 X_{3}+3 X_{4}+X_{6}=54 \tag{6-5}\\
& X_{2}+2 X_{3}+3 X_{5}+X_{6}=12 \tag{6-6}\\
& X_{4}+X_{6}+2 X_{7}=0 \tag{6-7}
\end{align*}
$$

Let $\mathrm{z} \notin \mathrm{K}$ and suppose that through z there are

```
Existence Of (18,9;f)-Arc Of Type (4,9) In PG(2,5)...
```

α (4-secant), β (3-secant), γ (2-secant), δ (1-secant) and ε (0 -secant) then by using equations (1-6) \& (1-7) of lemma-1 we have

$$
\begin{align*}
& \alpha+\beta+\gamma+\delta+\varepsilon=6 \tag{6-8}\\
& 4 \alpha+3 \beta+2 \gamma+\delta=13 \tag{6-9}
\end{align*}
$$

Equations (6-8) \& (6-9) have sixteen non-negative integral solutions explained in table-5 below :

Table-5

Type of the	4-secant	3-secant point	α	β-secant	1-secant
γ	0 -secant				
D_{1}	0	4	0	1	ε
D_{2}	0	3	2	0	1
D_{3}	0	3	1	2	0
D_{4}	0	2	3	1	0
D_{5}	0	1	5	0	0
D_{6}	1	3	0	0	2
D_{7}	1	2	1	1	1
D_{8}	1	2	0	3	0
D_{9}	1	1	3	0	1
D_{10}	1	1	2	2	0
D_{11}	1	0	4	1	0
D_{12}	2	0	2	1	1
D_{13}	2	1	1	0	2
D_{14}	2	1	0	2	1
D_{15}	2	0	1	3	0
D_{16}	3	0	0	1	2

Suppose there are β_{i} points of type $\mathrm{D}_{\mathrm{i}}, \mathrm{i}=1, \ldots, 16$ then counting the point of the
plane $\pi \backslash \mathrm{A}$, when A is a $(13,4)$-arc in $\mathrm{PG}(2,5)$ obtain the following :

$$
\begin{equation*}
\sum_{i=1}^{16} \beta_{i}=|\pi \backslash A|=18 \tag{6-10}
\end{equation*}
$$

By using equation (1-9) of lemma-1 and (table-5) the following equations are obtained:

$$
\begin{align*}
& \beta_{6}+\beta_{7}+\beta_{8}+\beta_{9}+\beta_{10}+\beta_{11}+2 \beta_{12}+2 \beta_{13}+2 \beta_{14}+2 \beta_{15}+3 \beta_{16} \\
& =2 \mathrm{~T}_{4} \tag{6-11}\\
& 4 \beta_{1}+3 \beta_{2}+3 \beta_{3}+2 \beta_{4}+\beta_{5}+3 \beta_{6}+2 \beta_{7}+2 \beta_{8}+\beta_{9}+\beta_{10}+\beta_{13}+\beta_{14} \\
& =3 \mathrm{~T}_{3}+\ldots .(6-1 \tag{6-12}\\
& 2 \beta_{2}+\beta_{3}+3 \beta_{4}+5 \beta_{5}+\beta_{7}+3 \beta_{9}+2 \beta_{10}+4 \beta_{11}+2 \beta_{12}+\beta_{13}+\beta_{15} \\
& =4 \mathrm{~T}_{2} \tag{6-13}\\
& \beta_{1}+2 \beta_{3}+\beta_{4}+\beta_{7}+3 \beta_{8}+2 \beta_{10}+\beta_{11}+\beta_{12}+2 \beta_{14}+3 \beta_{15}+\beta_{16}
\end{align*}
$$

$=5 \mathrm{~T}_{1}$
$\beta_{1}+\beta_{2}+2 \beta_{6}+\beta_{7}+\beta_{9}+\beta_{12}+2 \beta_{13}+\beta_{14}+2 \beta_{16}=6 \mathrm{~T}_{0}$

From equations (1-1), (1-2) \& (1-3) of lemma-1, we get
$\mathrm{T}_{0}+\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}+\mathrm{T}_{4}=31$
$\mathrm{T}_{1}+2 \mathrm{~T}_{2}+3 \mathrm{~T}_{3}+4 \mathrm{~T}_{4}=78$
$\mathrm{T}_{2}+3 \mathrm{~T}_{3}+6 \mathrm{~T}_{4}=78$
From (table-3) we have $\mathrm{T}_{4} \leq 9$, then the solutions of the equations (a),(b) \& (c) are listed in the following table-6

Table - 6

T_{4}	$\mathrm{~T}_{3}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{1}$	$\mathrm{~T}_{0}$
5	14	6	4	2
4	17	3	5	2
8	6	12	4	1
7	8	12	2	2
8	7	9	7	0
6	13	3	9	0
3	18	6	0	4
6	11	9	3	2
7	8	12	2	2
9	4	12	6	0
5	13	9	1	3

Lemma-5:

The points of weight 2 of the $(18,9 ; f)$-arc K of type $(4,9)$ are points of type $D_{6}, D_{13} \& D_{16}$ when the point of weight 0 form a $(13,4)$-arc.

Proof: From equation (3-2) through a point of weight 2 there pass two 9secants of K, suppose Q is a point of type D_{8}, and suppose having weight 2, from (table-5) the following pass through Q one 4 -secants ,two 3-secants and three 1-secants.

But lemma- 4 shows that the i -secants $(\mathrm{i}=1,2,3,4$) of a $(13,4)$-arc are 4 -secants of K and the 0 -secants of a $(13,4)$-arc which have point of weight 2 are 9 secants of K .

Hence through Q there pass six 4 -secants of K and zero 9 -secants of K .
Which is a contradiction because $V_{4}^{2}=4, V_{9}^{2}=2$
That is the points of type D_{8} are not points of weight 2 .
By the same way we can show that the points of type $D_{i}, i=1, \ldots, 15, i \neq 6$, 13. Suppose p is a point of type D_{6} and suppose it has weight 2 , from (table5) through p there pass one 4 -secants three 3 -secants and two 0 -secants of $(13,4)$-arc ,we showed in lemma-4 that the i-secants $(i=1,2,3,4)$ (which

```
Existence Of (18,9;f)-Arc Of Type \((\mathbf{4 , 9})\) In PG(2,5) \(\ldots\)
```

are 4 -secants of K$)$ and the two 0 -secants of the $(13,4)$-arc which are either 9 secants or 4 -secants with respect to K according to p is a point of weight 2 or weight 1 respectively. Hence p is possibly a point of weight 2 . Similarly we can prove for $\mathrm{D}_{13} \& \mathrm{D}_{16}$.

Corollary:

Let K be a $(18,9 ; \mathrm{f})$-arc of type $(4,9)$, then the points of weight 1 of K are points of type D_{i} of $K, i=1, \ldots, 16$.

Example: An example may be found in $\mathrm{PG}(2,5)$ of $(18,9 ; f)$-arc of type $(4,9)$ when the points of weight 0 form $(13,4)$-arc shown in (table-7)

Remarks on (table-7):

1) The points are marked inside ellipse are the points of weight 0
2) The underlined points are points of weight 2
3) The other points are points of weight 1 .

Table-7

Lines	Points						Type	The equation	W (L_{j})
L_{1}	0		5	(12)	20	30	4-secant	$x=0$	4
L_{2}	1	4	(6)	13		(0)	3-secant	$x+y=0$	4
L_{3}	(2)	5	7	14	(22)	(1)	3-secant	$x+2 y+2 z=0$	4
L_{4}	(3)	6	8	15	23	(2)	4-secant	$x+2 y-z=0$	4
L_{5}	4	7	9	16	(24	(3)	3-secant	$x+y+2 z=0$	4
L_{6}	5	$\underline{8}$	10	17	25	4	0-secant	$x+y+z=0$	9
L_{7}	(6)	9	11	18	(26)	5	3-secant	$x-2 y-2 z=0$	4
L_{8}	7	10	(12)	19		6	2-secant	$x-y+2 z=0$	4
L_{9}	8	11	13	20	28	7	0 -secant	$x-2 y+2 z=0$	9
L_{10}	9	12	14	21	(29)	8	3-secant	$y-2 z=0$	4
L_{11}	10	13	15	22)	(30)	9	3-secant	$x-z=0$	4
L_{12}	11	14	16	23	(1)	10	2-secant	$x-2 y=0$	4
L_{13}	(12)	15	17	(24)	(1)	11	3-secant	$x-2 y-z=0$	4
L_{14}	13	16	18	25	(2)	12	2-secant	$x+2 y+z=0$	4
L_{15}	14	17	19	26	(3)	13	2-secant	$x-y-2 z=0$	4
L_{16}	15	18	$\underline{20}$	27	4	14	0-secant	$x+y-z=0$	9
L_{17}	16	19	21	$\underline{28}$	5	15	0-secant	$x-y-z=0$	9

Makbola J.

L_{18}	17	$\underline{\mathbf{2 0}}$	22	29	6	16	3-secant	$\mathrm{y}-\mathrm{z}=0$	4
$\mathrm{~L}_{19}$	18	21	23	30	7	17	2-secant	$\mathrm{x}+2 \mathrm{z}=0$	4
$\mathrm{~L}_{20}$	19	22	24	0	$\underline{\mathbf{8}}$	18	3-secant	$\mathrm{x}-\mathrm{y}=0$	4
$\mathrm{~L}_{21}$	$\mathbf{2 0}$	23	25	1	9	19	3-secant	$\mathrm{x}-\mathrm{y}+\mathrm{z}=0$	4
$\mathrm{~L}_{22}$	21	24	26	2	10	$\underline{\mathbf{2 0}}$	3-secant	$\mathrm{x}+2 \mathrm{y}-2 \mathrm{z}=0$	4
$\mathrm{~L}_{23}$	22	25	27	3	11	21	2-secant	$\mathrm{x}-2 \mathrm{y}+\mathrm{z}=0$	4
$\mathrm{~L}_{24}$	23	26	$\underline{\mathbf{2 8}}$	$\underline{\mathbf{4}}$	12	22	4-secant	$\mathrm{x}+\mathrm{y}-2 \mathrm{z}=0$	4
$\mathrm{~L}_{25}$	24	27	29	$\underline{5}$	13	23	3-secant	$\mathrm{y}+\mathrm{z}=0$	4
$\mathrm{~L}_{26}$	25	$\underline{\mathbf{2 8}}$	30	6	14	24	3-secant	$\mathrm{x}+\mathrm{z}=0$	4
$\mathrm{~L}_{27}$	26	29	0	7	$\underline{\mathbf{1 5}}$	25	3-secant	$\mathrm{y}=0$	4
$\mathrm{~L}_{28}$	27	30	1	$\underline{\mathbf{8}}$	16	26	3-secant	$\mathrm{x}-2 \mathrm{z}=0$	4
$\mathrm{~L}_{29}$	$\mathbf{2 8}$	0	2	9	17	27	3-secant	$\mathrm{x}+2 \mathrm{y}=0$	4
$\mathrm{~L}_{30}$	29	1	3	10	18	$\mathbf{2 8}$	3-secant	$\mathrm{y}+2 \mathrm{z}=0$	4
$\mathrm{~L}_{31}$	30	2	$\mathbf{4}$	11	19	29	3-secant	$\mathrm{z}=0$	4

7- Existence of the $(18,9 ; f)$-arc of type $(4,9)$:

From the example in (table-7) we see that all the points of weight 2 are of type D_{6} and all the points of weight 1 are of type D_{2}, that is $D_{i}=0$ for $i=$ $1, \ldots, 16, i \neq 2,6$.
Then the only solution of equations (6-10), $\ldots,(6-15)$ is $\beta_{2}=12, \beta_{6}=6, \beta_{\mathrm{i}}=0$ for $i=1, \ldots, 16, i \neq 2,6$

8 -The case of $(13,4)$-arc with three 4 -secants :

When $\mathrm{X}=\{29,30,0,22,1,2,3,6,9,12,23,24,26\}$ and by using (table-6), we get: $\mathrm{T}_{4}=3, \mathrm{~T}_{3}=18, \mathrm{~T}_{2}=6, \mathrm{~T}_{1}=0, \mathrm{~T}_{0}=4$ and the solutions of (63) , ..., (6-7) are : $X_{1}=4, X_{2}=6, X_{3}=3$, and $X_{4}=X_{5}=X_{6}=X_{7}=0$.
That is : there are four points of $(13,4)$-arc of type 1 , these points are :
$1=(1,-1,-2), 9=(1,2,1), 24=(1,1,-1) \& 29=(1,0,0)$,six points of type 2 which are :
$0=(0,0,1), 2=(1,2,0), 6=(1,-1,-1), 22=(1,1,1), 26=(1,0,-2) \& 30=(0$, $1,0)$, and the three points of type 3 are : $3=(0,1,2), 12=(0,1,-2) \& 23$ $=(1,-2,2)$,
see (table-7) .
Again from (table-7) the twelve points of weight 1 which are of type D_{2} are :
$7=(1,0,2), 10=(1,-2,1), 11=(1,-2,0), 13=(1,-1,1), 14$
$=(1,-2,-1)$,
$16=(1,-2,-2), 17=(1,2,2), 18=(1,1,2), 19=(1,1,0), 21$
$=(1,-1,2)$,
$25=(1,0,-1), 27=(1,2,-2)$, and the six points of weight 2 which are of type D_{6} are :
$4=(1,-1,0), 5=(0,1-1), 8=(1,1,-2), 15=(1,0,1), 20=(0,1,1)$, $28=(1,2,-1)$.

REFERENCES

1. D'Agostini , E. Sulla caratterizzazione delle (k,n;f)-calotte di tipo (n-2,n) Atti Sem.Mat.Fis.Univ. Modeno XXIX,(1980),263-275
2. D'Agostini , E. "On caps with weighted points in $\operatorname{PG}(2, q)$ " Discrete Mathematics 34, 103-110 (1981).
3. Makbola ,J. and Raida ,D. "(k,n;f)-arcs in Galois plane of order seven" Basrah J.Science, Vol.13,N0.1 ,49-56, 1995
4. Wilson, B.J. "(k,n;f)-arc and caps in finite projective spaces" Annals of Discrete mathematics 30, 355-362(1986)
5. Hameed,F.K. "Weighted (k,n)-arcs in the projective plane of order nine" PH.D. Thesis,University of London(1989).
6. Mahmood ,R.D. " $(k, n ; f)$-arcs of type ($n-5, n$) in $\operatorname{PG}(2,5)$ " M.SC. Thesis ,College of Science, University of Mosul(1990).
7. Nada,Y.K. " Lower bounds of t-fold blocking sets and construction of (k,n)-arcs in the Desargusian plane $\mathrm{PG}(2, \mathrm{q})$ PH.D. Thesis,University of Mosul,(2006)
8. Hirschfeld ,J.W.P."Projective Geometries Over Finite Fields" ,Oxford,(1979).
