THE MAXIMUM NUMBER IN WHICH EVERY STRONG TOURNAMENT CONTAINS A TRANSITIVE SUBTOURNAMENTS

Dr . Nihad ABDEL - JALIL MAJID / Assistant professor
Dr_nihad45@yahoo.com.
Dep of Mathematics

Abstract

: In this paper, we find the maximum number in which every strong tournament contains a Transitive subtournaments

مجزَ أة.

\section*{1. Introduction :}

Tournaments provide a model of the statistical technique, called the method of paired comparisons . This method is applied when there are a number of objects to be judged on the basis of some criterion and it is impracticable to consider them all simultaneously. The objects are compared two at a time and one member of each pair is chosen. This method and related topics are discussed in K.B Reid [4] Tournament have also been studied in connecting with sociometric relations in small groups. A survey of some of these investigations is given by R.Fraisse [2] . Our main object here to derive the maximum number where every strong tournament contains a transitive subtournaments.

2. Definitions:-

2.1 A tournament T_{n} consists of n nodes $p_{1}, p_{2}, \ldots \ldots \ldots, p_{n}$ such that each pair of distinct nodes p_{i} and p_{j} is joined by one and only one of the oriented arcs $p_{i} p_{j}$ or $p_{j} p_{i}$. The relation of dominance thus defined is a complete, irreflexive, antisymmetric, binary relation, every restriction of a tournament is subtournament . [2]
2.2 The score of p_{i} is the number s_{i} of nodes that p_{i} dominates the score vector of T_{n} in the ordered n - tuple ($\mathrm{s}_{1}, \mathrm{~s}_{2}$, . s_{n}). We usually assume that the nodes are labeled in such a way that $\mathrm{s}_{1} \leq \mathrm{s}_{2}$
$\leq \ldots . . \leq \mathrm{s}_{\mathrm{n}}$ [2]
2.3 Strong tournament: For any subset X of the nodes of a tournament T_{n}, let

$$
\Gamma(x)=\{q: p \rightarrow q \quad \text { for some } \mathrm{p} \in \mathrm{X}\}
$$

A tournament T_{n} is strong if and only if for every node p of T_{n} the set:
$\{p\} \cup \Gamma(p) \cup \Gamma^{2}(p) \cup \ldots \cup \Gamma^{n-1}(p) \quad$ contains every node of T_{n}. [2]
2.4 A tournaments is transitive if, whenever $p \rightarrow q$ and $q \rightarrow r$, then $p \rightarrow r$. [2]
2.5 A tournaments T_{n} is reducible if it is possible to partition its nodes into two nonempty sets B and A in such a way that all the nodes in B dominate all the nodes in A ; the tournament is irreducible if this is not possible . [2]

3. NOTATIONS:

1) Let $S(n, k)$ denote the minimum number of strong subtournament T_{k} that a strong tournament T_{n} can have. [2]
2) Let $\mathrm{v}=\mathrm{v}(\mathrm{n})$ is the Largest integer which every strong tournament contains a transitive Subtournament. [2]

4. Theorems:

The following theorem gives some properties of a transitive tournaments whose scores $\left(\mathrm{s}_{1}, \mathrm{~s}_{2} \ldots, \mathrm{~s}_{\mathrm{n}}\right)$ are in nondecreasing order .

Theorem 4.1 [5] The following statements are equivalent .
(1) T_{n} is transitive.
(2)Node p_{j} dominates node p_{i} if and only if $j>I$
(3) T_{n} has score $(0,1, \ldots, \mathrm{n}-1)$
(4)The score vector of T_{n} satisfies the equation:

$$
\sum_{i=1}^{n} s_{i}^{2}=\frac{n(n-1)(2 n-1)}{6}
$$

(5) T_{n} contains no cycles .
(6) T_{n} contains exactly $\binom{n}{k+1}$ paths of length K , if $\mathrm{l} \leq \mathrm{k} \leq \mathrm{n}-1$
(7) T_{n} contains exactly $\binom{n}{k}$ transitive subtournaments T_{k}, if $\mathrm{l} \leq \mathrm{k} \leq \mathrm{n}$
(8)Each principal submatrix of the dominance matrix $M\left(T_{n}\right)$ contains a row and column of zeros.
Every tournament $T_{n}(n \geq 4)$ contains at least one transitive subtournament T_{3}, but not every tournament T_{n} is itself transitive .

THEOREM 4.2 [1] if $3 \leq \mathrm{k} \leq \mathrm{n}$, then

$$
S(\mathrm{n}, \mathrm{k})=\mathrm{n}-\mathrm{k}+1 .
$$

THEOREM 4.3 [3] Each node of an irreducible tournament T_{n} in contained in some k - cycle, for $\mathrm{k}=3,4, \ldots, \mathrm{n}$.

The main results

THEOREM 4.4 if $\left[\log _{2} n\right]$ denotes the greatest integer not exceeding $\log _{2} n$ then
$\left[\log _{2} n\right]+1 \leq \mathrm{v}(\mathrm{n}) \leq\left[2 \log _{2} n\right]+1$
Proof:- Consider a tournament T_{n} in which the node P_{n} has the largest score S_{n}. It must be that $S_{n} \geq$ [$\frac{1}{2} n$], so there certainly exists a subtournament $T\left[\frac{1}{2} n\right]$ in T_{n} each node of which is dominated by P_{n}. We may suppose that $\left[\log _{2}\left[\frac{1}{2} n\right]\right]+1$ nodes. These nodes together with P_{n} determine a transitive subtournament of T_{n} with at least

$$
\left[\log _{2}\left[\frac{1}{2} n\right]\right]+2=\left[\log _{2} n\right]+1
$$

nodes. The lower bound now follows by induction there are $2^{\left.\left({ }^{(n)}\right)^{(}\right)\left(y_{n}^{\nu}\right)}$ tournaments T_{n}, containing a given transitive subtournament $\quad \mathrm{T}_{\mathrm{v}}$, and there are $\left({ }_{v}^{n}\right) v!$ such subtournaments T_{v} possible. Therefore,

$$
\left(\left(_{v}^{n}\right) v!2^{\left(n_{2}^{n}\right)-\left(v_{n}^{v}\right)} \geq 2^{\left(n_{2}^{n}\right)}\right.
$$

Since every tournament T_{n} contains at least one, transitive subtournament T_{v}, this inequality implies that $\mathrm{n}^{\mathrm{v}} \geq 2^{\left(\frac{\nu_{2}}{2}\right.}$. Consequently, $\mathrm{v} \leq\left[2 \log _{2} \mathrm{n}\right]+1$, and the theorem is proved.

The exact value of $v(n)$ is known only for some small values of n. For example, $v(7) \geq 3$. By theorem 4.4 the tournament T_{7}, in which $\mathrm{P}_{\mathrm{i}} \rightarrow \mathrm{P}_{\mathrm{j}}$ if and only if $\mathrm{j} \rightarrow \mathrm{i}$ is a quadratic residue module 7 contains no transitive subtournament T_{4}. It follow that $v(7)=3$. We examine other similarly constructed tournaments and we deduced the information about $\mathrm{v}(\mathrm{n})$ given in the following table .

Table $v(n)$, the largest integer v such that every tournament T_{n} contains a transitive subtournament T_{v}.

$$
\begin{gathered}
\mathrm{v}(2)=\mathrm{v}(3)=2 \\
\mathrm{v}(4)=\ldots=\mathrm{v}(7)=3 \\
\mathrm{v}(8)=\ldots=\mathrm{v}(11)=4 \\
4 \leq \mathrm{v}(12) \leq \ldots \leq \mathrm{v}(15) \leq 5 \\
\mathrm{v}(16)=\ldots=\mathrm{v}(23)=5 \\
5 \leq \mathrm{v}(24) \leq \ldots \leq \mathrm{v}(31) \leq 7 \\
6 \leq \mathrm{v}(32) \leq \ldots \leq \mathrm{v}(43) \leq 7
\end{gathered}
$$

Let $\mathrm{u}(\mathrm{n}, \mathrm{k})$ denote the maximum number of transitive subtournaments T_{k} that a strong tournament T_{n} can have. (The problem is trivial if T_{n} is not strong)
Theorem 4.5 if $3 \leq \mathrm{k} \leq \mathrm{n}$ then $\mathrm{u}(\mathrm{n}, \mathrm{k})=\binom{n}{k}-\binom{n-2}{k-2}$
Proof:- When $\mathrm{k}=3$ the theorem follows from theorem 4.2 , since every subtournament T_{3} is either strong or transitive. We now show that $\mathrm{u}(\mathrm{n}, \mathrm{k}) \leq\binom{ n}{k}-\binom{n-2}{k-2}$, for any larger fixed value of k . This inquality certainly holds when $n=k$, if $n>k \geq 4$, then any strong tournament T_{n}, contains a strong subtournament $\mathrm{T}_{\mathrm{n}-1}$ by theorem 4.3. Let p be the node not in $\mathrm{T}_{\mathrm{n}-1}$, there are at most $\mathrm{u}(\mathrm{n}-1, \mathrm{k}$ $-1)$ transitive subtournaments T_{k} of T_{n} that contain the node p and at most $\mathrm{u}(\mathrm{n}-1, \mathrm{k})$ that do not , We may suppose

$$
\mathrm{u}(\mathrm{n}-1, \mathrm{k}-1) \leq\binom{ n-1}{k-1}-\binom{n-3}{k-3}
$$

and

$$
\mathrm{u}(\mathrm{n}-1, \mathrm{k}) \leq\binom{ n-1}{k}-\binom{n-3}{k-2}
$$

Therefore

$$
\begin{aligned}
u(n, k) & \leq u(n-1, k-1)+u(n-1, k) \\
& \leq\binom{ n-1}{k-1}+\binom{n-1}{k}-\binom{n-3}{k-3}-\binom{n-3}{k-2} \\
& =\binom{n}{k}-\binom{n-2}{k-2}
\end{aligned}
$$

The inquality now follows by induction :
To show that $\mathrm{u}(\mathrm{n}, \mathrm{k}) \geq\binom{ n}{k}-\binom{n-2}{k-2} \quad$ consider the strong tournament T_{n} in which $\mathrm{p}_{1} \rightarrow \mathrm{p}_{\mathrm{n}}$ but otherwise $p_{j} \rightarrow p_{i}$ if $j>i$ (this tournament is illustrated in the following figure) this tournament has exactly $\binom{n}{k}-\binom{n-2}{k-2}$ transitive subtournament T_{k} if $3 \leq \mathrm{k} \leq \mathrm{n}$ because every subtournament T_{k} is transitive except those containing both p_{1} and p_{n}, this completes the proof of the theorem .

Corollary 4.6 the maximum number of transitive subtournaments a strong tournament $T_{n} \quad(n \geq 3$) can contain, including the trivial tournaments T_{1} and T_{2}, is $3.2^{\mathrm{n}-2}$.
Let $\quad \mathrm{r}(\mathrm{n}, \mathrm{k})$ denote the minimum number of transitive subtournaments T_{k} a tournament T_{n} can have . it follows from theorem 4.4 that $r(n, k)=0$
If $k>\left[2 \log _{2}\right]+1$ and that $r(n, k)>0$ if $k \leq\left[\log _{2} n\right]+1$.
Theorem 4.7 let
$\tau(n, k)=\left\{\begin{array}{lll}n \cdot \frac{(n-1)}{2} \cdot \frac{(n-3)}{4} \cdot \ldots . . \frac{\left(n-2^{k-1}+1\right)}{2^{k-1}} & \text { if } \mathrm{n}> & 2^{k-1}-1,\end{array} \quad \begin{array}{l}\mathrm{k} \text { denotes the number of nodes in a } \\ 0\end{array} \quad\right.$ if $n \leq 2^{k-1}-1 \quad 10 b t o u r n a m e n t \mathrm{~T}_{\mathrm{k}}$.

Then

$$
\mathrm{r}(\mathrm{n}, \mathrm{k}) \geq \tau(\mathrm{n}, \mathrm{k})
$$

Proof:- when $\mathrm{k}=1$, the result is certainly true if we count the trivial tournament T_{1} as transitive, if $k \geq 2$, then clearly

$$
\mathrm{r}(\mathrm{n}, \mathrm{k}) \geq \sum_{i=1}^{n} r\left(s_{i}, k-1\right)
$$

Where $\left(s_{1}, s_{2}, \ldots . ., s_{n}\right)$ denote the score vector of the tournament T_{n}, We may suppose that $r\left(s_{i}, k\right.$ $-1) \geq \tau\left(\mathrm{s}_{\mathrm{i}}, \mathrm{k}-1\right)$; since $\tau(\mathrm{n}, \mathrm{k})$ is convex function of n for fixed values of k , we may apply Jensen's inequality and conclude that:

$$
r(n, k) \geq \sum_{i=1}^{n} \tau\left(s_{i}, k-1\right) \geq n r(1 / 2(n-1), k-1)=\tau(n, k) .
$$

The theorem now follows by induction on k .
Notice that the lower bound in theorem 4.4 follows from theorem 4.7

References:

[1]M . Aigner, Combinatorial Theory, Springer, 1, edition (2004) .
[2]R. Fraisse, Theory of Relations, Studies in Logic and the Foundation of Mathematics, North Holland, Amsterdam , New-york ,Oxford 118, 1986
[3]S.Pemmaraju and S.Skiena, Computational Discrete Mathematics - Combinatorics and Graph Theory with Mathematical Hardcover (2003) Cambridge University U.K
[4]K.B. Reid , Strongly Self- Complementary and Hereditarily Isomorphic Tournaments , Monatsh .Math. 81 (1976) 291-304
[5]J.H. Schmeri , W.T Trotter, Critically Indecomposable Partially Ordered Set, Graphs , Tournaments and Other Binary Relational Structures .Discrete Math 113 (1993) 191-205

