THE MAXIMUM NUMBER IN WHICH EVERY STRONG TOURNAMENT CONTAINS A TRANSITIVE SUBTOURNAMENTS

Dr. Nihad ABDEL – JALIL MAJID / Assistant professor Dr_ nihad45@yahoo.com.

Dep of Mathematics

ABSTRACT:

In this paper, we find the maximum number in which every strong tournament contains a Transitive subtournaments

الخلاصة :

في هذا البحث توصلت الى إيجاد الحد الأعلى لعدد من العلاقات الدورية الجزئية المتعدية المحتواة في العلاقة الدورية الغير مجزأة.

1. Introduction:

Tournaments provide a model of the statistical technique, called the method of paired comparisons. This method is applied when there are a number of objects to be judged on the basis of some criterion and it is impracticable to consider them all simultaneously. The objects are compared two at a time and one member of each pair is chosen. This method and related topics are discussed in K.B Reid [4] Tournament have also been studied in connecting with sociometric relations in small groups. A survey of some of these investigations is given by R.Fraisse [2]. Our main object here to derive the maximum number where every strong tournament contains a transitive subtournaments.

2. Definitions:-

- 2.1 A tournament T_n consists of n nodes p_1, p_2, \ldots, p_n such that each pair of distinct nodes p_i and p_j is joined by one and only one of the oriented arcs p_i or p_j or p_j or p_j . The relation of dominance thus defined is a complete, irreflexive, antisymmetric, binary relation, every restriction of a tournament is subtournament. [2]
- 2.2 The score of p_i is the number s_i of nodes that p_i dominates the score vector of T_n in the ordered n tuple (s_1, s_2, \ldots, s_n). We usually assume that the nodes are labeled in such a way that $s_1 \le s_2 \le \ldots \le s_n$ [2]
- 2.3 Strong tournament: For any subset X of the nodes of a tournament T_n, let

$$\Gamma(x) = \{q : p \to q \text{ for some } p \in X \}$$

A tournament T_n is strong if and only if for every node p of T_n the set:

$$\{p\} \cup \Gamma(p) \cup \Gamma^{2}(p) \cup \dots \cup \Gamma^{n-1}(p)$$
 contains every node of T_n . [2]

- 2.4 A tournaments is transitive if, whenever $p \rightarrow q$ and $q \rightarrow r$, then $p \rightarrow r$. [2]
- 2.5 A tournaments T_n is reducible if it is possible to partition its nodes into two nonempty sets B and A in such a way that all the nodes in B dominate all the nodes in A; the tournament is irreducible if this is not possible . [2]

3. NOTATIONS:

- 1) Let S(n,k) denote the minimum number of strong subtournament $\,T_k$ that a strong tournament $\,T_n$ can have . [2]
- 2) Let v = v(n) is the Largest integer which every strong tournament contains a transitive Subtournament. [2]

4. Theorems:

The following theorem gives some properties of a transitive tournaments whose scores $(s_1, s_2, ..., s_n)$ are in nondecreasing order.

Journal of Kerbala University, Vol. 6 No.1 Scientific .March. 2008

Theorem 4.1 [5] The following statements are equivalent.

- $(1)T_n$ is transitive.
- (2)Node p_j dominates node p_i if and only if j>I
- (3) T_n has score (0,1,...,n-1)
- (4) The score vector of T_n satisfies the equation:

$$\sum_{i=1}^{n} s_i^2 = \frac{n(n-1)(2n-1)}{6}$$

- $(5)T_n$ contains no cycles .
- (6) T_n contains exactly $\binom{n}{k+1}$ paths of length K, if $1 \le k \le n-1$
- (7) T_n contains exactly $\binom{n}{k}$ transitive subtournaments T_k , if $1 \le k \le n$
- (8)Each principal submatrix of the dominance matrix M(T_n) contains a row and column of zeros.

Every tournament T_n (n \geq 4) contains at least one transitive subtournament T_3 ,but not every tournament T_n is itself transitive .

THEOREM 4.2 [1] if
$$3 \le k \le n$$
, then $S(n,k) = n-k+1$.

THEOREM 4.3 [3] Each node of an irreducible tournament T_n in contained in some k-cycle, for k=3,4,...,n.

The main results

THEOREM 4.4 if $[\log_2 n]$ denotes the greatest integer not exceeding $\log_2 n$ then

$$[\log_2 n] + 1 \le v(n) \le [2\log_2 n] + 1$$

Proof:- Consider a tournament T_n in which the node P_n has the largest score S_n . It must be that $S_n \ge \lfloor \frac{1}{2} \rfloor$ n], so there certainly exists a subtournament $T[\lfloor \frac{1}{2} \rfloor]$ in T_n each node of which is dominated by

 P_n . We may suppose that $[\log_2 [\frac{1}{2} \ n\]\]+1$ nodes . These nodes together with P_n determine a transitive subtournament of T_n with at least

$$[\log_2 [\frac{1}{2} n]] + 2 = [\log_2 n] + 1$$

nodes. The lower bound now follows by induction there are $2^{\binom{n}{2}-\binom{v}{n}}$ tournaments T_n , containing a given transitive subtournament T_v , and there are $\binom{n}{v}v$! such subtournaments T_v possible. Therefore,

$$\binom{n}{v}v! \ 2^{\binom{n}{2}-\binom{v}{n}} \ge 2^{\binom{n}{2}}$$

Since every tournament T_n contains at least one, transitive subtournament T_ν , this inequality implies

that $\,n^v \, \geq \, \, 2^{\binom{v}{2}}$. Consequently , $\, \, v \, \leq [\, 2 \, log_2 \, n \,] \, + 1$, and the theorem is proved.

The exact value of v(n) is known only for some small values of n. For example , $v(7) \ge 3$. By theorem 4.4 the tournament T_7 , in which $P_i \to P_j$ if and only if $j \to i$ is a quadratic residue module 7 contains no transitive subtournament T_4 . It follow that v(7) = 3. We examine other similarly constructed tournaments and we deduced the information about v(n) given in the following table .

Journal of Kerbala University, Vol. 6 No.1 Scientific .March. 2008

Table v(n), the largest integer v such that every tournament T_n contains a transitive subtournament T_v .

$$v(2) = v(3) = 2$$

 $v(4) = ... = v(7) = 3$
 $v(8) = ... = v(11) = 4$
 $4 \le v(12) \le ... \le v(15) \le 5$
 $v(16) = ... = v(23) = 5$
 $5 \le v(24) \le ... \le v(31) \le 7$
 $6 \le v(32) \le ... \le v(43) \le 7$

Let u(n,k) denote the maximum number of transitive subtournaments T_k that a strong tournament T_n can have. (The problem is trivial if T_n is not strong)

Theorem 4.5 if
$$3 \le k \le n$$
 then $u(n,k) = {n \choose k} - {n-2 \choose k-2}$

Proof:- When k=3 the theorem follows from theorem 4.2 , since every subtournament T_3 is either strong or transitive. We now show that u (n,k) $\leq \binom{n}{k}-\binom{n-2}{k-2}$, for any larger fixed value of k. This inquality certainly holds when n=k , if $n\!>\!k\geq 4$, then any strong tournament T_n , contains a strong subtournament T_{n-1} by theorem 4.3. Let p be the node not in T_{n-1} , there are at most u(n-1, k-1) transitive subtournaments T_k of T_n that contain the node p and at most u(n-1, k) that do not ,

$$u(n-1, k-1) \le {n-1 \choose k-1} - {n-3 \choose k-3},$$

and

$$u(n-1, k) \le {n-1 \choose k} - {n-3 \choose k-2}.$$

Therefore

We may suppose

$$u(n,k) \le u(n-1,k-1) + u(n-1,k)$$

$$\le {\binom{n-1}{k-1}} + {\binom{n-1}{k}} - {\binom{n-3}{k-3}} - {\binom{n-3}{k-2}}$$

$$= {\binom{n}{k}} - {\binom{n-2}{k-2}}$$

The inquality now follows by induction:

To show that $u(n,k) \geq \binom{n}{k} - \binom{n-2}{k-2}$ consider the strong tournament T_n in which $p_1 \to p_n$ but otherwise $p_j \to p_i$ if j > i (this tournament is illustrated in the following figure) this tournament has exactly $\binom{n}{k} - \binom{n-2}{k-2}$ transitive subtournament T_k if $3 \leq k \leq n$ because every subtournament T_k is transitive except those containing both p_1 and p_n , this completes the proof of the theorem .

Journal of Kerbala University, Vol. 6 No.1 Scientific .March. 2008

Corollary 4.6 the maximum number of transitive subtournaments a strong tournament T_n ($n \ge 3$) can contain, including the trivial tournaments T_1 and T_2 , is $3 \cdot 2^{n-2}$.

Let $\ r$ (n , k) denote the minimum number of transitive subtournaments T_k a tournament T_n can have . it follows from theorem 4.4 that $\ r$ (n,k) = 0

If $k > [2 \log_2] + 1$ and that r(n,k) > 0 if $k \le [\log_2 n] + 1$.

Theorem 4.7 let

$$\tau(n,k) = \begin{cases} n \cdot \frac{(n-1)}{2} \cdot \frac{(n-3)}{4} \cdot \dots \cdot \frac{(n-2^{k-1}+1)}{2^{k-1}} & \text{if } n > \\ 0 & \text{if } n \le 2^{k-1} - 1 \end{cases}$$

k denotes the number of nodes in a subtournament T_k

Then

$$r(n, k) \ge \tau(n, k)$$

Proof:- when k=1, the result is certainly true if we count the trivial tournament T_1 as transitive, if $k \ge 2$, then clearly

$$r(n, k) \ge \sum_{i=1}^{n} r(s_i, k-1),$$

Where (s_1, s_2, \ldots, s_n) denote the score vector of the tournament T_n . We may suppose that $r(s_i, k-1) \geq \tau(s_i, k-1)$; since $\tau(n,k)$ is convex function of n for fixed values of k, we may apply Jensen's inequality and conclude that:

$$r(n,k) \ge \sum_{i=1}^{n} \tau(s_i, k-1) \ge nr(\frac{1}{2}(n-1), k-1) = \tau(n,k).$$

The theorem now follows by induction on k.

Notice that the lower bound in theorem 4.4 follows from theorem 4.7

References:

[1]M. Aigner, Combinatorial Theory, Springer, 1, edition (2004).

[2]R. Fraisse , Theory of Relations , Studies in Logic and the Foundation of Mathematics, North Holland , Amsterdam , New-york ,Oxford 118, 1986

[3]S.Pemmaraju and S.Skiena , Computational Discrete Mathematics – Combinatorics and Graph Theory with Mathematical Hardcover (2003) Cambridge University U.K

 $[4]K.B.\ Reid$, Strongly Self- Complementary and Hereditarily Isomorphic Tournaments , Monatsh .Math.81 (1976) 291-304

[5]J.H. Schmeri, W.T Trotter, Critically Indecomposable Partially Ordered Set, Graphs, Tournaments and Other Binary Relational Structures. Discrete Math 113 (1993) 191-205