The Module of A-derivations

Hanan Ali Hussein
AL-Shaibany

Abstract

: In this work we have dealt with module $D(A)$ and produced the arrangement as one of its example.We have also shown some of the basic properties related to it and one of them is the module of the product of two arrangements.

$$
\begin{aligned}
& \text { الخلاصة : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { الخصائص الأساسية الخاصة به ومنها موديول حاصل ضرب ترتيتيتين . }
\end{aligned}
$$

1-Introduction :

Let V be an ℓ-dimensional vector space an arrangement is a finite collection of affine subspaces (H) of codimension one. The product $Q(A)=\prod_{H \in A} \alpha_{H}$ is called a defining polynomial of A.Let $S=S\left(V^{*}\right)$ be the symmetric algebra of the dual space V^{*} of V.If x_{1}, \ldots, x_{ℓ} is a basis for V^{*} ,then $S \cong K\left[x_{1}, \ldots, x_{\ell}\right]$. Let $\operatorname{Der}_{K}(S)$ be the set of K-linear maps $\theta: S \rightarrow S$ such that $\theta(f g)=f \theta(g)+g \theta(f) \quad \mathrm{f}, \mathrm{g} \in \mathrm{S}$. An element of $\operatorname{Der}_{K}(S)$ is called a derivation of S over K.For $f \in S$ and $\theta_{1}, \theta_{2} \in \operatorname{Der}_{K}(S)$,we defined $f \theta_{1} \in \operatorname{Der}_{K}(S) \quad$ and $\quad \theta_{1}+\theta_{2} \in \operatorname{Der}_{K}(S)$ by $f \theta_{1}(g)=f\left(\theta_{1}(g)\right)$ and $\left(\theta_{1}+\theta_{2}\right)(g)=\theta_{1}(g)+\theta_{2}(g)$ for any $g \in S$. Any K-linear map from V^{*} to S can be extended uniquely to a derivation of S over K. In particular,for any $v \in V$ there exists a unique $D_{v} \in \operatorname{Der}_{K}(S)$ such that $D_{v}(\alpha)=\alpha(v)$ for any $\alpha \in V^{*}$. Let $e_{1}, \ldots, e_{\ell} \in V$ be the dual basis of x_{1}, \ldots, x_{ℓ}. Define $D_{i}=D_{e i}, 1 \leq i \leq \ell$.Then D_{i} is the usual derivation $\partial / \partial x_{i}: D_{i}(f)=\partial / \partial x_{i} ; f \in S$. It is easy to see that D_{1}, \ldots, D_{ℓ} is a basis for $\operatorname{Der}_{K}(S)$ over S.Thus any derivation θ of S over K is expressed uniquely as $\theta=f_{1} D_{1}+\ldots+f_{\ell} D_{\ell} ; f_{1}, \ldots, f_{\ell} \in S$. It follows that $D e r_{K}(S)$ is a free
S-module of rank ℓ.Let S_{p} denote the K-vector subspace of S consisting of 0 and the homogenous polynomials of degree P for $\mathrm{P} \geq 0$. For $\mathrm{P}<0$ defin $\mathrm{S}_{\mathrm{p}}=0$ Then $S=\underset{P \in Z}{\oplus} S_{p}$ is a graded K-algebra . It follows that $\operatorname{deg} \mathrm{x}=1$ for $\mathrm{x} \in \mathrm{V}^{*}$ and $\mathrm{x} \neq 0$.

2- The module $D(A)$:-

2.1 Definition

Ahyperplane in V is an affine subspace of dimensional $(\ell-1)$ or it is a maximal subspace of codimension one .

2.2Examples

1) $\{0\}$ is a hyperplane in Euclidean space R.
2) If $V=R^{2}$, then any line in V is a hyperplane .
3) If $V=R^{3}$, then any plane in V is a hyperplane .

2.3 Definition

An arrangement $A=(A, V)$ is a finite collection of hyperplanes in V.

2.4 Definition

A defining polynomial of an arrangement A is the product $Q(A)=\prod_{H \in A} \alpha_{H}$ of polynomials of degree one.

2.5 Remark

We agree that $Q\left(\phi_{\ell}\right)=1$ is the defining polynomial of the empty arrangement .

2.6 Definitions

An arrangement A is called
i) centerless, if $\bigcap_{H \in A} H=\phi$.
ii) centered with center T, if $T=\bigcap_{H \in A} H \neq \phi$.
iii) central , if each hyperplane contains the origin .

2.7 Examples

1) Define A by $Q(A)=x y(x+y)$, then A consists of three lines through the origin
2) Define A by $Q(A)=x y(x+y-1)$, then A consists of three affine lines
3) The arrangement which is defined by $Q(A)=x_{1} x_{2} \ldots x_{\ell}$ called the Boolean arrangement .
4) For $1 \leq i \leq j \leq \ell \quad$ and $\quad H_{i j}=\operatorname{ker}\left(x_{i}-x_{j}\right)$.The arrangement which defined by $Q(A)=\prod_{1 \leq i \leq j \leq \ell}\left(x_{i}-x_{j}\right)$ is called a Braid arrangement.

2.8 Definition

Let A be an arrangement and let $L=L(A)$ be the set of all non-empty intersections of elements of A.Define a partial order on L by $X \leq Y \Leftrightarrow Y \subseteq X$.

2.9 Remarks

1) The Poset (partially order set) $L(A)$ includes V as the intersection of the empty collection of hyperplanes.
2) If $X \in L(A)$, then $X \subseteq V$ as a subspace .

2.10 Definition

A non-zero element $\theta \in \operatorname{Der}_{K}(S)$ is homogenous of polynomial degree P if $\theta=\sum_{K=1}^{\ell} f_{K} D_{K}$ and $f_{K} \in S_{P}$ for $1 \leq k \leq \ell$. In this case we write $p \operatorname{deg} r e e \theta=p$. Note that $p \operatorname{deg} D_{i}=0$.Let $\operatorname{Der}_{K}(S)_{P}$ denote the vector space consisting of all homogenous elements of p deg reep for $\mathrm{p} \geq 0$. Let $\operatorname{Der}_{K}(S)_{P}=0$ if $\mathrm{P}<0$, with this P degree function. $\operatorname{Der}_{K}(S)$ is a graded Smodule $\operatorname{Der}_{K}(S)=\bigoplus_{P \in Z} \operatorname{Der}_{K}(S)_{P}$. If we view derivations as a subset of the set of K-linear endomorphism of S , then there is another natural grading of $\operatorname{Der}_{K}(S)$.

2.11 Definition

For any $f \in S$,define $D(f)=\left\{\theta \in \operatorname{Der}_{K}(S) / \theta(f) \in f S\right\}$. Note that $\mathrm{D}(\mathrm{f})$ is an S-submodule of $\operatorname{Der}_{K}(S)$.

2.12 Definiton

Let A be an arrangement in $\quad V$ with defining polynomial $Q(A)=\prod_{H \in A} \alpha_{H}$ where $H=\operatorname{Ker}\left(\alpha_{H}\right)$.Define the module of A-derivations by $D(A)=D(Q(A))$.
Clearly, $D(A)$ does not depend on the choice of $Q(A)$. In particular $D\left(\phi_{\ell}\right)=\operatorname{Der}_{K}(S)$ because $Q\left(\phi_{\ell}\right)=1$.An element of $D(A)$ is called a derivation tangent to A.This terminology is justified by the topological significance of the module $D(A)$ in case $\mathrm{K}=\mathrm{C}$.

2.13 Example

Let A be the Boolean arrangement .Then
$\sum_{i=1}^{\ell} f_{i} D_{i} \in D(A)$.
$\Leftrightarrow \sum_{i=1}^{\ell} f_{i}\left(\partial\left(x_{1} \ldots x_{\ell}\right) / \partial x_{i}\right) \in x_{1} \ldots x_{\ell} S \Leftrightarrow\left(x_{1} \ldots x_{\ell}\right) \sum_{i=1}^{\ell}\left(f_{i} / x_{i}\right) \in x_{1} \ldots x_{\ell} S \Leftrightarrow f_{i} \in x_{i} S \quad(1 \leq \mathrm{i} \leq \ell)$
This implies that $D(A)$ is a free S-module with basis $\left\{x_{1} D_{1}, \ldots, x_{\ell} D_{\ell}\right\}$.

3.Basic Properties

In this section we assume that all arrangements are central and use "arrangement" in place of central arrangement.

3.1 Definition

The Euler derivation $\theta_{E} \in \operatorname{Der}_{K}(S)$ is defined by $\theta_{E}=\sum_{i=1}^{\ell} x_{i} D_{i}$ for any homogenous $f \in S \quad, \theta_{\mathrm{E}}(f)=(\operatorname{deg} f) f$.Thus θ_{E} is independent of choice of $\left\{x_{1}, \ldots, x_{\ell}\right\}$
Taking $f=Q=Q(A)$, we get $\theta_{\mathrm{E}}(Q)=|A| Q \in \mathrm{QS}$.Thus $\theta_{\mathrm{E}} \in D(A)$ for any arrangement A.

3.2 Proposition

$$
D(A)=\bigcap_{H \in A} D\left(\alpha_{H}\right)=\left\{\theta \in \operatorname{Der}_{K}(S) / \theta\left(\alpha_{H}\right) \in \alpha_{H} S \quad \text { for all } \mathrm{H} \in \mathrm{~A}\right\} .
$$

Proof

It is sufficient to prove
$D\left(f_{1} f_{2}\right)=D\left(f_{1}\right) \bigcap D\left(f_{2}\right)$ for any $\mathrm{f}_{1}, f_{2} \in S$ such that f_{1} and f_{2} are coprime.
If $\theta \in D e r_{K}(S)$, then
$\theta \in D\left(f_{1} f_{2}\right)$
$\Leftrightarrow \theta\left(f_{1} f_{2}\right) \in f_{1} f_{2} S$
$\Leftrightarrow f_{1} \theta\left(f_{2}\right)+f_{2} \theta\left(f_{1}\right) \in f_{1} f_{2} S$
$\Leftrightarrow \theta\left(f_{i}\right) \in f_{i} S \quad(i=1,2)$
$\Leftrightarrow \theta \in D\left(f_{1}\right) \bigcap D\left(f_{2}\right)$.

3.3 Corollary

Let A_{1} and A_{2} be two arrangements in V such that $A_{1} \subseteq A_{2}$. Then $D\left(A_{2}\right) \subseteq D\left(A_{1}\right)$.
Proof
$D\left(A_{2}\right)=\bigcap_{H \in A_{2}} D\left(\alpha_{H}\right)=\left\{\theta \in \operatorname{Der}_{K}(S) / \quad \theta\left(\alpha_{H}\right) \in \alpha_{H} S \quad\right.$ for all $\left.\mathrm{H} \in \mathrm{A}_{2}\right\}$

Let $\theta \in D\left(A_{2}\right)$. Then $\theta \in \operatorname{Der}_{K}(S) / \theta\left(\alpha_{H}\right) \in \alpha_{H} S \quad$ for all $\left.\mathrm{H} \in \mathrm{A}_{2}\right\}$
Since $A_{1} \subseteq A_{2}$. Then $\theta \in \operatorname{Der}_{K}(S) / \theta\left(\alpha_{H}\right) \in \alpha_{H} S \quad$ for all $\left.\mathrm{H} \in \mathrm{A}_{1}\right\}$
Then $\theta \in D\left(A_{1}\right)$. Hence $D\left(A_{2}\right) \subseteq D\left(A_{1}\right)$.

3.4 Proposition [2]

Let $D(A)_{p}=D(A) \bigcap \operatorname{Der}_{K}(S)_{P}$.Then $D(A)=\bigoplus_{P \in Z} D(A)_{P}$.Thus $\mathrm{D}(\mathrm{A})$ is a graded
S-submodule of $\operatorname{Der}_{K}(S)$.

3.5 Definition

If $\theta \in \operatorname{Der}_{K}(S)$ Then $\theta=\sum \theta\left(x_{i}\right) D_{i}$.Given derivations $\theta_{1}, \ldots, \theta_{\ell} \in D(A)$, define the coefficient
matrix $M\left(\theta_{1}, \ldots, \theta_{\ell}\right)$ by $M_{i j}=\theta_{j}\left(x_{i}\right)$.Thus $M\left(\theta_{1}, \ldots, \theta_{\ell}\right)=\left[\begin{array}{l}\theta_{1}\left(x_{1}\right) \ldots \theta_{\ell}\left(x_{1}\right) \\ . \\ . \\ \theta_{1}\left(x_{\ell}\right) \ldots \theta_{\ell}\left(x_{\ell}\right)\end{array}\right]$
And $\theta_{j}=\sum M_{i j} D_{i}$.

3.6 Proposition

If $\theta_{1}, \ldots, \theta_{\ell} \in D(A)$, then $\operatorname{det} M\left(\theta_{1}, \ldots, \theta_{\ell}\right) \in \mathrm{QS}$.

Proof

This is clear for $A=\phi_{\ell}$. Since $Q(A)=1$
Let $H \in A$ and let $H=\operatorname{ker}\left(\alpha_{H}\right)$, where $\alpha_{H}=\sum_{i=1}^{\ell} c_{i} x_{i} \in V^{*}$. May assume that $c_{i}=1$ for
some i.Then $\operatorname{det} M\left(\theta_{1}, \ldots, \theta_{\ell}\right)=\operatorname{det}\left[\begin{array}{l}\theta_{1}\left(x_{1}\right) \ldots \theta_{\ell}\left(x_{1}\right) \\ \cdot \\ \cdot \\ \cdot \\ \theta_{1}\left(\alpha_{H}\right) \ldots \theta_{\ell}\left(\alpha_{H}\right) \\ \cdot \\ \cdot \\ \cdot \\ \theta_{1}\left(x_{\ell}\right) \ldots \theta_{\ell}\left(x_{\ell}\right)\end{array}\right] \in \alpha_{\mathrm{H}} S$

Since H is arbitrary, $\operatorname{det} M\left(\theta_{1}, \ldots, \theta_{\ell}\right)$ is divisible by all α_{H}, and hence by Q .
as required.
Let $\left(A_{1}, V_{1}\right)$ and $\left(A_{2}, V_{2}\right)$ be two arrangement .let $S_{i}=S\left(V_{i}^{*}\right)$ for $\mathrm{i}=1,2$ and let $V=V_{1} \oplus V_{2}$. Then S_{1} and S_{2} may be regarded as K-subalgebras of $S=S\left(V^{*}\right)$.An element $\theta \in \operatorname{Der}\left(S_{1}\right)$ is uniquely extended to an element γ of $\operatorname{Der}(\mathrm{S})$ such that $\gamma / S_{2}=0$. By this extension, $\operatorname{Der}\left(\mathrm{S}_{\mathrm{i}}\right)$ may be regarded as a subset of $\operatorname{Der}(\mathrm{S})$ for $\mathrm{i}=1,2$. The following is easy to see.

3.7 Proposition [3]

$\operatorname{Der}(S)=\operatorname{SDer}\left(S_{1}\right) \oplus \operatorname{SDer}\left(S_{2}\right)$.

3.8 Proposition

For two arrangements $\left(A_{1}, V_{1}\right)$ and $\left(A_{2}, V_{2}\right)$, we have $D\left(A_{1} \times A_{2}\right)=S D\left(A_{1}\right) \oplus S D\left(A_{2}\right)$.

Proof

Write $A=A_{1} \times A_{2}$.For $\mathrm{i}=1,2$, let $S_{i}=S\left(V_{i}^{*}\right)$ and let $Q_{i} \in S_{i}$ be defining polynomials for A_{i}. Then $Q_{1} Q_{2}$ is a defining polynomial for A. Since an element of $\operatorname{Der}\left(\mathrm{S}_{1}\right)$ annihilates every element in S_{2} ,we get $S D\left(A_{1}\right) \subseteq D(A)$. Thus we obtain $S D\left(A_{1}\right) \oplus S D\left(A_{2}\right) \subseteq D(A)$.
By Proposition (3.7) , any element $\theta \in D(A)$ can be written as $\theta=\theta_{1}+\theta_{2}$ for some $\theta_{i} \in \operatorname{SDer}\left(S_{i}\right)$ with $\mathrm{i}=1,2$. By symmetry we only have to prove $\theta_{1} \in \operatorname{SD}\left(A_{1}\right)$.For that purpose we may assume that $\theta=\theta_{1}$.
Since $\theta\left(Q_{1} Q_{2}\right)=Q_{2} \theta\left(Q_{1}\right)+Q_{1} \theta\left(Q_{2}\right)=Q_{2} \theta\left(Q_{1}\right) \in Q_{1} Q_{2} S$, we have $\theta\left(Q_{1}\right) \in Q_{1} S$.
Let $G=\left\{g_{1}, g_{2}, \ldots\right\}$ be a K-basis for S_{2}. For example, take G to be the set of all monomials.Note that G is linearly independent over S_{1} also there is a unique expression
$\theta=\sum_{i \geq 1} g_{i} \eta_{i}$ with $\eta_{i} \operatorname{Der}\left(S_{1}\right)$.There is also a unique expression
$\theta\left(Q_{1}\right)=Q_{1} \sum_{i \geq 1} g_{i} h_{i}$ with $h_{i} \in S_{1}$. Thus we have $\sum_{i \geq 1} g_{i}\left(h_{i} Q_{1}\right)=\theta\left(Q_{1}\right)=\sum_{i \geq 1} g_{i} \eta_{i}\left(Q_{1}\right)$
By the uniqueness of the expression, we have for $i \geq 1$
$\eta_{i}\left(Q_{1}\right)=h_{i} Q_{1} \in Q_{1} S_{1}$,so $\eta_{i} \in D\left(A_{1}\right)$. Thus $\theta=\sum_{i} g_{i} \eta_{i} \in S D\left(A_{1}\right)$.

Refrences:

1-Hussein.H.A."On the topological complement of an arrangement"MS.C University of Kufa,2005 2-Orlik P.,"Introduction to arrangements",CBMS Lecture Notes 72,Amer Math.Soc. 1989.
3-Orlik P,and H.Terao,"Arrangement of hyperplanes",Grundlehren der mathematicshen wissensch aften,Vol.300;springer,Berline,Heidleberg,New Yourk,1992

