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In this paper an optimal (Bayesian) fixed sample size procedure for selecting the better of two 

Exponential populations is proposed and studied . Bayesian decision-theoretic approach with 

general loss function and Gamma priors are used to construct this procedure . A suboptimal 

procedure that is based on posterior estimate of the parameters and a method of obtaining an 

approximation to the optimal procedure using stirling’s formula are also presented. Comparisons 

among these procedures are made using performance characteristics such as Bayes risk . 

 

: 

َخضون هزا البحث طشَقت راث حجن عُنت ثابج لاخخُاس أفضل هجخوع هن بُن هجخوعُُن آسُُن . وقذ اسخخذم هنهج القرشاس البُضَنرٍ 

علرً طرشم هىلرً يض ُرا احرذها َعخورذ علرً حقرذَش بعرذٌ للوعرالن هع دالت خساسة هشخشكت لبناء هزه الطشَقت . واحخىي البحرث أَضرا 

والأخررشي قاعررذة اخخُرراس حقشَبُررت للوشررملت وباسررخعوال حقشَررك سررخُشلن  للوضمررىل المبُررش . وحضررون البحررث أَضررا هقاس رراث بررُن هررزه 

 الإيشاءاث باسخخذام خصا ص ا جاص هىل الخطىسة البُضَنُت .
 

 
Suppose that )2,1(,  ii are two Exponential populations . The quality of the ith population is 

characterized by a positive real-valued parameter i . The problem is to select the better of these 

Exponential populations on the basis of affixed number of observations N which is partitioned into n1 

and n2 (not necessarily are equal) , the number of observations taken from populations 1  and 2  

respectively . The ranked mean rates are denoted by    21    , moreover we don’t know which 

population is associated with  2  . Our goal is to design fixed sample size selection procedures that 

enable us to select the population associated with  2  , thus we have two-decision problem .  

The following experimental conditions should be met 

1.The observations produced by each population are independent each other . 

2. 1  and 2  are constants during the experiment . 

Many authors have considered the problem of selecting the largest population such as Gupta and Liang 

(1999) proposed a procedure to selecting good exponential populations compared with a control : a 

nonparametric empirical Bayes approach . Gupta and Liang (2001) proposed Bayes selection rules for 

the best exponential population with type-I censored data . Some contributions such as Nelson and 

Hung (2003) presented an indifference zone selection procedure which is sequential and has minimum 

number of switches . Nelson and Pichitlamken (2001) propose fully sequential indifference zone 

selection procedures . Some contribtion using Bayesian approach have been made by Mahi (1986) who 

presented Bayesian sequential procedures for Binomial and Multinomial selection problem . Chick 
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(1997) . Chen (1995) and Chen et al. (1996) have formulated the R&S problem as multi-stage 

optimization problem . 

 

This paper is organized as follows . 

In section 2 we present an optimal (Bayesian) fixed sample size scheme for selecting the better of two 

exponential populations using Gamma priors with general loss function . The two decision exponential 

selection formulation is given in subsection 2.1 . Subsection 2.2 contains the Bayesian selection 

procedure (opm). In subsection 2.3 we drive the posterior expected losses of making decision d1 and d2 

for constant , linear and quadratic loss functions . In section 3 we present the suboptimal selection 

procedure (subopm1) as an approximation to opm procedure . In section 4 we describe the suboptimal 

selection procedure (subopm2) based on posterior Bayes estimate of the parameter . Comparisons of 

the schemes using posterior expected loss under constant loss function is given in section 5 . 

 

 

 

Let 1  and 2  be two Exponential populations with unknown parameters 1  and 2   respectively , 

and consider the following two-decision problem with decisions  

d1: 21    

and                       …………..(2-1) 

d2: 21    

Corresponding to the two decision problem the parameter space }0,0:),{( 2121    is 

divided into disjoint sets : }0:),{( 12211   and }0:),{( 21212   . 

To obtain an explicit Bayes rule (Bayes selection procedure) for this two decision problem we must 

specify loss function and prior distributions . Suppose the loss functions proposed are as follows : 
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Where r=0,1,2 gives the types of loss function , which are constants , linear and quadratic respectively . 

Li (i=1,2) are the loss functions corresponding to decision di , and k1 and k2 are positive constants (the 

same for each pair of s' ) .  

The Bayesian approach requires that we specify a prior density function  2,1),(  ii , expressing 

our beliefs about i  before we obtain data . From a mathematical point of view , it would be very 

convenient if i  is assigned a prior distribution which is a member of the conjugate family , in this 

case is the family of Gamma distributions . Accordingly let i ,(i=1,2) is assigned Gamma prior 
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distribution with parameters ii tn ,  (Gamma( ii tn , )) . The normalized density function is given by 

: 
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Where  

in  : the number of independent events occurred in aunit of time . 

it  : time . 

i  : the mean rate of occurrence . 

If  1,2)(i , ),...,,( 21  iniii
xxxx  be a random sample from population 1  , then the likelihood function 

is given by  

)52.(..............................)/( 1 
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The posterior density function is derived from the prior function (2-4) and the assumed sampling model 

(2-5) by means the Bayes theorem as follows : 
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Then the posterior density function is given by  
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 and nnn ii   , )2,1( i  

N is the number of observations taken from each population (N=2n is the total number of observations 

taken from each populations) . 

The foregoing is all that need in order to obtain a Bayes rule (Bayes selection procedure) for the 

component two-decision problem . 

 

 
For the two-decision problem considered above , the Bayesian selection procedure is given as follows : 

Make decision d1 : 21    that is selecting 1  as the better population if );,();,( 22121211 dRdR    

and 

Make decision d2 : 21    that is selecting 2  as the better population if );,();,( 22121211 dRdR    

Where ), (idR ii 21, );,( 21   is the posterior expected loss for the decision di and calculated as follows 

: 

2,1)],;,([E );,( 21),,/,(21 221121
  idLdR iitntnii    where ),,,/,( 221121 tntn   on the expectation sign 

is the joint posterior of 1 and 2  with respect to which the expectation is being performed . 
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The optimal posterior expected loss using opm is ),min(),( 2121 RRR   

 

 
In this subsection we derive the posterior expected losses of making decision d1 and d2 for general loss 

function , then the posterior expected losses are defined as follows : 
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           This section contains some numerical result about this procedure , various N and various priors.  

All the programs in this paper are applied by Microsoft Matlab ver 6.5 . from this numerical result we 

note that :  

1-As N increase , the Bayes Risk decreases . 

2- If we increase priors parameters the posterior expected loss decreases . 
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Figure (1) : The influence of the sample size on the posterior expected loss in opm procedure for 

constant loss function 
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Figure (2) : The influence of the sample size on the posterior expected loss in opm procedure for 

linear loss function 
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Figure (3) : The influence of the sample size on the posterior expected loss in opm procedure for 

quadratic loss function 
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Figure (4) : The influence of the prior information on the posterior expected loss in opm 

procedure for constant loss function 

 

)5,12(,6,4 21  kk  

),(),,( 2211


tntn  n Risk constant linear quadratic 

(5,3),(2,3) 

10 
R(d1) 0.2377 0.0045 1.5399e-004 

R(d2) 5.6434 0.4823 0.0552 

20 
R(d1) 0.0289 3.0762e-004 6.0241e-006 

R(d2) 5.9566 0.5348 0.0572 

30 
R(d1) 0.0039 2.9987e-005 4.3818e-007 

R(d2) 5.9942 0.5850 0.0643 

(7,3),(4,3) 

10 
R(d1) 0.1575 0.0030 1.0470e-004 

R(d2) 5.7638 0.5775 0.0752 

20 
R(d1) 0.0194 2.0741e-004 4.0961e-006 

R(d2) 5.9709 0.5886 0.0681 

30 
R(d1) 0.0026 2.0334e-005 2.9861e-007 

R(d2) 5.9961 0.6242 0.0727 

(9,3),(6,3) 

10 
R(d1) 0.1050 0.0020 7.1371e-005 

R(d2) 5.8425 0.6734 0.0983 

20 
R(d1) 0.0131 1.4016e-004 2.7888e-006 

R(d2) 5.9804 0.6424 0.0801 

30 
R(d1) 0.0018 1.3805e-005 2.0365e-007 

R(d2) 5.9974 0.6634 0.0815 

 

Table ( I ) 
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Factorials are not very convenient for mathematical manipulation , and it is often useful to replace r! by 

an approximation . The most common approximation is striling’s formula , namely  

1)-3.........(....................  )2(! 2

1

2

1

r
r

err 


   

Using stirling’s formula for approximation factorials , we can obtain the approximations posterior 

expected loss );,( 121

*

1 dR   and  );,( 221

*

2 dR   for general loss function  . 

The procedure subopm1 is given as follows : 

make decision d1 (select 1  as the better population) if );,();,( 221

*

2121

*

1 dRdR    

and 

make decision d2 (select 2  as the better population) if );,();,( 221

*

21211
* dRdR    

where 
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The optimal posterior expected loss under subopm1 is ),min( 2
*

1
** RRR   
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A Bayesian suboptimal scheme is proposed with decision criteria based on the posterior probabilities of 

1  and 2 , the posterior Bayes estimator of )2,1(, ii  with respect to the gamma posterior 

distribution is given by 
i

i
ii

t

n
xE




)/(  . This is prompted by the need for a quick , easy procedure , to 

select the better of two poisson populations , which allow for the incorporation of information about the 

parameters with sampling information , ignoring the decision-theoretic structure and indifference-zone 

formulation . Suppose n observations are taken from each population and are assumed to be 

independent , this procedure is given as follows: 

Select 211 :  d  if 21
ˆˆ    

and 

select 212 :  d  if  21
ˆˆ    

for the sake of risk comparison , we use the following procedure  

let  211211
ˆˆ  if    );,(   dRR   ,  

       212212
ˆˆ  if    );,(   dRR  

so R  will be the optimal risk using subopm2 

 

 
This section contains some numerical results about the efficiency of these schemes relative to opm for 

the constant loss function , various N and various priors all the programs in this paper are applied by 

Microsoft Matlab ver 6.5 . 

From table (II) we note that , the posterior expected loss for the suboptimal 1 procedure is less than the 

posterior expected loss for the optimal and suboptimal 2 procedures . Also it is clear from the table that 

as N increases , the Bayes risk decreases in all schemes, and if we increases the prior parameters the 

Bayes risk decreases in all schemes . 

 

 
1-Specify prior parameters , 2,1,,  itn ii  , sample size n , parameters for populations 0i  

 and constant losses ki . 

2-Generate a random sample of size n from populations ),...,,(, 2,1 iniiii xxx  and find 



n

j

s ijx
1

 by 

using the function poissrnd in the Microsoft Matlab ver 6.5 . 

3-Calculate the posterior parameter for populations 2,1,  ii  ,   nnn ii    , stt ii   

4-Find the posterior expected loss for decision d1 and d2 ( );,(R , );,( 22121211 ddR  for opm procedure 

and );,(R , );,( 2212
*

1211
* ddR   for subopm1 procedure ) . 
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)6,9(,521  kk  

Prior prob. 

),(),,( 2211


tntn  

n opm Subopm1 Subopm2 

(3,5),(3,5) 

10 0.8283 0.7601 0.8283 

20 0.4613 0.4243 0.4613 

30 0.2718 0.2459 0.2718 

(6,5),(6,5) 

10 0.7007 0.6468 0.7007 

20 0.3951 0.3624 0.3951 

30 0.2345 0.2106 0.2345 

(7,5),(7,5) 

10 0.6638 0.6134 0.6638 

20 0.3755 0.3440 0.3755 

30 0.2233 0.2001 0.2233 

(9,5),(9,5) 

10 0.5970 0.5523 0.5970 

20 0.3395 0.3102 0.3395 

30 0.2026 0.1805 0.2026 

 

Table ( I I) 

Comparisons of the schemes using Bayes risk under constant loss function for various prior and 

various N 
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