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Bayesian Fixed Sample Size Procedures for
Selecting the Better of Two Exponential Populations

With General Loss Function
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OAbstmct

In this paper an optimal (Bayesian) fixed sample size procedure for selecting the better of two
Exponential populations is proposed and studied . Bayesian decision-theoretic approach with
general loss function and Gamma priors are used to construct this procedure . A suboptimal
procedure that is based on posterior estimate of the parameters and a method of obtaining an
approximation to the optimal procedure using stirling’s formula are also presented. Comparisons
among these procedures are made using performance characteristics such as Bayes risk .
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1.Infroduction

Suppose that IT;,(i =1,2)are two Exponential populations . The quality of the ith population is

characterized by a positive real-valued parameter A, . The problem is to select the better of these
Exponential populations on the basis of affixed number of observations N which is partitioned into n;
and n, (not necessarily are equal) , the number of observations taken from populations I1, and II,
respectively . The ranked mean rates are denoted by A; <4, , moreover we don’t know which

population is associated with ﬂ-[z] . Our goal is to design fixed sample size selection procedures that

enable us to select the population associated with ﬂ[z] , thus we have two-decision problem .

The following experimental conditions should be met

1.The observations produced by each population are independent each other .

2.4, and 4, are constants during the experiment .

Many authors have considered the problem of selecting the largest population such as Gupta and Liang
(1999) proposed a procedure to selecting good exponential populations compared with a control : a
nonparametric empirical Bayes approach . Gupta and Liang (2001) proposed Bayes selection rules for
the best exponential population with type-l censored data . Some contributions such as Nelson and
Hung (2003) presented an indifference zone selection procedure which is sequential and has minimum
number of switches . Nelson and Pichitlamken (2001) propose fully sequential indifference zone
selection procedures . Some contribtion using Bayesian approach have been made by Mahi (1986) who
presented Bayesian sequential procedures for Binomial and Multinomial selection problem . Chick
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(1997) . Chen (1995) and Chen et al. (1996) have formulated the R&S problem as multi-stage
optimization problem .

This paper is organized as follows .

In section 2 we present an optimal (Bayesian) fixed sample size scheme for selecting the better of two
exponential populations using Gamma priors with general loss function . The two decision exponential
selection formulation is given in subsection 2.1 . Subsection 2.2 contains the Bayesian selection
procedure (opm). In subsection 2.3 we drive the posterior expected losses of making decision d; and d,
for constant , linear and quadratic loss functions . In section 3 we present the suboptimal selection
procedure (subopml) as an approximation to opm procedure . In section 4 we describe the suboptimal
selection procedure (subopm?2) based on posterior Bayes estimate of the parameter . Comparisons of
the schemes using posterior expected loss under constant loss function is given in section 5 .

2.Bayesian (optimaljselection procedure(opm)
2.1 The Bayesian Decision-Theoretic Formulation

Let IT, and I1, be two Exponential populations with unknown parametersﬂ-l and /12 respectively ,
and consider the following two-decision problem with decisions

d: A4 > A,

and (2-1)

d: A4, = A,

Corresponding to the two decision problem the parameter space Q={(4,4,):0< 4, <o0,0< 4, <o} is
divided into disjoint sets : Q, ={(4,,4,):0< 4, <A <oc}and Q, ={(4,,4,):0< A, <A, <o},

To obtain an explicit Bayes rule (Bayes selection procedure) for this two decision problem we must
specify loss function and prior distributions . Suppose the loss functions proposed are as follows :

0 if (1,4,) e,
! ’dl = r s oa an d i ettt -
L (4, 4,;d,) {kl\&—ﬂz\ it (1) e 0, (2-2)
. Ko| A= 2| if (4, 4) e
Lz ) 1d2 =N -
(i) {o if (4, 4) €Q, &9

Where r=0,1,2 gives the types of loss function , which are constants , linear and quadratic respectively .
L; (i=1,2) are the loss functions corresponding to decision d; , and k; and k, are positive constants (the
same for each pair of A's).

The Bayesian approach requires that we specify a prior density function T1(A4),i =1,2, expressing

our beliefs about A; before we obtain data . From a mathematical point of view , it would be very

convenient if /74 is assigned a prior distribution which is a member of the conjugate family , in this

case is the family of Gamma distributions . Accordingly let A, ,(i=1,2) is assigned Gamma prior
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. . . . 4 ’ 4 ’ R R R R R
distribution with parameters IN); ,ti (Gamma( N; ,ti )) . The normalized density function is given by

t —t/ A, [
IMA4) =——< (t)" e A ! ,n'>0,t; >0,4 >0............. (2-4)
r(n; )
Where
n/ : the number of independent events occurred in aunit of time .
t/ : time.

A : the mean rate of occurrence .

If X, = (X, Xip0es %) » (1 =1,2) be a random sample from population I, , then the likelihood function
is given by

-4 y Xij
F(X T A)=A"8 7 e (2-5)

The posterior density function is derived from the prior function (2-4) and the assumed sampling model
(2-5) by means the Bayes theorem as follows :

F O 7 4)TT(A)

HA )= [ £/ 2)1(4)dA
Where |
j f(x, 1 2,)11(2)0, = — ) L0+
r(n)(t +X Xji )

A
Then the posterior density function is given by

IT(A4 /%) = —— (t)" 2 2" e \Where t{’zt{+zn:xij and n=n'+n, (i=12)
r(n) =

N is the number of observations taken from each population (N=2n is the total number of observations
taken from each populations) .

The foregoing is all that need in order to obtain a Bayes rule (Bayes selection procedure) for the
component two-decision problem .

2.2 The procedure (opm)

For the two-decision problem considered above , the Bayesian selection procedure is given as follows :
Make decision d; : 4, > 4, that is selecting I1, as the better population if R (4,4,,d,) <R,(4,4,d,)

and

Make decision d,: 4, < 4, that is selecting IT, as the better population if R (4,4,;d,) > R,(4,4,;d,)

Where R (4,4,;d.), (i=12) is the posterior expected loss for the decision d; and calculated as follows

Ri(A, A5 di) = B 4 i nan [l (A0 405 00)] 1 =1,2 where T1(4;, 4, /nf,t),n7,t7) on the expectation sign
is the joint posterior of 4 ,and 4, with respect to which the expectation is being performed .
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The optimal posterior expected loss using opm is R(4,,4,) = min(R,,R,)

2.3 The Posterior Expected Loss for General Loss Function

In this subsection we derive the posterior expected losses of making decision d; and d, for general loss
function , then the posterior expected losses are defined as follows :

)y T ) (1) Tl 0 P @)+
Ri“’”?’dl)‘&[;[ij( o S ) j!(t;'+t;')”l”+‘”}

) g O 0 1) (P TG ™ (/T 414
Rz(ﬂl’ﬂ?’dz)‘k{;(ij( o S e & j!(t{'+t;’)”5*”‘}

This section contains some numerical result about this procedure , various N and various priors.

All the programs in this paper are applied by Microsoft Matlab ver 6.5 . from this numerical result we
note that :

1-As N increase , the Bayes Risk decreases .
2- If we increase priors parameters the posterior expected loss decreases .
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Figure (1) : The influence of the sample size on the posterior expected loss in opm procedure for
constant loss function
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Figure (2) : The influence of the sample size on the posterior expected loss in opm procedure for
linear loss function
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Figure (3) : The influence of the sample size on the posterior expected loss in opm procedure for
guadratic loss function
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Figure (4) : The influence of the prior information on the posterior expected loss in opm
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Table (1)
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3- The Suboptimal Selection Procedure(subopm1)
Factorials are not very convenient for mathematical manipulation , and it is often useful to replace r! by

an approximation . The most common approximation is striling’s formula , namely
1

1
M (27)2F 267 oo (3-1)
Using stirling’s formula for approximation factorials , we can obtain the approximations posterior
expected loss R, (4, 4,;d,) and Rz*(ﬂl,ﬂz;dz) for general loss function .
The procedure subopm1 is given as follows :
make decision d; (select IT, as the better population) if R (4,,4,;d,) <R, (1, 4,;d,)

and
make decision ds (select 1, as the better population) if R"1(4,4,;d,) > R, (4, 4,;d,)
where
1
r —1r . n +r _E " " 1 + E r— | H (n i E) H —r+i——2
Ry (A A dy) = k, -)'e "(n+r-1) (@t +t ) -t Z (-1) T (no—i+r-1) (r—i)
" 1 . 1
" nz_g " " " I_l -I E nr—i mi
(nz _1) (tz) (tl + tz) I (tz) (t1')

o1 1
i . . " 2+ — 2+l j . i+
(7 +i-D"" 2 (@ +t)™ - @) (D (g r-n" 2§ () (0] + =)

1 .1 57} L {,1 1 ng _'
@n)2(ny -1 2 (N —1)" 2@+t (nf—1)" 2@2z)2(n; —1) " 2(ty)" G2 Z(t" t)"i]
et - . —reict , . ng—iJrr—l ny—i+r-1 . . . ni’+i+j—E
ro2=)Tr—i)  2)te(n—i+r-1) 2 € (n+i+j-1) 2
1 , 1 ;1 i L L
i 2o~ 2 -1 2(t)r-i = B (R R
1 -
r n +r—5 " e why r+§ r—ig—r - (=i r-
R id) =k | CDE T =Y : (@+)"™ - ™) Z (1) (r .) (i r-1)
n —= p i+
- 2@n e+t i Z(w“'(t")

”+i*1 - . " nf+r—1 n/+r-1 . ; n;+
(Mg +i=D" 2@+t D™ (DEDTer (+r-1" 2 NN (7 + -1
1 1 1 1 1

- s i - 3 o i+ e
@m)2(ny -1 2(n 1) 2@+t (nf—1)" 2@x)2(ny -1 2" TEj (] +tg)m)

e i i L g it
(- 2(t">“ze-f<n"—n+r N @ i o
1 1
2 a2 (g - 2y - T e

The optimal posterior expected loss under subopml is R™ = min(R1,R™2)
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4- The Suboptimal Procedure(subopm?)

A Bayesian suboptimal scheme is proposed with decision criteria based on the posterior probabilities of

2 and /12, the posterior Bayes estimator of &,(i =1,2) with respect to the gamma posterior

n
distribution is given by E(47x)= t_'l' . This is prompted by the need for a quick , easy procedure , to
i
select the better of two poisson populations , which allow for the incorporation of information about the
parameters with sampling information , ignoring the decision-theoretic structure and indifference-zone
formulation . Suppose n observations are taken from each population and are assumed to be
independent , this procedure is given as follows:

Select 0, : 4, > 4, if ZA,l >ﬂA,2
and
select A <A if A <A,
for the sake of risk comparison , we use the following procedure
let R'=R/(4,4;d) if 4, >4, ,
R'=R,(4,Aid,) if 4 <4,

so R" will be the optimal risk using subopm?2

5- Comparisons and Discussion Under Posterior Expected Losses

This section contains some numerical results about the efficiency of these schemes relative to opm for
the constant loss function , various N and various priors all the programs in this paper are applied by
Microsoft Matlab ver 6.5 .

From table (1) we note that , the posterior expected loss for the suboptimal 1 procedure is less than the
posterior expected loss for the optimal and suboptimal 2 procedures . Also it is clear from the table that
as N increases , the Bayes risk decreases in all schemes, and if we increases the prior parameters the
Bayes risk decreases in all schemes .

5.5- The Algorithms for the opm and subopm] procedures
1-Specify prior parameters , n/,t",i =12 , sample size n, parameters for populations 4 >0

1%
and constant losses k; .

n
2-Generate a random sample of size n from populations IT;,(X; ,X;,,-..,X, ) and find s= % Xij by
j=1

using the function poissrnd in the Microsoft Matlab ver 6.5 .

3-Calculate the posterior parameter for populations IT;,i =12, n'=n/+n , t'=t/+s

4-Find the posterior expected loss for decision d; and d; (R, (4, 4,;d,), R, (4, 4,;d,) for opm procedure

and R1(4,4,;d,),R2(4,4,;d,) for subopm1 procedure ) .

85



Journal of Kerbala University , Vol. 6 No.1 Scientific .March. 2008

Ky =k, =5,4=(9,6)

Prior prob.

v v n opm Subopm1 Subopm?2
(n,t).(n,,t,)
10 0.8283 0.7601 0.8283
(3,5),(3,5) 20 0.4613 0.4243 0.4613
30 0.2718 0.2459 0.2718
10 0.7007 0.6468 0.7007
(6,5),(6,5) 20 0.3951 0.3624 0.3951
30 0.2345 0.2106 0.2345
10 0.6638 0.6134 0.6638
(7,5),(7,5) 20 0.3755 0.3440 0.3755
30 0.2233 0.2001 0.2233
10 0.5970 0.5523 0.5970
(9,5),(9,5) 20 0.3395 0.3102 0.3395
30 0.2026 0.1805 0.2026
Table (11)
Comparisons of the schemes using Bayes risk under constant loss function for various prior and
various N
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