ON JORDAN*- CENTRALIZERS ON GAMMA RINGS WITH INVOLUTION

Rajaa C.Shaheen

Department of Mathematics, College of Education, University of Al-Qadisiya, Al-Qadisiya, Iraq.
 ABSTRACT
Let M be a 2-torsion free Γ-ring with involution satisfies the condition $\boldsymbol{x} \alpha \boldsymbol{y} \beta z=x \beta y \alpha$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.an additive mapping $*: M \rightarrow$ Mis called Involution if and only if $(a \alpha b)^{*}=b^{*} \alpha a *$ and ($\left.a^{*}\right)^{*}=a$. In section one of this paper, we prove if M be a completely prime Γ-ring and $T: M \rightarrow M$ an additive mapping such that $T(a \alpha a)=T(a) \alpha a^{*}$ (resp., $\left.T(a \alpha a)=a^{*} \alpha \quad T(a)\right)$ holds for all $a \in M, \alpha \in \Gamma$.Then T is an anti- left *centralizer or M is commutative (res., an antiright* centralizer or M is commutative) and so every Jordan* centralizer on completely prime Γ-ring M is an anti- *centralizer or M is commutative. In section two we prove that every Jordan* left centralizer (resp., every Jordan* right centralizer) on Γ-ring has a commutator right non-zero divisor(resp., on Γ-ring has a commutator left non-zero divisor)is an anti- left *centralizer(resp., is an antiright *centralizer) and so we prove that every Jordan* centralizer on Γ-ring has a commutator non -zero divisor is an anti-* centralizer .

Key wards : Γ-ring, in volution, prime Γ-ring,semi-prime Γ-ring, left centralizer, Left* centralizer, Right centralizer, Right* centralizer, centralizer, Jordan *centralizer.

1-INTRODUCTION

Throughout this paper, M will represent Γ-ring with center Z .In [8] B.Zalar proved that anyJordan left (resp.,right) centralizer on a 2-torsion free semi-prime ring is a left (resp.,right)Centralizer. In [3] authors proved that anyJordan left (resp.,right) σ - centralizer on a 2-torsion free R has a commutator right (resp., left) non- zero divisor is a left (resp.,right) σ-Centralizer. In [7] Vukman proved that if R is2-torsion free semi-prime ring and $T: R \rightarrow R$ be an additive mapping such that $2 T\left(x^{2}\right)=T(x) x+x T(x)$ holds for all $x, y \in R$.Then T is left and right centralizer.In [6]Rajaa C.Shaheen defined Jordan centralizer on Γ-ring and showed that the existence of a non-zero Jordan centralizer Ton a 2-torsion free completely prime Γ-ring M which satisfies the condition $x \alpha y \beta z=x \beta y z$ for all $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \boldsymbol{M}$ and $\alpha, \beta \in \Gamma$ implies either \boldsymbol{T} is centralizer or M is commutative Γ ring. We should mentioned the reader that the concept of Γ-ring was introduced by Nobusawa[5] and generalized by Barnes[1],as follows

Let M and Γ be additive abelian groups, M is called a Γ-ring iffor any x, y, z $\in M$ and $\alpha, \beta \in \Gamma$,the following conditions are satisfied
(1) $x \alpha y \in M$
(2)(x+y) $\alpha z=x \alpha z+y \alpha z$
$\boldsymbol{x}(\alpha+\beta) z=x \alpha z+x \beta z$
$x \alpha(y+z)=x \quad \alpha y+x \alpha z$
(3) $(x \alpha y) \beta z=x \quad \alpha(y \beta z)$
many properties of Γ-ring were obtained by many research such as [2]

Let A, B be subsets of $a \Gamma$-ringM and Λa subset of Γ we denote $A \Lambda B$ the subset of M consisting of all finite sum of the form $\sum a_{i} \lambda_{i} b_{i}$ where $a_{i} \in \boldsymbol{A}, b_{i} \in \boldsymbol{B}$ and $\lambda_{i} \in \Lambda$.Aright ideal(resp.,left ideal) of $a \Gamma$-ring M is an additive subgroup I of M such that $I \Gamma M \subset I(r e s p ., M \Gamma I \subset I)$.If I is a right and left ideal inM,then we say that I is an ideal.M is called a 2-torsion free if $2 x=0$ implies $x=0$ for all $x \in M . A \Gamma$ ringM is called prime if $a \Gamma M \Gamma b=0$ implies $a=0$ or $b=0$ and M is called completely prime if $a \Gamma b=0$ implies $a=0$ or $b=0(a, b \in M)$,Since $a \Gamma b \Gamma a \Gamma b \subset a \Gamma M \Gamma b, t h e n$ every completely prime Γ-ring is prime. $A \Gamma$-ring M is called semi-prime if $a \Gamma M \Gamma a=0$ implies $a=0$ and M is called completely semi-prime if a Γ a=0 implies $a=0(a \in M)$

Let R be a ring,. A left(right) centralizer of R is an additive mapping $T: R \rightarrow R$ which satisfies $\mathrm{T}(\mathrm{xy})=\mathrm{T}(\mathrm{x}) \mathrm{y}(\mathrm{T}(\mathrm{xy})=\mathrm{x} \mathrm{T}(\mathrm{y}))$ for all $\mathrm{x}, \boldsymbol{y} \in \boldsymbol{R}$. A Jordan centralizer be an additive mapping T which satisfies $T(x \circ y)=T(x) \circ y=x \circ T(y)$.
A Centralizer of R is an additive which is both left and right centralizer.An easy computation shows that every centralizer is also a Jordan centralizer.Many Papers work about the problem every Jordan centralizer be centralizer such as in[8] .In [6] Rajaa work this problem on some kind of Γ-ring.In this paper we define Jordan *centralizer on Γ-ring with involution* and study this concept on some kind of Γ ring with involution.
Now, we shall give the following definition which are basic in this paper.
Definition1.2:- Let M be a Γ-ring with involution* and let $T: M \rightarrow M$ be an additive map ,T is called
Left* centralizer of M, if for any $a, b \in M$ and $\alpha \in \Gamma$, the following condition satisfy $T(a \alpha b)=T(a) \alpha b^{*}$,
$\underline{\text { Right* centralizer }}$ of M,if for any $a, b \in M$ and $\alpha \in \Gamma$, the following condition satisfy
$\boldsymbol{T}(a \alpha b)=a^{*} \alpha \boldsymbol{T}(b)$,
Jordan left* centralizer if for all $a \in M$ and $\alpha \in \Gamma$, the following condition satisfy $T(a \alpha a)=T(a) \alpha a^{*}$
Jordan Right* centralizer if for all $a \in M$ and $\alpha \in \Gamma$, the following condition satisfy $T(a \alpha a)=a^{*} \alpha T(a)$
Jordan* centralizer of M,if for any $a, b \in M$ and $\alpha \in \Gamma$, the following condition satisfy $\boldsymbol{T}(\boldsymbol{a} \alpha b+b \alpha a)=T(a) \alpha b^{*}+b^{*} \alpha \boldsymbol{T}(a)=a^{*} \alpha \boldsymbol{T}(b)+\boldsymbol{T}(b) \alpha a^{*}$.
Now we shall prove the following Lemmas which are necessarily to prove our main result in this paper.
Lemma 1.3:-Let M be a 2-torsion free Γ-ring with involution* and let $T: M \rightarrow M$ be an additive mapping which satisfies $T(a \alpha a)=T(a) \alpha a^{*},\left(r e s p ., T(a \alpha a)=a^{*} \alpha\right.$ $\boldsymbol{T}(a))$ for all $a \in M$ and $\alpha \in \Gamma$, then the following statement holds for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$,
(i) $\quad \boldsymbol{T}(\boldsymbol{a} \alpha b+b \alpha a)=T(a) \alpha b^{*}+\boldsymbol{T}(b) \alpha a^{*}$ $\left(\right.$ resp., $\left.\boldsymbol{T}(\boldsymbol{a} \alpha b+b \alpha a)=a^{*} \alpha \boldsymbol{T}(b)+b * \alpha T(a)\right)$
(ii) Especially if M is 2-torsion free and $a \alpha b \beta c=a \beta b \alpha c$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$ then $\boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{a})=\boldsymbol{T}(\boldsymbol{a}) \alpha \boldsymbol{b}^{*} \beta \boldsymbol{a}^{*}\left(\right.$ resp., $\left.\boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{a})=\boldsymbol{a}^{*} \alpha \boldsymbol{b}^{*} \beta \boldsymbol{T}(\boldsymbol{a})\right)$
(iii) $\quad \boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b} \boldsymbol{c}+\boldsymbol{c} \alpha \boldsymbol{b} \beta \boldsymbol{a})=\boldsymbol{T}(\boldsymbol{a}) \alpha \boldsymbol{b}^{*} \beta \boldsymbol{c}^{*}+\boldsymbol{T}(\boldsymbol{c}) \alpha \boldsymbol{b}^{*} \beta \boldsymbol{a}^{*}$. $\left(\right.$ resp., $\boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b} \boldsymbol{c}+\boldsymbol{c} \alpha \boldsymbol{b} \beta \boldsymbol{a})=\boldsymbol{a}^{*} \alpha \boldsymbol{b}^{*} \beta \boldsymbol{T}(\boldsymbol{c})+\boldsymbol{c}^{*} \alpha \boldsymbol{b}^{*} \beta \boldsymbol{T}(\boldsymbol{a})$

Proof:-(i) Since $T(a \alpha a)=T(a) \alpha a^{*}$ for all $a \in M$ and $\alpha \in \Gamma$,

Replace a by a+b in (1),we get
$T(a \alpha b+b \alpha a)=T(a) \alpha b^{*}+T(b) \alpha a^{*}$.
(ii) by replacing b by a $\beta \boldsymbol{b}+\boldsymbol{b} \beta \boldsymbol{a}, \beta \in \Gamma$
$\boldsymbol{W}=\boldsymbol{T}(\boldsymbol{a} \alpha(\boldsymbol{a} \beta \boldsymbol{b}+\boldsymbol{b} \beta \boldsymbol{a})+(\boldsymbol{a} \beta \boldsymbol{b}+\boldsymbol{b} \beta \boldsymbol{a}) \alpha \boldsymbol{a})$
$=T(a) \alpha(a \beta b+b \beta a)^{*}+\boldsymbol{T}(a \beta b+b \beta a) \alpha a^{*}$
$=\boldsymbol{T}(\boldsymbol{a}) \alpha(\boldsymbol{a} \beta \boldsymbol{b})^{*}+\boldsymbol{T}(\boldsymbol{a}) \alpha(\boldsymbol{b} \beta \boldsymbol{a})^{*}+\left(\boldsymbol{T}(\boldsymbol{a}) \beta \boldsymbol{b}^{*}+\boldsymbol{T}(\boldsymbol{b}) \beta a^{*}\right) \alpha a^{*}$
Since * is involution,then
$\boldsymbol{W}=\boldsymbol{T}(\boldsymbol{a}) \alpha\left(b^{*} \beta a^{*}\right)+\boldsymbol{T}(a) \alpha\left(a^{*} \beta b^{*}\right)+\boldsymbol{T}(a) \beta b^{*} \alpha a^{*}+\boldsymbol{T}(b) \beta a^{*} \alpha a^{*}$
Since $a \alpha b \bar{c}=a \beta b \alpha c$, then
$\boldsymbol{W}=\boldsymbol{T}(\boldsymbol{a}) \alpha\left(a^{*} \beta b^{*}\right)+2 \boldsymbol{T}(a) \alpha\left(b^{*} \beta a^{*}\right)+\boldsymbol{T}(b) \beta a^{*} \alpha a^{*}$
On the other hand
$W=T(a \alpha(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha a)$
$=T(\boldsymbol{a} \alpha(\boldsymbol{a} \beta \boldsymbol{b})+\boldsymbol{a} \alpha(\boldsymbol{b} \beta \boldsymbol{a})+(\boldsymbol{a} \beta \boldsymbol{b}) \alpha \boldsymbol{a}+(\boldsymbol{b} \beta \boldsymbol{a}) \alpha \boldsymbol{a})$
$=T(a \alpha a \beta b+b \beta a \alpha a)+2 T(a \alpha b \beta a)$
$=\boldsymbol{T}(\boldsymbol{a}) \alpha a^{*} \beta b^{*}+\boldsymbol{T}(b) \beta a^{*} \alpha a^{*}+2 \boldsymbol{T}(\boldsymbol{a} \alpha b \beta a)$
By comparing these two expression of W, we get
2T($\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{a})=2 \boldsymbol{T}(\boldsymbol{a}) \alpha \boldsymbol{b}$ * $\beta \boldsymbol{a}^{*}$
Since M is 2-torsion free ,then
$\boldsymbol{T}(\boldsymbol{a} \alpha b \beta a)=\boldsymbol{T}(\boldsymbol{a}) \alpha \boldsymbol{b}^{*} \beta a^{*}$.
(iii)In (3) replace a by $a+c$,to get
$\boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{c}+\boldsymbol{c} \alpha \boldsymbol{b} \beta \boldsymbol{a})=\boldsymbol{T}(\boldsymbol{a}) \alpha \boldsymbol{b}^{*} \beta \boldsymbol{c}^{*}+\boldsymbol{T}(\boldsymbol{c}) \alpha \boldsymbol{b}^{*} \beta \boldsymbol{a}^{*}$.
Theorem 1.4:- Let M be a 2-torsion free completely prime Γ-ring which satisfy the condition $x \alpha y z=x \beta y \alpha z$ for all $x, y, z \in M, \alpha, \beta \in \Gamma$, and let T: $M \rightarrow M$ be an additive mapping which satisfies $T(a \alpha a)=T(a) \alpha a^{*}$, for all $a \in M$ and $\alpha \in \Gamma$,then $T(a \alpha b)=T(b) \alpha a^{*}$, for all $a, b \in M$ and $\alpha \in \Gamma$ or M is commutative Γ ring.
Proof:-By [Lemma 1.3,(iii)], we have
$\boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{c}+\boldsymbol{c} \alpha \boldsymbol{b} \beta \boldsymbol{a})=\boldsymbol{T}(\boldsymbol{a}) \alpha \boldsymbol{b}^{*} \beta \boldsymbol{c}^{*}+\boldsymbol{T}(\boldsymbol{c}) \alpha \boldsymbol{b}^{*} \beta \boldsymbol{a}^{*}$
Replace chy b αa
$\boldsymbol{W}=\boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b} \beta(\boldsymbol{b} \alpha \boldsymbol{a})+(\boldsymbol{b} \alpha \boldsymbol{a}) \alpha \boldsymbol{b} \beta \boldsymbol{a})$
$=\boldsymbol{T}(\boldsymbol{a}) \alpha \boldsymbol{b}^{*} \beta \boldsymbol{a}^{*} \alpha \boldsymbol{b}^{*}+\boldsymbol{T}(\boldsymbol{b} \alpha a) \alpha \boldsymbol{b}^{*} \beta \boldsymbol{a}^{*}$
On the other hand
$\boldsymbol{W}=\boldsymbol{T}((\boldsymbol{a} \alpha \boldsymbol{b}) \beta(\boldsymbol{b} \alpha \boldsymbol{a})+(\boldsymbol{b} \alpha \boldsymbol{a}) \alpha(\boldsymbol{b} \beta \boldsymbol{a}))$
$=\boldsymbol{T}(\boldsymbol{a}) \alpha b^{*} \beta b^{*} \alpha a^{*}+\boldsymbol{T}(b \alpha a) \beta a^{*} \alpha b^{*}$
By comparing these two expression of W, we get
$\boldsymbol{T}(\boldsymbol{b} \alpha \boldsymbol{a}) \beta(\boldsymbol{a} \alpha b-b \alpha a)^{*}+\boldsymbol{T}(\boldsymbol{a}) \alpha b^{*} \beta(b \alpha a-a \alpha b)^{*}=\mathbf{0}$
$\boldsymbol{T}(\boldsymbol{b} \alpha a) \beta(\boldsymbol{a} \alpha \boldsymbol{b}-\boldsymbol{b} \alpha)^{*}-\boldsymbol{T}(\boldsymbol{a}) \alpha \boldsymbol{b}^{*} \beta(\boldsymbol{a} \alpha \boldsymbol{b}-\boldsymbol{b} \alpha \boldsymbol{a})^{*}=\mathbf{0}$
(T(b $\left.\alpha \boldsymbol{a})-\boldsymbol{T}(\boldsymbol{a}) \alpha \boldsymbol{b}^{*}\right) \beta(\boldsymbol{a} \alpha \boldsymbol{b}-\boldsymbol{b} \alpha \boldsymbol{a})^{*}=\mathbf{0}$.
Since M is completely prime Γ-ring ,then
either $T(b \alpha a)-T(a) \alpha b^{*}=0$ or $(a \alpha b-b \alpha a)=0$
if $T(b \alpha a)-T(a) \alpha b^{*}=0$ then $T(b \alpha a)=T(a) \alpha b^{*}$ so T is an anti-left *centralizers. and if $a \alpha b-b \alpha a=0$ for all $a, b \in M$ and $\alpha \in \Gamma$, then M is commutative Γ-ring \square
Theorem 1.5:- Let M be a 2-torsion free completely prime Γ-ring which satisfy the condition $x \alpha y z=x \beta y \alpha z$ for all $x, y, z \in M, \alpha, \beta \in \Gamma$, and and let $T: M \rightarrow M$ be an additive mapping which satisfies $T(a \alpha a)=a^{*} \alpha T(a)$ for all $a \in M$ and
$\alpha \in \Gamma$,then $T(a \alpha b)=b^{*} \alpha T(a)$ for all $a, b \in M$ and $\alpha \in \Gamma$ or M is commutative Γ ring.
Proof:- From[Lemma 1.3,(iii)], we have for all a,b,c \in M and $\alpha, \beta \in \Gamma$,
$\boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{c}+\boldsymbol{c} \alpha \boldsymbol{b} \beta \boldsymbol{a})=a^{*} \alpha \boldsymbol{b} \beta \boldsymbol{T}(\boldsymbol{c})+\boldsymbol{c}^{*} \alpha \boldsymbol{b}^{*} \beta \boldsymbol{T}(\boldsymbol{a})$.
In (6) replace \boldsymbol{c} by a α b, then
$W=T(a \alpha b \beta(a \alpha b)+(a \alpha b) \alpha b \beta a)$
$=a^{*} \alpha b^{*} \beta \boldsymbol{T}(a \alpha b)+b^{*} \alpha a^{*} \beta b^{*} \alpha \boldsymbol{T}(a)$
on the other hand
$\boldsymbol{W}=\boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b} \quad \beta(\boldsymbol{a} \alpha \boldsymbol{b})+(\boldsymbol{a} \alpha \boldsymbol{b} \quad \beta(b \alpha a))$
$=b^{*} \alpha a^{*} \beta \boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b})+a^{*} \alpha b^{*} \beta \boldsymbol{b}^{*} \alpha \boldsymbol{T}(\boldsymbol{a})$
by comparing these two expression of W, we get $(a \alpha b-b \alpha a) * \beta\left(T(a \alpha b)-b^{*} \alpha T(a)\right)=0$.
since M is completely prime Γ-ring,then
either $\left(T(b \alpha a)-b^{*} \alpha T(a)\right)=0 \Rightarrow T(a \alpha b)=b^{*} \alpha T(a)$ and so T is an anti- right *centralizers or $a \alpha b-b \alpha a=0 \Rightarrow a \alpha b=b \alpha a \Rightarrow M$ is commutative Γ-ring \square
Corollary 1.6:- Every Jordan* centralizer of 2-torsion free completely prime Γ ring M which satisfy the condition $x \alpha y z=x \beta y \alpha z$ for all $x, y, z \in M, \alpha, \beta \in \Gamma$, is an anti-*centralizer on M or M is commutative.

2-JORDAN* CENTRALIZERS ON SOME GAMMA RING

Theorem 2.1:- Let M be a 2-torsion free Γ-ring which satisfy the condition $\boldsymbol{x} \alpha \boldsymbol{y} \beta z=\boldsymbol{x} \beta \boldsymbol{y} \alpha z$ for all $\boldsymbol{x}, \mathrm{y}, z \in \boldsymbol{M}, \alpha, \beta \in \Gamma$ and has a commutator right non-zero divisor and let T:M \rightarrow M be an additive mapping which satisfies $\boldsymbol{T}(\boldsymbol{a} \alpha a)=\boldsymbol{T}(a) \alpha a^{*}$ for all $a \in M$ and $\alpha \in \Gamma$, then $T(a \alpha b)=T(b) \alpha a^{*}$ for all $a, b \in M$ and $\alpha \in \Gamma$.
Proof:- from (5), we have
(T(b $\left.\alpha a)-\boldsymbol{T}(\boldsymbol{a}) \alpha \boldsymbol{b}^{*}\right) \beta(\boldsymbol{a} \alpha \boldsymbol{b}-\boldsymbol{b} \alpha a)^{*}=\mathbf{0}$
if we suppose that
$\delta(b, a)=T(b \alpha a)-T(a) \alpha b^{*}$ and $[a, b]^{*}=(a \alpha b-b \alpha a)^{*}$
then $\delta(b, a) \beta[a, b]^{*}=0$ for all $a, b \in M$ and $\alpha, \beta \in \Gamma$
Since M has a commutator right non-zero divisor ,then $\exists x, y \in M, \alpha \in \Gamma$ such that if for every $\boldsymbol{c} \in M, \beta \in \Gamma$
$\boldsymbol{c} \beta[x, y]=0 \Rightarrow \boldsymbol{c}=\mathbf{0}$
since * is involution, we have $\delta(y, x) \beta[x, y]=0$ and so $\delta(x, y)=0$.
replace a by $a+x$
$\delta(b, a+x) \beta[a+x, b] *=0$ and so by () and ()
$\delta(b, x) \beta[a, b]^{*}+\delta(b, a) \beta[x, b]^{*}=0$.
Now replace b by b+y
$\delta(b+y, x) \beta[a, b+y]^{*}+\delta(b+y, a) \beta[x, b+y]^{*}=0$
and so by (10) and (11), we get
$\delta(b, x) \beta[a, b]^{*}+\delta(y, x) \beta[a, b]^{*}+\delta(b, x) \beta[a, y]^{*}+\delta(y, x) \beta[a, y]^{*}+$
$\delta(b, a) \beta[x, b]^{*}+\delta(y, a) \beta[x, b]^{*}+\delta(b, a) \beta[x, y]^{*}+\delta(y, a) \beta[x, y]^{*}=0$
by (11), we get
$\delta(a, b) \beta[x, y]^{*}-\boldsymbol{\delta}(x, y) \beta[a, y]^{*}=\mathbf{0}$
then
$\delta(a, b) \beta[x, y]^{*}=0$, and so $\delta(a, b)=0$ for all $a, b \in M$ and $\alpha \in \Gamma$
$T(a \alpha b)=T(b) \alpha a^{*} \Rightarrow T$ Is anti- left $*$ centralizer of M.
Theorem 2.2:- Let M be a 2-torsion free Γ-ring with involution which satisfy the condition $\boldsymbol{x} \alpha \boldsymbol{y} \beta z=\boldsymbol{x} \beta \boldsymbol{y} \alpha z$ for all $\boldsymbol{x}, \mathrm{y}, z \in M, \alpha, \beta \in \Gamma$ and has a commutator left non-zero divisor and let $T: M \rightarrow M$ be an additive mapping which satisfies
$\boldsymbol{T}(\boldsymbol{a} \alpha a)=a^{*} \alpha T(a)$ for all $a \in M$ and $\alpha \in \Gamma$, then $T(a \alpha b)=a^{*} \alpha T(b)$ for all $a, b \in M$ and $\alpha \in \Gamma$.
Proof:- From[Lemma 1.3,(iii)],we have
$\boldsymbol{T}(\boldsymbol{a} \alpha b \beta c+c \alpha b \beta a)=a^{*} \alpha b^{*} \beta \boldsymbol{T}(c)+c^{*} \alpha b^{*} \beta \boldsymbol{T}(a)$.
In (12) replace c by b a,then
$\boldsymbol{W}=\boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b} \beta(b \alpha a)+(b \alpha a) \alpha b \beta a)$
$=a^{*} \alpha \boldsymbol{b}^{*} \beta \boldsymbol{T}(\boldsymbol{b} \alpha \boldsymbol{a})+\boldsymbol{b} * \alpha \boldsymbol{a} * \beta \boldsymbol{b} * \alpha \boldsymbol{T}(\boldsymbol{a})$
on the other hand
$\boldsymbol{W}=\boldsymbol{T}(\boldsymbol{a} \alpha(\boldsymbol{b} \beta \boldsymbol{b}) \alpha \boldsymbol{a}+(\boldsymbol{b} \alpha \boldsymbol{a}) \alpha(\boldsymbol{b} \beta \boldsymbol{a}))$
$=a^{*} \alpha \boldsymbol{b}^{*} \beta \boldsymbol{b}^{*} \alpha \boldsymbol{T}(\boldsymbol{a})+b^{*} \alpha \boldsymbol{a}^{*} \beta \boldsymbol{T}(\boldsymbol{b} \alpha \boldsymbol{a})$
by comparing these two expression of W, we get
$a^{*} \alpha b^{*} \beta\left(\boldsymbol{T}(\boldsymbol{b} \alpha a)-b^{*} \alpha \boldsymbol{T}(\boldsymbol{a})\right)-b^{*} \alpha a^{*} \beta\left(\boldsymbol{T}(\boldsymbol{b} \alpha a)-b^{*} \alpha \boldsymbol{T}(a)\right)=0$
then if we suppose $B(b, a)=\left(T(b \alpha a)-b^{*} \alpha T(a)\right)$
$[a, b] * \beta B(b, a)=[a, b] * \beta \boldsymbol{B}(a, b)=0$ for all $a, b \in M, \alpha$,
$\beta \in \Gamma$
Since M has a commutator left non-zero divisor then $\exists x, y \in M, \alpha \in \Gamma$ such that if for every $\boldsymbol{c} \in M, \beta \in \Gamma,[x, y] \beta \boldsymbol{c}=\mathbf{0} \Rightarrow \boldsymbol{c}=\mathbf{0}$
then by (13),we have
$[x, y] \beta B(x, y)=0 \Rightarrow \boldsymbol{B}(x, y)=0$.
in (13) replace a by $a+x$
$[\boldsymbol{a}+\boldsymbol{x}, \boldsymbol{b}] * \beta \boldsymbol{B}(\boldsymbol{a}+\boldsymbol{x}, \boldsymbol{b})=\mathbf{0}$
then by (13)
$[\boldsymbol{x}, \boldsymbol{y}] * \beta \quad \boldsymbol{B}(\boldsymbol{a}, \boldsymbol{b})+[\boldsymbol{a}, \boldsymbol{b}] * \beta \quad \boldsymbol{B}(\boldsymbol{x}, \boldsymbol{b})=\mathbf{0}$.
Now replace b by b+y
$[x, b+y] * \beta \boldsymbol{B}(a, b+y)+[a, b+y] * \beta \quad \boldsymbol{B}(x, b+y)=\mathbf{0}$
then by using (14) and (15), we get
$[x, y] * \beta \boldsymbol{B}(\boldsymbol{a}, \boldsymbol{b})=\mathbf{0}$
and since $[x, y]$ is a commutator left non-zero divisor then
$B(a, b)=0 \Rightarrow T(a \alpha b)=a^{*} \alpha T(b)$ which is mean that T is an anti- right *centralizer
Corrolary2.3:- Let M be a 2-torsion free Γ-ring with involution which satisfy the condition $x \alpha y \beta z=x \beta y z$ for all $x, y, z \in M, \alpha, \beta \in \Gamma$, has a commutator nonzero divisor and let T:M \rightarrow M be a Jordan *centralizer then T is *centralizer \square

Acknowledgment:-the authors grateful to the referee for several suggestions that helped to improved the final version of this paper .

References

[1]W.E.Barnes"On the Γ-ring of Nabusawa",PacificJ.Math.,18(1966),411-422. [2]Y.Ceven, 'Jordan left derivations on completely prime Gamma rings'",Fenbilimleri Dergisi(2002)cilt 23say12.
[3]W.Cortes and C.Haetinger'On Lie ideals and left Jordan σ - centralizers of 2torsion free rings'",.Math.J.Okayama Univ.51(2009),111-119.
[4]I.N.Herstein''Topics in ring theory 'University of Chicago press,1969.
[5]N. Nabusawa"On a generalization of the ring theory" ,Osaka J.Math .,1(1964).
[6]Rajaa C.Shaheen"On Centralizers on Some Gamma Ring"Journal Al-Qadisiya for pure science",12,2,(2007)219-229
[7] J.Vukam"An identity related to centralizers in semi-prime rings'", Comment .Math.Univ.Carolinae,40,3(1999)447-456.
[8]B.Zalar'On centralizers of semi-prime rings" Comment.Math.Univ.Carolinae 32(1991)609-614

