Indirect spectrophotometric method for the determination of bisacodyl in commercial dosage forms and in environmental water samples

Nief Rahman Ahmad*, Nawal A. Majid**

*Department of Environmental Technology, College of Environmental, University of Mosul, Mosul, Iraq **The State Company for Drug Industries and Medical Appliances, Mosul, Iraq.

Received	Accepted
27.3.2011	3.7.2011

ABSTRACT

Objective: A simple, sensitive, and accurate indirect spectrophotometric method for the determination of bisacodyl in pure form and in some of its pharmaceutical preparations.

Method: The method is based on the oxidation of bisacodyl by iron (III), and subsequent complexation of iron (II) with o-phenanthroline.

Results: Forming a red-colored complex (ferroin) having the maximum absorbance at 510 nm. Beer's law is obeyed in the concentration range of 0.5-5 μ g/ml. The molar absorptivity and sandell's sensitivity were 1.55×10^4 L.mol⁻¹.cm⁻¹ and 0.0233μ g.cm⁻² respectively. The relative standard deviation (RSD) was less than 1.5 (n=11). The limits of detection and quantitation are 0.083 and 0.25 μ g.ml⁻¹ respectively.

Conclusion: The method is applied successfully for determination of bisacodyl in environmental water samples and in some pharmaceutical formulations (tablets and suppositories). A statistical comparison of these results with those of official method shows good agreement and indicates no significant difference in the precision.

الخلاصة الهدف: وصف طريقة بسيطة وحساسة وذات دقة عالية لتقدير البسكودايل في حالته النقية وفي بعض مستحضراته الصيدلانية. **طريقة العمل**: تعتمد الطريقة على أكسدة البسكودايل بواسطة الحديد الثلاثي حيث يكون ناتج التفاعل الحديد الثنائي والذي بدوره يتفاعل مع كاشف اورثوفينانثرولين (الفروين)

النتائج: تكوين معقد أحمر اللون له اقصى امتصاص عند الطول الموجي ١٠٥ نانوميتر. وقد لوحظ ان قانون بيير يسري على الكميات التي تتراوح بين ٥٠٠-٥ جزء بالمليون وبامتصاصية مولارية ١٠٥ ×١٠ لتر مول أسم⁻¹ وبدلالة ساندل (دلالة الحساسية) ٢٣٣٠ مايكروغرام مل وان الانحراف القياسي النسبي للطريقة اقل من ١٠٥ وان حد الكشف والحد الكمي كان ١٠٣٠ و ٢٠٠ مايكروغرام مل على التوالي.

ا**لاستُنتاج:** طبقَت الطريقَة بنجاح لتقدير البسكودايل في نماذج بيئية (نماذج مياه) وفي مستحضراته الدوائية (حبوب وتحاميل) كما اختبر نجاح الطريقة بمقارنتها مع الطريقة القياسية الدستورية المعتمدة باستخدام اختباري(F,t) عند حدود ثقة ٩٥% مما يدل على صلاحية التطبيق التحليلي للطريقة.

B isacodyl is 4,4' (pyrid - 2 - yl methylene) bis (phenyl acetate) [$C_{22}H_{19}NO_4 = 361.4$] is a laxative used for the treatment of constipation, for evacuation of the colon before radiological examination of the abdomen, or endoscopy, and before or after surgical operations. It has little or no action on the small intestine. Doses

of 5 to 10 milligrams may be given by mouth and act within 6 to 12 hours. Suppositories of 10 milligrams given by rectum act within one hour. Children under 10 years may be given 5 milligrams by mouth or by rectum¹⁻⁴.

The literature survey reveals that only few methods have been reported for determination of Bisacodyl in pure form and in pharmaceutiacal formulations⁵⁻¹¹. Official method includes potantiometric titration for pure form and UV spectrophotometric method for tablets and suppositories⁵.

The spectrophotometric method include charge transfer and ion-pair complexation reaction⁶. Other methods reported for determination of bisacodyl like stability-indicating methods⁷, high-performance liquid chromatography⁸, high performance thin-layer chromatography⁹, memberane sensor¹⁰ and square-wave voltammetry¹¹. The present work describes a new, simple indirect. spectrophotometric method for the determination of bisacodyl in pure form, pharmaceutical formulations and in water samplels. The method is based on the reaction of drug with ferric chloride and 1,10-phenanthroline at pH 3 resulting in the formation of ferroin, which absorbs maximally at 510 nm.

Experimental

Apparatus

Spectro-scan 50 UV- visible (double beam) spectrophotometer with 1.0 cm quartz cells was used for absorption measurements, and Jenway 3310 pH meter was used.

Reagents

All chemical used were of analytical or pharmaceutical grade and distilled water was used throughout.

Bisacodyl stock solution (Nineveh drug industry,NDI): 100 ppm, this solution was prepared by dissolving 0.01 g of pure bisacodyl in 100 ml 0.01 N HCl solution.

Bisacodyl standard solution (25 ppm) $(6.9 \times 10^{-5} \text{ M})$, this solution was prepared by diluting 25 ml of the stock solution to 100 ml by 0.01 N HCl in a volumetric flask.

Ferric chloride solution: 0.1 %, this solution was prepared by dissolving 0.1 g of ferric chloride in 100 ml distilled water containing 2 ml of concentrated HNO₃.

1,10-phenanthroline solution: 1%, this solution was prepared by dissolving 1 g of 1,10-phenanthroline in 10 ml of ethanol, then the volume completed to 100 ml with distilled water.

Buffer solution (pH3), this solution was prepared by mixing 16.2 ml of 0.1 M chloroacetic acid with 8.8 ml of 0.1 M KOH, then the volume was completed to 100 ml with distilled water in a volumetric flask¹².

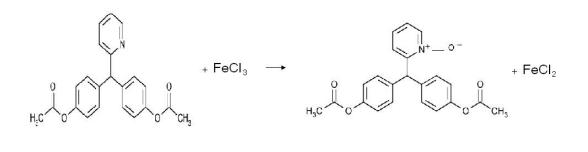
Recommended procedure

А known volume of sample containing 12.5-125 µg of bisacodyl was transferred into a 25 ml calibrated flasks followed by addition of 1 ml of ferric chloride solution then 2 ml of buffer solution pH3 .The solution was mixed well and then heated in a water bath at 70 \pm 2 °C for 15 min. The content of each flask were cooled at room temperature and 5 ml of 1,10 phenanthroline solution was added. Finally the solution was diluted to the mark with distilled water. the absorbance of the red-colored products was measured at 510 nm against a reagent blank.

Analysis of pharmaceutical formulations

Ten tablets of bisacodyl were finely powdered and portion equivalent to 2.5 mg of bisacodyl was weighed accurately and stirred well with 3×10 ml portions of chloroform. The residue was filtered using whatman No.42 filter paper. The filtrate was evaporated to dryness and the residual drug was dissolved in 0.01 N HCl and transferred to a 100 ml standard volumetric flask which was then filled to volume with 0.01 N HCl. Treate 3 ml of this solution as mentioned under recommended procedure.

Weight five suppositories, transfer to a porcelin dish, melt and allow to cool while stirring with glass rod. Accurately weight a portion of the melted suppository mass, equivalent to 2.5 mg of bisacodyl, extract with 3×10 ml portions of hot 0.01 N HCl, cool and the residue was filtered. The filtrate was transferred to a 100 ml standard volumetric flask which was then filled to volume with 0.01 N HCl. Treate 3 ml of this solution as described under recommended procedure.


Environmental water samples

Distilled and tap water samples (100ml) were fortified with 2.5 mg of bisacodyl. The fortified water samples

were analyzed as described under recommended procedure.

Results and discussion

The method is based on the oxidation of bisacodyl by iron III in presence of o-phenanthroline in acidic medium. The iron(II) formed was quantitively and rapidly converted to the stable tris (o-phenanthroline) iron II complex (ferroin) having an absorption maximum at 510 nm^{13,14} as shown in Figure 1, thus permitting the indirect determination of bisacodyl.

FeCl₂+3 O -Phenanthroline

Fe/ 3 O - Phenanthroline +2Cl-(red complex)

Figure 1. Oxidation of bisacodyl

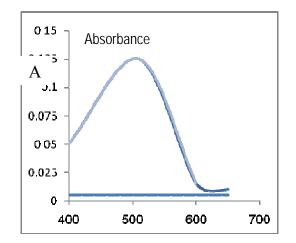


Figure 2. Absorbance spectra of A: bisacodyl. B: blank

Fig 2 Absorption spectra of A: 3µg /ml of bisacodyl with FeCl₃ and Ophenanthroline against reagent blank. B: blank against distilled water. The reaction variables were optimized by varving each variable while keeping other constants for obtaining maximum absorbance. The oxidation reaction was found to be quantitative in acidic medium, the pН 2.0-4.0 was considered optimum. Then, a pH of 3.0 was selected for the subsequent experiment. Four types of buffer solution pH3 of different composition15 have been tested for this purpose. Table [1] shows the results of this investigation.

1-3 ml of buffer B4 gave high sensitivity and 2 ml have been used for subsequent experiment. The effect of FeCl3 and o-phenanthroline amounts on the absorbance was investigated . A maximum and constant absorbance was found with 2 ml FeCl₃ and 5 ml of 1% o-phenanthroline, which were therefore adopted as being optimal. The color reaction occurred even at room temperature (25°C), though at higher temperature the color developed

more rapidly. the maximum absorbance was observed after 15 min of heating the solution at 70°C. A stemperature of 70°C and a reaction time of 15 min were selected for reproducible Under results. the experimental conditions described Beer's law is obeyed over the concentration range $0.5-5 \ \mu g.ml^{-1}$ (Figure 3). Linear regression equation: A=0.01+0.04C(r=0.999 n=10), where A is the absorbance and C is concentration in µg/ml. The apparent molar absorptivity was 1.55×10^4 l.mol⁻ ¹.cm⁻¹ and sandell's sensitivity was $0.0233 \ \mu g.cm^{-2}$. The limit of detection and quantification were evaluated as^{16} .

$$LOD = 3.3 \frac{S_0}{b}$$
 $LOQ = 3LOD$

Where b is the slope and S_0 is the standard deviation of the regression line. The limit of detection was 0.083 µg.ml⁻¹ and the limit of quantification as the lowest standard concentration which could be determined with acceptable accuracy, and precision was 0.25 µg.ml⁻¹.

·				
Ml of	Absorbance			
buffer	B_1	E	B ₂	B ₃
solution	B_4			
0.5	0.097	0.062	0.095	0.128
1	0.115	0.081	0.095	0.130
2	0.115	0.092	0.096	0.129
3	0.116	0.095	0.094	0.131
4	0.115	0.095	0.094	0.128
5	0.110	0.095	0.095	0.128
	D 00	0.0.0.1.1.1		4 11 01

Table 1. Effect of different buffers on the absorbance

B₁: Buffer of 0.1 glycine – 0.2 M HCl, B₂: Buffer of 0.2 M KCl – 0.2 M HCl

B₃: Buffer of 0.1 M citric acid – 0.2 M Na₂HPO₄, B₄: Buffer of 0.1 M chloroacetic acid – 0.1 M KOH

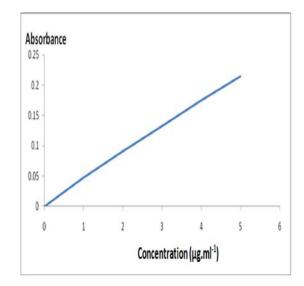


Figure 3. Calibration graph of bisacodyl

Table 2. Optical characteristics and statistical data for regression equation of the proposed method

Parameters	Value
$\lambda \max(nm)$	510
pH	3.0
Beer's law limits (μ g.ml ⁻¹)	0.5-5
Molar absorptivity (L.mol ⁻¹ .cm ⁻¹)	1.55×10^4
Limit of detection (μ g.ml ⁻¹)	0.083
Limit of quantification (μ g.ml ⁻¹)	0.25
Sandell's sensitivity (μ g.cm ⁻²)	0.0233
Correlation coefficient (r)	0.999
Regression equation $(A = +bc)$	
Intercept ()	0.01
Slope (b)	0.04
Recovery	100±0.89
Relative standard deviation (%)	< 1.5

Accuracy and precision

The accuracy and precision of the method were established by analyzing the pure drug solution at three different levels. The average recovery which is a measure of accuracy is $100 \pm 0.89\%$ revealing high accuracy of the method. The relative standard deviation (RSD), which is an indicator of precision, was less than 1.5%, the result are complied in Table 2.

Interferences

A study of interference of some

common excipients has been made during determination of 3.0 µg.ml⁻¹ bisacodyl. It was observed that starch, glucose and lactose could be tolerated with a maximum amount of 12.0 mg, 20 mg and 55 mg respectively. However the drug content from powdered tablets was extracted with chloroform, which completely eliminates any interference by the common excipients found in drug formulations. Thus, the stability

of the proposed method indicates that it can be used for the analysis of bisacodyl in drug formulations in the presence of various excipients found in the suppositories and tablets.

Application of the proposed method

The proposed method was successfully applied for the determination of bisacodyl in pharmaceutical formulations and environmental water samples.

Table 3 of the proposed method were compared with those of official method ⁵, using student t-test and variance ratio F-test at 95% confidence level. The calculated t and F values did not exceed the theoretical value

indicting that there was no significant difference between the precision of the proposed and official method. It was also evident from the table that the results of bias (lower and upper limits) based on recovery experiments of the proposed method are acceptable (with the range of \pm 2%). The Canadian protection branch health has recommended a bias of $\pm 2\%$ (Q_I= $Q_u =$ 0.98 and 1.02) in the pharmaceutical analysis, which was based on recovery experiment of the developed method¹⁷ and the results of water samples Table 4 showed that the recovery values obtained were close to 100%.

Pharmaceutical preparation	Amount of bisacodyl *		t	F		
	Proposed	method		official	value	value
	method					
Bisacodyl tablets (5mg/tab)	Amount		Amount		1.63	1.54
	recovery		recovery			
	5.03	100.6	4.97	99.4		
Bisacodyl tablets (10mg/tab)	10.05	100.5	10.02	100.2	1.55	1.48
Bisacodyl suppositories	5.01	100.2	5.02	100.4	1.98	1.18
(5mg\supp)						
Bisacodyl suppositories (10	10.05	100.5	10.08	100.5	1.88	1.26
mg\supp)						

Table 3. Determination of bisacodyl in pharmaceutical preparations

* Mean of ten determinations.

T values (n=10, at 95% confidence level tabulated value 2.262).

F values (n1 and n2 =10, at 95% confidence tabulated value 3.18).

Table 4.	Determination	of bisacodyl	in water samples
1 4010 4.	Determination	of bisacouy!	in water sumples

Water Samples	Added µg/ml	Found * µg/ml	Recovery %
Tap Water	0.3	0.302	101
	1.0	0.99	99.00
	2.5	2.47	98.88
Distilled Water	0.3	0.303	101
	1.0	0.98	98
	2.5	2.5	100

* mean value of six determinations

Table 5. Content uniformity testing of metformin hydrochloride tablets using the proposed method.

Parameter	% of the label claim
Tablet NO. 1	100.48
Tablet NO. 2	100.25
Tablet NO. 3	99.56
Tablet NO. 4	100.52
Tablet NO. 5	99.38
Tablet NO. 6	99.35
Tablet NO. 7	99.72
Tablet NO. 8	100.03
Tablet NO. 9	100.66
Tablet NO. 10	99.71
Mean (\bar{x})	100.73
% RSD	0.54
Max. allowed unit ¹⁸	±15%

Application of the method to content uniformity

The proposed method proved to be suitable for the content uniformity test, where a great number of assays on individual tablets are required. Data presented in Table 5 indicates that the proposed method can accurately and precisely quantitates bisacodyl in its commercially available tablets. The mean percentage (with RSD) of the labeled claim found in ten tablets was (0.54%) which fall within the content uniformity limits specified by the USP 30^{18} .

Conclusion

The proposed method was simple, accurate, precise, sensitive and low economical cost. Furthermore, the proposed method doesn't require elaboration of procedures, which are usually associated with chromatographic methods. The proposed method could be applied successfully for determination of bisacodyl in environmental water samples, pure form as well as in different dosage forms

References

- 1. The pharmaceutical codex, London, 1979, P.105.
- parfitt K, Blake SC, Parsons PS, Martindale AV; The Extra pharmacopoeia; 32nd edition, pharmaceutical press: London, 2005 p1251.
- Rachmilewitz D, Karmeli F, Okon E. Effect of bisacodyl on CAMP and Prostaglandin E₂ content, (Na+k). ATP ase, adenyl clase, and phosphodiesterase activities of rat intestine. Dig Dis sci 1980;25(8) :602-607.
- 4. Remington: the science and practice of pharmacy, mack publisher company, Easton, pennsylvania 18042, 1995 volum 2 P.896.
- 5. British pharmacopiea, 2009, P. 724.
- Mohamed H, Suzy M, Magda H, Tarek S, Spectrophotometric detemination of bisacodyl and piribedil. Analytical letters 2004;37(2):247-262
- Fadia H, Abdelkawy M, Ibrahim A. Development and validation of three stability- indicating methods for determination of bisacodyl in pure form and pharmaceutical preparations. J AOAC int 2007;90 (1):113-127.
- 8. Laik SA. Detemination of bisacodyl and its hydrolysis products in bisacodyl formulations by high preformance liquid chromatography, Fresenius Z. Anal Chem 1979;299:124-126.
- 9. Campbell AN, Sherma J. Development and validation of a high performance thin-layer chromatographic method densitometric detection for determination of bisacodyl in pharmaceutical tablets. Acta

chromatographica, 2003;13:109-16.

- Ramin M, Amir A, Jouyban A. Amembrane Sensor for selective determination of bisacodyl in tablets. J Chin Chemi Soc 2006; 53:613-18.
- 11. Parandis D, Parvz N, Reza GM. Rapid determination of bisacodyl in flow-injection system combination by a novel sensitive square-ware voltammetry. 2009;136(1):66-72.
- 12. Zommer-Urbanska S, Bojarowicz H. Spectrophotometric investigation on protolytic equilibria of mefenamic acid and determination by means of Fe(III) in methanol-equeous media. J pharm Biomed Anal 1986;4:475-81.
- MarezcenkoZ. Spectrophotometric determination of elements. Ellis worwood limited, chicheaster, 1976. p. 309-12.
- 14. Morrison RT, Boyed RN. s Organic chemistry. New York: Allyn and Bacon, INC, 3rd edition, 1973, p. 1017.
- Perrin DD, Dempsey B, Buffer for pH and metal ion control. London: Champan and Hall Ltd, 1974. p. 132-36
- 16. Basavaiah K, Somashekar BC. Quantitation of rantidine in pharmaceuticals by titrimetry and spectrophotometry using dichromate as the oxidimetric reagent. J Iran Chem Soc 2007;4: 78-88.
- 17. Canadian Health Protection Branch Gui deline-Acceptable method, Ministry of National Health and welfare. Canada Health protection Brand, Ottawa, Canada ,1992.
- The United State Pharmacopeia Convection, Inc, 32 NF27, 2009, p. 382.