Journal of Kerbala University , Vol. 6 No. 2 Scientific. 2008

ON BINDING EXTENSION

Dr.N. ABDEL-JALAL
PROFESSOR ASSISTANT
أ.م.د. نـهاد عبد الجليل
KERBALA UNIVERSITY \backslash COLLEGE OF EDUCATION
dr nihad45@yahoo.com

\begin{abstract}
:
In this paper, we show that: there exist two integers u, v such that, for every relation R with cardinality greater than or equal to u, there exist v elements of the base, such that the restriction of R to its base with these v elements removed respects the embedding inequalities in the B_{i} 's (B_{i} 's be a finite relations), and has an extension of arbitrary large cardinality not respecting the non-embedding inqualities in the A_{i} 's where $A_{1}, \ldots A_{h}$ be a finite set of finite relations with common arity .

علاقات محدودة العناصر بدرجة مشتركة.)

1. Introduction

Relation theory originates in the theory of order types, relation theory just extended to arbitrary relations the elementary notions of order type and embeddablity, in relation theory one considers equally the two truth values (+) and (-) taken on by a relation with base E for each element of E^{2} (or of E^{n} for the arity n) .We study here the problem, not yet solved, due to R.P.Dilworth [2] on the binding extension, the problem :(Does there exist two integers u, v such that , for every R with cardinality greater than or equal to u , there exist v elements of the base, such that the restriction of R to its base with these v elements removed respects the embedding inequalities in the B_{i} 's (B_{i} 's be a finite relations) and has an extension of arbitrary large cardinality respecting the non-embedding inqualities in the A_{i} 's where $A_{1}, \ldots A_{h}$ be a finite set of finite relations with common arity .)

2 Definitions

2.1 let E be a set and n an integer, An-ary relation with base E is a function R which associates the value $R\left(x_{1}, \ldots, x_{n}\right)=+$ or - each and n an integer n-tuple $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ in E , the integer will be called the arity of R . For $\mathrm{n}=2 \mathrm{R}$ will be called the binary relation. (E.W.Miller)
2.2 A multirelation with base E is a finite sequence R of relations R_{1}, \ldots, R_{h}, (h integer) each with base E.(R.P.Dilworth)
2.3 Restriction: let R be a relation with base E, and let F be a subset of E, we call the restriction of R to F, the relation taking the same value for each n-tuple with values in F.(S.Ginsburg)
2.4 Extension : Given a relation R with base E and superset E^{+}of E, the extension of R to E^{+}any relation with base E^{+}whose restriction to E is R .

Journal of Kerbala University, Vol. 6 No. 2 Scientific. 2008

And is called finite (infinite) denumerable according to whether its base is finite , (infinite), denumerable .(E. Faran)
2.5 Let R, S be two relations, we say that R is embeddable in S if and only if there exists a restriction of S isomorphic with R and write $S \geq R$. (E. Faran)
2.6 Let R, S be two relations and S does not admit an embedding of R, then there exists an extension T of S such that $T \neq \mathrm{C}$ called a binding extension.(R.P.Dilworth)
2.7 A usual chain is a partial ordering whose elements are mutually comparable, for example Q is the chain of the rationals.(M.Aigner)

3. The main results:

Proposition3.1

Let $A_{1} \ldots, A_{h}$ be a finite set of finite relations with common arity, and R be a finite relation with $R \neq \mathrm{A}_{1}$ and \ldots and $\not \mathrm{A}_{\mathrm{h}}$ If there exist extensions of R with arbitrary large finite cardinalities, which are $\geq A_{1}$ and \ldots and $\geq A_{h}$, then there exists a denumerable extension of R which respects the same conditions. Proof: We can assume that R is defined on the integers $1, \ldots, p$ and that, for each integer i, there exists an extension R_{i} of R based on the integers 1 目 to $\mathrm{p}+\mathrm{i}$ and respecting the conditions. For infinitely many integers i, the R_{i} have a same restriction S_{1} to $1, \ldots, p+1$. Among these, there are infinitely many integers i for which the R_{i} have a same restriction S_{2} to $1, \ldots, p+2$. Iterating this, we thus define S_{j} for each integer j . It now suffices to take the common extension of the S_{j}, based on the set of all integers.

propositin3.2

Let A_{1}, \ldots, A_{h} and $B_{1, \ldots}, B_{k}$ be two finite sets of finite relations of common arity, and let R satisfy $R \geq A_{1}$ and \ldots and $\neq A_{h}$ as well as $R \geq B_{1}$ and \ldots and $\geq B_{K}$.
Then there exists an integer u such that every R with cardinality at least equal to u satisfying the preceding conditions has a restriction R respecting the same conditions, and such that R' has a denumerable extension still respecting the conditions.
Proof: Let v be the sum of the cardinalities of the relations B_{1} through B_{k}. For each R satisfying the conditions, there exists a restriction R of R with cardinality at most equal to v , which satisfies the conditions. Consider all these R', which are only finitely many, up to isomorphism. For each, either there exists a denumerable extension satisfying the conditions. Or there exists an integer $u\left(R^{\prime}\right)$ which is strictly greater than the cardinalities of all extensions of R^{\prime} respecting the conditions. Then it suffices to set u to be the maximum of these $u\left(R^{\prime}\right)$.

Theorem 3.3

There is no an integer u such that, if R has cardinality greater than or equal to u and satisfies the conditions $\left(R \geq B_{1}\right.$ and \ldots and $\geq B_{K}$ as well as $R \geq A_{1}$ and ... and $\geq A_{h}$) then there exists a denumerable extension of R satisfying them.
Proof: Take the base of integers from 0 to $n-1$. Let I_{n} be the usual chain of these integers; let C_{n} be the consecutivity relation $(y=x+1)$; let 0_{n} be the unary relation called the singleton of zero, i.e. the relation taking (+) for 0 and (-) elsewhere; and let U_{n} be the relation singleton of $n-1$. Finally let R_{n} be the quadrirelation ($\mathrm{I}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}, \mathrm{O}_{\mathrm{n}}, \mathrm{U}_{\mathrm{n}}$). From $\mathrm{n}=7$ on, all the R_{n} have the same restrictions of cardinalities 1,2 and 3 , up to isomorphism. Let A_{1}, \ldots, A_{h} be those quadrirelations of the same arity and cardinalities 1, 2, 3 which are not

Journal of Kerbala University, Vol. 6 No. 2 Scientific. 2008

embeddable in R_{7}, , and hence in $R_{n}(n \geq 7)$. We see that every extension of an R_{n} to a new element added to its base admits an embedding of one of the $\mathrm{A}_{1} \ldots, \mathrm{~A}_{\mathrm{h}}$ 曰

Theorem 3.4

Given the finite relations A_{1}, \ldots, A_{h} and $B_{1, \ldots}, B_{k}$ then there is not two integers u, v such that, for every R with cardinality greater than or equal to u , there exist v elements of the base, such that the restriction of R to its base with these v elements removed respects the embedding inequalities in the B_{i} 's and has an extension of arbitrary large cardinality respecting the non-embedding inequalities in the A_{i} 's.
Proof: For the base, take the set of points, or ordered pairs of integers called the abscissa and ordinate, and which vary from 0 to $n-1$. Let R_{n} be the multirelation on this base, which is composed of the following 4 unary relations and 6 binary relations. The unary relation 0_{n} takes the value (+) for the points with abscissa 0 . The relation U_{n} takes (+) for the points with abscissa $n-1$. Similarly 0_{n}^{\prime} and U_{n}^{\prime} are defined by interchanging the abscissas and ordinates. The stratified partial ordering I_{n} takes the value (+) for each ordered pair of points (i,x), (j, y) whose abscissas satisfy $\mathrm{i}<\mathrm{j}<\mathrm{n}$, with arbitrary ordinates x , y ; moreover I_{n} is reflexive. The equivalence relation E_{n} takes (+) for any two points with a same abscissa and arbitrary ordinates. The equivalence classes of this relation are thus the classes of elements which are pairwise incomparable modulo I_{n}. The binary relation C_{n}, which by abuse of notation we shall call a consecutivity, takes the value (+) for each ordered pair of points (i, x), ($\mathrm{i}+1, \mathrm{y}$) whose abscissas are consecutive. Finally, the stratified partial ordering I_{n}^{\prime}, the equivalence relation E_{n}^{\prime} and the consecutivity $\mathrm{C}_{\mathrm{n}}^{\prime}$ are obtained from the preceding by interchanging abscissas and ordinates.
From $n=7$ on, every R_{n} has the same restrictions B_{1}, \ldots, B_{k} with cardinalities 1,2 , 3 (up to isomorphism). Let $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{h}}$ be the other multirelations of the same arity and cardinalities $1,2,3$. We see that every proper extension of $R_{n}(n \geq 7)$ admits an embedding of at least one of the A_{i} 's. Indeed, add a new element t to the base of R_{n}. Consider the case where either 0_{n} or U_{n} or 0_{n}^{\prime} or U_{n}^{\prime} takes the value (+) for t Now consider the case where all the preceding unary relations take the value (-) for t. Then either there exists an equivalence class of E to which t belongs: Or t occurs between two consecutive equivalence classes of E_{n}. In this case, use the consecutivity C_{n} to see that the extension of R_{n} thus obtained admits an embedding of one of the A_{i} 's. Now suppose the existence of u and v satisfying our hypothesis; take $\mathrm{n}>\mathrm{u}$ and $>\mathrm{v}$. Let S_{n} be a restriction of R_{n} in which the B_{i} 's are embeddable, and which is obtained by removing v points. Then in each equivalence class of E_{n}, there remains at least one element of $\left|S_{n}\right|$; similarly for $\mathrm{E}_{\mathrm{n}}^{\prime}$. Add a new element t to the base of S_{n}, and attempt to require that the extension of S_{n} to its base with t added admit only embeddings of the B_{i} 's and not of the A_{i} 's. This leads us to situate t in the chain of the equivalence classes of E_{n}. By using C_{n}, one sees that t necessarily belongs to one of the equivalence classes: t cannot be situated between two consecutive classes. Thus we obtain arl element in the base of S_{n}, which is equivalent with $t\left(\bmod E_{n}\right)$, and another element equivalent with $t\left(\bmod E_{n}^{\prime}\right)$. From this, we deduce that t is the unique element common to both equivalence classes. Thus we have again a restriction of R_{n} obtained by removing $\mathrm{v}-1$ points: this is our extension of S_{n}. Iterating this, we obtain R_{n} itself, and at the following step we obtain a proper extension of R_{n}, in which necessarily one of the A_{i} 's is embeddable.

Journal of Kerbala University, Vol. 6 No. 2 Scientific. 2008

References

[1] M.Aigner, Combinatorial Theory, Springer, 1, edition (2004)
[2]R.P Dilworth . A Decomposition Theorem for partially ordered Sets Annals of Math. Vol 51 (1990)
[3]Edison Faran, A New Definition of Ordinal Numbers Boletin S.C Mat Vol 12 1990
[4]S. Ginsburg - Some Remarks On a Relation Between Sets and Elements Fundamenta Math. Vol 39 (1982) .
[5]E.W Miller, Concerning Similarity Transformations Of linearly Ordered Sets Bulletin Amer. Math. Soc. Vol 46 (1980)

