
Journal of Kerbala University , Vol. 6 No.2 Scientific. 2008

 911

Role of Run Length Encoding on Increasing Huffman

Effect in Text Compression

B.A. Al-hmeary

 م.م. بيادر عباس الحميري

 جامعة بابل / كلية العلوم

Abstract:
Most digital data are not stored in the most compact form. Rather, they are stored in

whatever way makes them easiest to use, such as: ASCII text from word processors,

binary code that can be executed on a computer, individual samples from a data

acquisition system, etc. Typically, these easy-to-use encoding methods require data files

about twice as large as actually needed to represent the information. Data compression is

the general term for the various algorithms and programs developed to address this

problem. A compression program is used to convert data from an easy-to-use format to

one optimized for compactness. Likewise, an decompression program returns the

information to its original form.

This research aims to appear the effect of a simple lossless compression method , RLE or

Run Length Encoding , on another lossless compression algorithm which is the Huffman

algorithm that generates an optimal prefix codes generated from a set of probabilities.

While RLE simply replaces repeated bytes with a short description of which byte to

repeat it.

1.1 Introduction [10,4,7,2]:
Finding the optimal way to compress data with respect to resource constraints remains one of

the most challenging problems in the field of source coding. Data compression (or source

coding) is the process of creating binary representations of data which require less storage

space than the original data.

The key factors in reducing the amount of data storage is:

1- Getting rid of redundant data. This involves determining the parts of the data that are not

required.

2- Identifying irrelevant data. This involves identifying the parts of the data which are

perceived to be irrelevant.

3- Converting the data into a different format. This will typically involve changing the way

that the data is processed and stored.

4- Reducing the quality of the data. Often the user does not require the specified quality of

the data.

In order to discuss the relative merits of data compression techniques, a framework for

comparison must be established. There are two dimensions along which each of the schemes

discussed here may be measured, algorithm complexity and amount of compression. When

data compression is used in a data transmission application, the goal is speed. Speed of

transmission depends upon the number of bits sent, the time required for the encoder to

generate the coded message, and the time required for the decoder to recover the original

ensemble. In a data storage application, although the degree of compression is the primary

concern, it is nonetheless necessary that the algorithm be efficient in order for the scheme to

be practical.

Several common measures of compression have been suggested: redundancy [Shannon and

Weaver 1949], average message length [Huffman 1952], and compression ratio [Rubin 1976;

Journal of Kerbala University , Vol. 6 No.2 Scientific. 2008

 022

Ruth and Kreutzer 1972]. Related to each of these measures are assumptions about the

characteristics of the source. It is generally assumed in information theory that all statistical

parameters of a message source are known with perfect accuracy [Gilbert 1971]. The most

common model is that of a discrete memoryless source; a source whose output is a sequence

of letters (or messages), each letter being a selection from some fixed alphabet a,... The letters

are taken to be random, statistically independent selections from the alphabet, the selection

being made according to some fixed probability assignment p(a),... [Gallager 1968].

 There is another categorization of data compression schemes with respect to

message and codeword lengths, these methods are classified as either static or dynamic. A

static method is one in which the mapping from the set of messages to the set of code words

is fixed before transmission begins, so that a given message is represented by the same

codeword every time it appears in the message ensemble. The classic static defined-word

scheme is Huffman coding [Huffman 1952]. In Huffman coding, the assignment of code

words to source messages is based on the probabilities with which the source messages

appear in the message ensemble. Messages which appear more frequently are represented by

short code words; messages with smaller probabilities map to longer code words. These

probabilities are determined before transmission begins.

A code is dynamic if the mapping from the set of messages to the set of code words changes

over time, for example, dynamic Huffman coding.

2.1 Huffman Method [3,9,6,8]
 David Huffman developed the Huffman algorithm as a student in a class of information

theory at MIT in 1950. The Huffman algorithm is very simple and is most easily described in

terms of how it generates the prefix-code tree.

The algorithm of Huffman is:-

1.Start with as many leaves as there are symbols.

2.Push all leaf nodes into the heap.

3.While there is more than one node in the heap:

-Remove two nodes with the lowest weight from the heap.

-Put the two nodes into the tree, noting their location.

-If parent links are used, set the children of any internal nodes to point at their parents.

-Create a new internal node, using the two nodes as children and their combined weight as

the weight.

-Push the new node into the heap.

4.The remaining node is the root node.

2.2 Main Properties[5] :-
The frequencies used can be generic ones for the application domain that are based on

average experience, or they can be the actual frequencies found in the text being compressed.

(This variation requires that a frequency table or other hint as to the encoding must be stored

with the compressed text; implementations employ various tricks to store these tables

efficiently).

Huffman coding is optimal when the probability of each input symbol is a negative power of

two. Prefix-free codes tend to have slight inefficiency on small alphabets, where probabilities

often fall between these optimal points. Expanding the alphabet size by coalescing multiple

symbols into "words" before Huffman coding can help a bit. The worst case for Huffman

coding can happen when the probability of a symbol exceeds 2
-1

 making the upper limit of

inefficiency unbounded.

For an example on the Huffman coding, consider the following message probabilities, and the

Huffman tree in figure(1)

http://en.wikipedia.org/w/index.php?title=Frequency_table&action=edit

Journal of Kerbala University , Vol. 6 No.2 Scientific. 2008

 029

Figure(1) : Huffman Tree

The following table illustrates the codes .

Table (1) Huffman Coding

Symbol Probability Code 1

A 0.2 01

B 0.4 1

C 0.2 000

D 0.1 0010

E 0.1 0011

3.1 Run-Length Encoding:-
 Data files frequently contain the same character repeated many times in a row. For

example, text files use multiple spaces to separate sentences, indent paragraphs, format tables

& charts, etc.

Run-length encoding is a simple method of compressing these types of files [1,9,6,3].

 Figure (2) illustrates run-length encoding for a data sequence having frequent runs of

zeros. Each time a zero is encountered in the input data, two values are written to the output

file. The first of these values is a zero, a flag to indicate that run-length compression is

beginning. The second value is the number of zeros in the run. If the average run-length is

longer than two, compression will take place. On the other hand, many single zeros in the

data can make the encoded file larger than the original. Many different run-length schemes

have been developed. For example, the input data can be treated as individual bytes, or

groups of bytes that represent something more elaborate, such as floating point numbers.

Run-length encoding can be used on only one of the characters (as with the zero below),

several of the characters, or all of the characters.

 Figure (2) Run Length Encoding Example

Journal of Kerbala University , Vol. 6 No.2 Scientific. 2008

 020

Example of run-length encoding as shown in figure(2): Each run of zeros is replaced by two

characters in the compressed file: a zero to indicate that compression is occurring, followed

by the number of zeros in the run.

4.1 Proposed compression method:-
 Figure (3) illustrates the block diagram of the proposed compression method.

From the above figure, we can see that the proposed compression method works as the

following:-

1- Taking the input file, that is a random sequence of English alphabet

 symbols, computing the probability for each symbol.

2- Applying the Huffman coding of the

 sequence of probabilities, the result is a

 string of 0 and 1 bits.

3- Applying the RLE method on the string

 of 0 and 1 bits(the result of Huffman

 method). the RLE is applied after dividing the string of 0 and 1 into 8-block each and

transmitting each into a byte. The RLE is applied on the bytes (0 or 255), which 0 came from

a sequence of eight zeros and 255 came from a sequence of eight ones. Here the RLE is

applied only the 0 and 255 bytes not on all the bytes in the string.

4- The final compressed file contains:-

 a- the number of symbols.

 b- the symbols.

 c- the code words of each symbol.

 d- the final strings resulted from applying the RLE method on the final code after

substituting the codeword of each symbol in the input file.

5.1 Decompression of the proposed compression method:-
 The number of symbols, each symbol, and the code words for each is distinguished.

The rest of the compressed file contains on the RLE strings. After applying the

decompression of this method, we get the final code that is read bit by bit in a sequential

order and is compared with the code words to get the original text.

Input File Huffman Method

RLE Method Output File

Figure(3) Block Diagram of Proposed

Method

Journal of Kerbala University , Vol. 6 No.2 Scientific. 2008

 022

In the decompression of the RLE, only the bytes that are followed by a 0 or 255 byte is

concerned as the number that represents the repeation of that byte.

6.1 Results:-
The following table illustrates the test sets of data which is used on the proposed compression

method:-

 In this research the test sets of data files, as shown in table (2), includes a sequence of

English alphabet letters (random sequence).The compression ratio is calculated by

 (File size)

(100 -)*100%

 (File size (2))

Where, File size represents the original file size including the random sequence of English

alphabet letters, while File size (2) represents the results after applying the proposed

compression method where the RLE method was applied.

Table (2) Test sets of data

ile File size File size (1) File size (2) Compression

Ratio

File1 81 byte 25 byte 21 byte 72.84%

File2 100 byte 36 byte 36 byte 63.00%

File3 884 byte 182 byte 87 byte 90.04%

File4 210 byte 47 byte 32 byte 84.28%

File5 99 byte 34 byte 27 byte 71.17%

File6 204 byte 49 byte 36 byte 81.86%

File7 1.2 KB 226 byte 86 byte 92.42%

File8 97 byte 27 byte 19 byte 79.38%

File9 250 byte 56 byte 33 byte 86.40%

File10 296 byte 71 byte 57 byte 80.40%

File11 292 byte 70 byte 54 byte 79.39%

File12 427 byte 254 byte 208 byte 51.05%

File13 300 byte 140 byte 140 byte 53.00%

The File size (1) represents the results on the data after applying the Huffman algorithm.

The decompression process on the compressed data files in both methods, applying Huffman

algorithm or applying the proposed method, returns the original uncompressed data files.

6.2 Discussion & Conclusion:-
1- The proposed compression method is lossless here both of the Huffman and RLE

methods are lossless which is useful in text compression since losing a single character can

in the worst case make the text dangerously misleading. This means increasing compression

ratio without losing information.

2- When the compressed file contains on a longer sequence of frequented symbols, it has a

high effect on the compression ratio as the proposed compression method gives better results.

3- As illustrated in table (2), it can be concluded that, when the RLE method is applied with

the Huffman algorithm, if it does not decreases the file size it will not increases it. Which

indicates that the RLE method has an High effect on the Huffman method when applied

together.

Journal of Kerbala University , Vol. 6 No.2 Scientific. 2008

 022

References:
1- A. W. Berger and others,” A Hybrid Coding Strategy for Optimized Test Data

Compression“,University of Innsbruck, Austria, Proceedings IEEE International Test

Conference, Charlotte, NC, USA, September 30 – October 2, 2003.

2- D. Lelewer and others," Data Compression", ACM Press Newyork,NY,USA,1987.

3- D. Salomon , “ Data Compression the Complete Reference“ spring verlag Newyork,

USA, 1998.

4- G. Kempe, “Computer Science Honours Research Report Compression and

Computational Gene Finding”, 1 November , 2002.

5- From Wikipedia, the free encyclopedia," Huffman coding", GNU Free Documentation

license, January 19,1996.

6- J. M. Pullen ,” Data Compression, Security Principles Integrity, Appropriate Use

“,2/3/03 © 2003.

7- R. He ,”Indexing Compressed Text”, A thesis, Waterloo, Ontario, Canada, 2003 .

8- R. Müller , “Image Compression” Part II: Image Processing Computer Graphics and

Image Processing , Winter Semester 2003/04.

9- S. W. Smith, A sample chapter from: The Scientist and Engineer's Guide to Digital

Signal Processing”, 1997.

10- W. KEONG NG,” Lossless and Lossy Data Compression“ Nanyang Technological

University, Singapore, 1996.

