# Journal of Kerbala University, Vol. 6 No.2 Scientific . 2008

# **Notes On The Weak Denseness In Topological Spaces**

حول المجموعات الضعيفة الكثيفة في الفضاءات التبلوجية

Assist Lecturer
Mohammed Yahya Abid
Computers Dept., /Science College, /Kerbalaa /University
B.ED (Mathematics)
Zeinab Hassen Abood

College of Administration. And Economics /Kerbalaa University م م محمد يحيى عبد محمد يحيى عبد جامعة كربلاء/ كلية العلوم/قسم الحاسبات بعدم كلية العلوم/قسم الحاسبات بعدم كلية العلوم/قسم الحاسبات بعدم كلية العلوم/قسم الحاسبات بعدم كلية العلوم/قسم كلية ال

### **Abstract:**

In this paper we introduced the notion "weak dense, weak dense - in-itself, and nowhere weak dense sets" and proved some of their related theorems by using the concept of weak open set.

## الخلاصة :

في هذا البحث قدمنا ملاحظات حول الجموعات الضعيفة الكثيفة والضعيفة الكثيفة بنفسها والمجموعات الضعيفة الغير كثيفة واثبتنا بعض النظريات المتعلقة بها باستخدام مفهوم المجموعات الضعيفة المفتوحة.

#### 1-INTRODUCTION AND PRELIMINARIES

Before we present the weak dense, weak dense - in-itself, and no where weak dense sets, we give some definitions and remarks

<u>Definition</u>(1-1): A subset A of a space X is Called a **weak open**, if there is an open set U such that cl(A)=cl(u).[5]

**Remark(1-2)**: All semi open sets are weakly open set. [4]

**Example** (1-3):let  $X = \{a,b,c,d\}$  and  $\tau = \{\phi,X,\{a\},\{b,c\},\{a,b,c\}\}$ Then the set  $\{X,\phi,\{a\},\{b,c\}\}$  is a weak open set.

**<u>Definition</u>**(1-4): Let  $(X, \tau)$  be a topological space and  $A \subseteq X$ .

Then A is called a **weak neighborhood** of a point x in X, if There exists a weak open set U of x such that  $x \in U \subset A$ .

<u>Definition</u>(1-5): The union of all weak open sets contained in a set A is called a **weak interior** of A and denoted by **wkint(A)**.

**<u>Definition</u>**(1-6): let  $A \subset X$ , then

i) $x \in X$  is called **weak limit point** (wk limit point) of A, if each open neighborhood  $N_x$  of X,  $(cl(N_x)-\{x\}) \cap A \neq \emptyset$ . The set of all weak limit point of A, denoted by A'' and is called weak derive set of A, we denoted by wd(A).

ii) A is said to be weakly closed set if  $wd(A) \subset A$ .[2]

## Journal of Kerbala University, Vol. 6 No.2 Scientific . 2008

**Remark**(1-7): weak closedness implies closedness .[1]

**<u>Definition</u>**(1-8): The **weak closure** denoted by  $\mathbf{A}^{\sim}$  of A is the set  $A \cup \text{wd}(A)$ , the same as , if we say  $A^{\sim} = \cap \{F: F \text{ is weak closed } \supset A\}$ 

### 2. weak dense, weak dense-in-itself and no where weak dense

**<u>Definition</u>** (2-1):Let A be a subsets of the topological spaces  $(X, \tau)$ . Then A is said to be **weak dense** in X if  $A^=X$ .[2]

<u>Theorem</u> (2-2): Every weak dense subset of a topological space(X,  $\tau$ ) is dense subset of X.

**Proof:**let A be dense subset of X, then  $A^=X$  since  $A^- = \bigcap \{F:F \text{ is weak close set } \supset A\}$  and since weak closed implies closed set and that's implies  $A^- = \bigcap \{F:F \text{ is close set } \supset A\} = \operatorname{cl}(A)$  hence A is dense set.

<u>Theorem</u> (2-3): Let A be a subset of the topological spaces  $(X, \tau)$ , A is weak dense in X if and only if  $A^{\sim}$  is weak dense in X.

**Theorm**(2-4):Let A,B,C be a subsets of the topological spaces  $(X, \tau)$ , if A is weak dense in B and B is a weak dense in C then A is weak dense in C.

**Theorem** (2-5): A is weak dense in X if and only if every weak open set in X contains a point of A.

<u>Definition</u> (2-6): A subset A of a topological space  $(X,\tau)$  is called **weak Dense- in-itself**, if  $A \subset wd(A)$  that is every points of A is wklimit point of A

**Example** ( 2-7): let  $X = \{a,b,c,d\}$  and  $\tau = \{\phi,X,\{a\},\{b,c\},\{a,b,c\}\}$ Let  $A = \{b,c\}$  then  $A'' = \{b,c\}$  is the set of weak drived set Hence A is weak dense –in-itself.

**Theorem** (2-8): Every weak dense -in-itself set is dense - in - itself. **Proof:** let A be a weak dense-in-itself set, that is (every point in A is wk limit point of A), since every wk limit point is a limit point, then each point of A is a limit point, then A is dense-in-itself. •

<u>Theorem</u> (2-9): Let A be a subset of the topological spaces  $(X, \tau)$ , if A is a weak dense-in-itself and  $A \subset B \subset A^{\sim}$  then B is a weak dense-in-itself..

<u>Theorem</u> (2-10):  $A^{\sim}$  is weak dense-in-itself of X, if A is a weak dense –in-itself subset of X.

<u>Theorem</u> (2-11): The union of any family of weak dense-in-itself subsets of X is weak  $\alpha$ -dense-in-itself.

**Proof**: let  $\{A_i\}$ ,  $i \in I$ , be a family of weak dense-in-itself. So  $A_i \subseteq wd(A_i)$ ,  $\forall i \in I$ . Let  $p \in \cup A_i$ , then  $p \in A_i$  for some  $i \in I$  Hence for each weak open set U with  $p \in U$ ,  $A_i \cap (U - \{p\}) \neq \emptyset$ . Thus  $(\cup A_i) \cap (U - \{p\}) \neq \emptyset$ , hence  $p \in (wd(UA_i))$ . Therefore  $\cup A_i \subseteq (wd(\cup A_i))$ ; hence  $\cup A_i$  is weak denes-in-itsef.  $\bullet$ 

# Journal of Kerbala University, Vol. 6 No.2 Scientific . 2008

<u>**Definition**</u>(2-12): A subset A of a topological space  $(X,\tau)$  is **nowhere weak dense set**, if wkint  $(A^{\sim}) = \emptyset$ , that is the weak interior of the weak closure of A is empty.

**Theorem**(2-13): Let A be a subset of a topological space

 $(X,\tau)$ . Then the following statements are equivalent

- i) A is nowhere weak dense in X.
- ii) A contains no weak nhd.

**Proof**: (i)  $\Leftrightarrow$  (ii) we have A is no where weak dense

- $\Leftrightarrow$  No point of X is a wkint point of  $A^{\sim}$
- A has not a weak nhd of any of its Points

⇔ A contains no weak nhd •

<u>Theorem</u>(2-14):if A is nowhere weak dense subset of X and B  $\subseteq$  X then B is nowhere weak dense subset of X.

**Theorem(2-15)**: if A is nowhere weak dense subset of X then x-A is weak dense subset of X.

**Theorem(2-16)**: Let A be a subset of topological spaces  $(X, \tau)$  if A

is no where weak dense, then A is not the entire space X.

**Proof**: Since X is weak closed, then  $X=X^{\sim}$ . Again since X is weak open, we have  $wkint(X^{\sim})=wkint(X)=X$ . Since A is nowhere weak dense in X,

wkint  $(A^{\sim}) = \emptyset$ . Thus wkint  $(X^{\sim}) = X$ , and wkint  $(A^{\sim}) = \emptyset$ . It follows  $A \neq X \bullet$ 

#### **References:**

- 1-Al-Taha and A.G. Noum, On absolutely closed spaces, Bull.Coll. Sci. (Bagadad),15,(1974),209-214.
- 2- A.S. Mashhour ,M.E. Abd El\_Monsef and I.A. Hasanein, On pretopological spaces,Bull. Math. Soc. Sci R.S. R. 28 (76) 1984 ,39-45.
- 3- G. B. Navalagi "Definition Bank In General Topology", Topology Atlas Survey Articles Section URL: http://dx.yorku.ca/t/a/i/c/32htm ,2000.
- 4- J. N. Sharma and A.R. Vasishtha, "Functional Analysis", meerut, 1976.
- 5-U.V.Fatteh and D. Singh," A note on D-Spaces", Bull, Cal, Math, Soc, 75, 353-358(1983).