In vitro inhibition of human blood cholinesterases and protection against chlorpyriphos (organophosphate) by weak anticholinesterase drugs

Ahmed A.J. Mahmood

Department of Clinical Pharmacy, College of Pharmacy, University of Mosul, Mosul, Iraq

Received	Accepted
7.1.7.1.	۳۰.۱۱.۲۰۱۰

ABSTRACT

In vitro inhibition of human plasma and erythrocyte cholinesterase activities by the strong cholinesterase inhibitor chlorpyriphos (organophosphate) and the weak cholinesterase inhibitors (donepezil, metoclopramide, and diphenhydramine) in different concentrations was evaluated. The protective ability of each one of the weak cholinesterase inhibitors alone and with a combination of two of them against the inhibitory action of chlorpyriphos was also detected. The results showed different patterns of inhibition depending on the inhibitor and its concentration when used alone or within a combination. When testing the protective ability, the results differed for each one of the inhibitors and for the combinations, depending on its own ability to bind the cholinesterase. Donepezil showed no ability to protect the enzyme against chlorpyriphos, but caused further increase in the inhibition when used alone or in combination. Diphenhydramine could have affinity to bind the enzyme more than metoclopramide and donepezil when used in combination against chlorpyriphos toxicity, and metoclopramide had higher affinity to inhibit erythrocyte cholinesterase in combination more than diphenhydramine and donepezil. The use of weak cholinesterase inhibitors alone or in combination may reduce the toxicity of organophosphates depending on the inhibitor used, but still not to a significant extent.

Keywords: Weak cholinesterases inhibitors, chlorpyriphos, donepezil, metoclopramide, diphenhydramine, protection against organophosphates

الخلاصة

باستخدام الأنابيب الاختبارية تمت در اسة قوة التثبيط لخميرة الكولين استراز في البلازما وكريات الدم الحمراء في الإنسان لكل من المثبط القوي للخميرة الكلوربايريفوس (مبيد حشري فسفوري) والمثبطات الضعيفة (الدونبيزيل والميتوكلوبر امايد والدايفينهايدر امين) بتر اكيز مختلفة ، ومن ثم تمت در اسة قابلية حماية الخميرة من قبل المثبطات الضعيفة بصورة منفردة او ضمن خليط من المثبطات الضعيفة ضد المبيد الحشري (المثبط القوي) . وعند در اسة قابلية الحماية للخميرة ظهرت نتائج مختلفة لكل مثبط اعتمادا على قوة قابليته على الارتباط بالخميرة وكذلك اختلفت بالنسبة لكل خليط أيضا . لم يظهر الدونبيزيل اي قابلية على حماية الخميرة ضد المشري وإنما أدت إضافته إلى زيادة التثبيط للخميرة عند استعماله لوحده أو عند استخدامه ضمن خليط من المشري وإنما أدت إضافته إلى زيادة التثبيط للخميرة عند استعماله لوحده أو عند استخدامه ضمن خليط من من المبطات الضعيفة . وكذلك أظهرت النتائج أن الدايفنهايدر امين ربما تكون له القابلية على الارتباط من المبطات الضعيفة . وكذلك أظهرت النتائج أن الدايفنهايدر امين ربما تكون له القابلية على الارتباط بالخميرة أكثر من الميتوكلوبر اماد والدونبيزيل عند استعماله لممن خليط ض من الميتوكلوبر اماد والدونبيزيل عند استعماله ضمن خليط ضد سمية الكلوربايريفوس . وان الميتوكلوبر اميد له قابلية قوية للارتباط بخميرة كريات الدم الحمراء ضمن الخليط أكثر من الدايفنهايدر امين والمية المنوب المتوكلوبر اميد له نستطيع القول ان استعمال المثبطات الضعيفة لخميرة الكولين استر از لوحدها أو ضمن خليط من سمية المثبطات القوية (المبيدات الحشرية) اعتمادا على نوعية المثبط ولكن ليس إلى حد يمكنا من استخدامه

O rganophosphates (OP) are widely used as insecticides in public health, veterinary practice and agriculture 1, 3. The single most

important mechanism of the toxic action of these insecticides in man and animals is inhibition of acetvl cholinesterase at the nerve terminals. causes acetylcholine and this accumulation that subsequently causes a series of muscarinic, nicotinic and central nervous system effects^{r, ε}. Human blood cholinesterase (ChE) are classified as acetyl cholinesterase (AChE, mainly found in erythrocytes) and butryl cholinesterase (BChE, mainly found in plasma) ^{*,°}. These enzymes differ in their sensitivity to inhibitors' and therefore, the inhibitors show different toxicities.

cardinal The treatment for organophosphate poisoning includes atropine to counteract the muscarinic signs and symptoms, and oximes to inhibited reactivate the cholinesterases^{1, "} However, the clinical results of administering antidotal therapy for organophosphate there are many experimental trials using other therapeutic and protective agents. Examples of such trials include diphenhydramine^{Y,^}, antihistamine alpha- ⁷-adrenoceptor agonists⁹ and metoclopramide,", and phenothiazines

used Metoclopramide is clinically as antiemetic agent". Other than the antidopaminergic and possible serotonergic effects, metoclopramide has been found to possess anticholinesterase properties ",". The drug weakly inhibits cholinesterase activity both in vitro'" and in vivo''. This protective effect of metoclopramide on the cholinesterase is thought to be of practical usefulness for the treatment of organophosphate poisoning^{".} However, metoclopramide which is a dopamine receptor antagonist was reported to prevent OP poisoning in man (using in vitro system)'' and in chicks both in vitro and in vivo''. The protective action of metoclopramide is thought to be competition for the active site of the enzyme with the more potent $OP^{1\circ}$. Metoclopramide inhibited in vitro as well as in vivo the ChE activity in animals [$1^{\epsilon}, 1^{\tau}$]. Metoclopramide reduced the toxicity by dichlorvos and daizinon by acting as a protective agent for the ChE^{$1^{\epsilon}, 1^{\circ}$}.

Diphenhydramine which is an ethanolamine derivative, nonselective histamine H)-receptor antagonist, mainly used for allergy symptoms caused bv histamine release (anaphylaxis, rhinitis and dermatoses), also can be used for nausea and vertigo motion sickness^{1V,1A,19}. and The efficacy of diphenhydramine in the prevention and treatment of methomylinduced toxicosis was evaluated in female rats, the results suggest that diphenhydramine could be of therapeutic value in reducing the toxic methomvl^{'',''}. effects of Diphenhydramine inhibits in vitro pseudo cholinesterase (ChE) from several sources (human, rat, or horse plasma). This inhibition is competitive with acetylcholine (ACh) and is reversible, diphenhydramine dose not compete with either OP in inhibiting ChE. '', '', ''.

Donepezil is an actylchelinesteras inhibitor, mainly used in Alzheimer's disease, it reversibly inhibits actylchelinesteras^{1Y,1A,14}. We tried to use it in our study as a protective agent against organophosphate poisoning.

The aim of this study was to evaluate the protective effect of weak ChE inhibitors (metoclopramide, diphenhydramine and donepezil) against the strong inhibitors OP (chlorpyriphos), each one used alone and then as in combination

Materials and methods

Subjects The subjects included in this study (male and females, age (+/-), years) apparently healthy with no history of exposure to anti-ChE insecticides or drugs. Blood samples were collected in a \circ ml EDTA-treated test tubes then centrifuged (Centurion, UK) at (+,+) min. The erythrocytes and plasma were separately pooled and kept on ice for ChE assay.

Electrometric assay of ChE activity In our work we used the modified electrometric method, validated in human^{$\gamma r, \gamma i$}. The reaction mixture in a \cdot ml beaker contained π ml distilled water, \cdot .^{γ} ml plasma or erythrocytes and \forall ml pH \land . barbital-phosphate buffer^{Y°}. The pH of the mixture (pH^Y) was measured with glass electrode using pH meter (Hanna Instruments, Romania), then \cdot . \cdot ml of aqueous solution of acetylthicholine (\vee . $\circ\%$) was added to the reaction mixture which was incubated at $\nabla^{\vee}C$ in water bath (Shaker bath $\circ BS^{\tau} \cdot$, UK) for $\tau \cdot$ min. At the end of the incubation period, the pH of the reaction mixture (pH^Y) was measured. The enzyme activity was calculated as follows:

ChE activity $(\Delta pH/\gamma \cdot min.) = (pH) - pH\gamma - \Delta pH$ of blank

The blank contained no blood aliquot. The barbital-phosphate buffer solution consist of 1.75 g sodium barbital (BDH), $\cdot.177$ g potassium dihydrogen phosphate (Merck, Germany), and 70.47 g sodium chloride (BDH) dissolved in one liter distilled water 57.75. The pH of the buffer was adjusted to 4.1 with 1NHCl.

In vitro ChE inhibition by the inhibitors Plasma and erythrocyte samples were collected from healthy volunteers. Different drug concentrations were prepared then they were individually added in a volume of .) ml to the reaction mixture to obtain final concentrations as follows:

chlorpyriphos: $\pounds \mu M$ metoclopramide: $\circ \cdot$, $\uparrow \circ$ and $\uparrow \uparrow \cdot \circ$ μM diphenhydramine: $\uparrow \cdot \cdot , \circ \cdot$ and $\uparrow \circ$ μM

donepezil: \cdots and $\circ \mu M$

the concentrations of chlorpyriphos and the drugs used in the present study obtained from preliminary were experiments to validate the concentrations. experimental The inhibitors were prepared in distilled water and individually added in a \cdot . ml to the reaction mixture of the plasma and erythrocytes. The reaction mixture containing inhibitors was incubated at "V °C for V min. Thereafter, the residual ChE activity in mixture was measured". The % of enzyme inhibition was calculated as follows:% *ChE* inhibition= [*ChE* activitv (without *inhibitors*)-*ChE* activity (with inhibitors)/ChE activity (without inhibitors)] $X^{,} \cdot \cdot$

In vitro ChE inhibition by the weak inhibitors and the strong inhibitor (chlorpyriphos)

Aliquots of the same plasma and erythrocyte samples used in the previous experiment were used here and the same concentrations of inhibitors were also used. chlorpyriphos was diluted with distilled water and added in a volume of \cdot .) ml to the reaction mixture to obtain a final concentration of ξ uM. each drug concentration mentioned above was added to the reaction mixture (\cdot, \cdot) ml) \cdot min before the chlorpyriphos addition'', which was then incubated at $\forall \forall \circ C$ for $\land \cdot$ min before measuring ChE activities

and percent of enzyme inhibition as described above.

In vitro ChE inhibition by a combination of weak ChE inhibitorsnd then by the same combination with the strong inhibitor (chlorpyriphos)

In another set of experiment other plasma and erythrocyte samples used and the drugs were used here as a combination of inhibitors in different concentrations as follows:

donepezil \cdots μM with metoclopramide $\circ \cdot \mu M$

donepezil $\gamma \circ \mu M$ with metoclopramide $\gamma \circ \mu M$

donepezil $\cdots \mu M$ with diphenhydramine $\cdots \mu M$ donepezil $\gamma \circ \mu M$ with

diphenhydramine ° · µM

Then we continued with the following inhibitors and concentrations metoclopramide ٥. μΜ with diphenhydramine $\cdots \mu M$ metoclopramide ۲0 μM with diphenhydramine ° · µM metoclopramide ۲0 with μM diphenhydramine ۲° µM metoclopramide 17.0 with μM diphenhydramine ° · µM metoclopramide 17.0 μM with diphenhydramine ۲° µM

Each combination mentioned above was added to the reaction mixture (\cdot .¹ ml) (both weak inhibitors added at the same time), which was then incubated at " \vee °C for \cdot min before measuring ChE activities and percent of enzyme inhibition as described in the previous experiment.

Then the same plasma and erythrocyte samples used in this experiment and the same combination of inhibitors mentioned above were also used in the same way of addition and incubation. Chlorpyriphos was then added in a volume of \cdot . In to the reaction mixture to obtain a final concentration of $\cdot \mu M$ (chlorpyriphos was diluted and used as described in the previous experiment), which was then incubated at $\forall \forall \circ C$ for $\land \bullet$ min before measuring ChE activities and percent of enzyme inhibition as described in the previous experiment.

Statistical Analysis

The data were subjected to analysis of variance followed by the least of significant difference test^{Y1}. Paired Student's t-test was used for comparing the means of Y groups^{YY}. The level of significance was at $P < \cdot \cdot \circ$.

Results

The in vitro inhibition of plasma and erythrocyte ChE activities by the strong ChE inhibitor (chlorpyriphos) £ μM weak ChE inhibitors and (donepezil, metoclopramide, and diphenhydramine) in different concentrations, and then each one of the weak ChE inhibitors with the strong one was detected and the results are shown in Table \mathbf{i} .

Tables γ and γ represent in vitro inhibition of plasma and erythrocyte cholinesterase activities by a combination of weak ChE inhibitors 1... (donepezil ۲°uM with metoclopramide o., YouM and then ۲°uM donepezil 1... with diphenhydramine \cdots , $\circ \cdot \mu M$) each combination alone and then with the strong ChE inhibitor (chlorpyriphos) (Table γ), and the combination of (metoclopramide °·, ^Y°µM and γ , μ M with diphenhydramine γ . $\circ \cdot \mu M$ and $\gamma \circ \mu M$) each combination as alone and then with the strong ChE inhibitor (chlorpyriphos) (Table \mathcal{T}).

In order to compare the combinations, Figure 1 and 7 represent % inhibition of plasma and erythrocyte cholinesterase of each combination used in this experiment as alone and then with the strong ChE inhibitor (chlorpyriph)

Table 1: In vitro inhibition of human plasma and erythrocyte cholinesterase activities
by numbers of ChE inhibitors and their effect on ChEs inhibition by the
strong inhibitor (chlorpyriphos)

	Plasma ChE		Erythrocyte ChE	
Inhibitors (µM)	∆ pH/۲ • min	% Inhibition	$\Delta pH/\mathbf{F} \cdot min$	% Inhibition
· μM	۱ _. ۱٦±۰.۰۹۳	•	•. ٧ ٤±•. ٢ • ٧ ^a	٠
chlorpyriphos [£] µM*	•.• ¹ ±•.•1 ⁴ a	٩٤٧٠	•.9°±•.•71ª	۲۱_٤٠
donepezil ۱۰۰ µM*	•	٦٨.٦١	•.•)±•.•)٤ ^{ab}	٩٧_٣٨
donepezil ^γ ··· μM before [‡] chlorpyriphos [‡] μM	•.• ٢±•.٢١٢ a	٩٨_٢١	•.••±•.•• ^{ab}	۱۰۰
donepezil ۲۰ µM*	•.ファ±•.•ノ٤ ^{ab}	٤٤٨٤	•.•7±•.717 ^{ab}	٨٠.٣٣
donepezil ^γ ° μM before [‡] chlorpyriphos ^ξ μM	•.••٣±•.•١ ª	٩٩_٧٣	•.••±•.•• ^{ab}	۱۰۰
metoclopramidee $\circ \cdot \mu M^*$	•.• ^v ±•.•• ^v ^a	٩٤.٣٠	•.~•±•.•00 ^{ab}	٧٧.٧٠
metoclopramide ° · μM [‡] before chlorpyriphos ^ε μM	•.•٢±•.•٢١ a	٩٨.٧٦	•.٣٢±•.١٣٤ ^b	٥٤.٩٩
metoclopramide ۲۰ µM*	•.٢١±•.•١• ^{ab}	٨٢.٩٠	۱.۲٦±۰.۰۱۲ ^{a b}	٦.٢٠
metoclopramide ^Υ ο μM [‡] before chlorpyriphos ^٤ μM	•.•°±•.•°°° a	٩٦.٢٨	•.º7±•.•٣º ª	۲۰.۷۱
diphenhydramine $\cdots \mu M^*$	•.~٤±•.•٢١ ^{ab}	٦٧.٧٩	۱.•۳±•.•۹۸ ^b	۲.۲۱
diphenhydramine $\cdots \mu M^{\ddagger}$ before chlorpyriphos $\pounds \mu M$	•.••±•.•• ^a	۱۰۰	•.•)±•.••V ^a	۲۷٫۸٦
diphenhydramine ° • μM^*	•.ºY±•.•°7 ^{ab}	°• <u>·</u> ••	•. ٣٦±•.٢٦١ ^{ab}	٤٩.٢٩
diphenhydramine •• μM [‡] before chlorpyriphos ^ε μM	•.••±•.•• ^a	۱۰۰	•. ٢٣±•.• ١٤ ^{ab}	٦٧.١٤

N=Y / concentration groups.

* Cholinesterase inhibition was detected after \• min incubation of the sample with ChE inhibitors.

‡ weak ChE inhibitors was added to the reaction mixture `` min before the strong ChE inhibitors (chlorpyriphos) addition.

a Significantly different from their respective control (•) group, P<•...

b Significantly different from the strong ChE inhibitors (chlorpyriphos) (ξ μM), P<·.·•

Table ^{*}: In vitro inhibition of human plasma and erythrocyte cholinesterase activities by a combination of weak ChE inhibitors (donepezil with metoclopramide and then donepezil with diphenhydramine) and their effect on ChEs inhibition by the strong inhibitor (chlorpyriphos)

Inhibitors (µM)	Plasma ChE		Erythrocyte ChE	
	$\Delta p H^{\prime} \cdot min$	% Inhibition	ΔpH/ ^γ ·min	% Inhibition
·μM	۱.۱۳±۰.۰۸۲	•	•.9£±•.710	•
donepezil ۱۰۰ μM + * metoclopramide οι μM	•.1V±•.•1£ ^{ab}	٨٤.٠٤	•.•٦±•.••٢ ^{ab}	۸۸ <u>.</u> ۸۹
donepezil $\cdots \mu M + {}^{\ddagger}$ metoclopramide $\circ \mu M$ before chlorpyriphos ${}^{\natural} \mu M$	•.•^±•.•Y۱ª	٩٢_٩٦	•.• ٤±•.• ١٤ ^{ab}	٩١_٩٢
donepezil ^γ ° μM + * metoclopramide ^γ ° μM	• ⁴ ٤±•• ^{ab}	٧٧.٤٧	•.•٦±•.•٢٨ ^{ab}	۸۷ <u>.</u> ۸۸
donepezil ^Υ ° μM + [‡] metoclopramide ^Υ ° μM before chlorpyriphos ^٤ μM	•.)•±•.•)٤ª	٩٠.٦١	•.• ٤±•.•• ¥ ^{ab}	٩٢_٩٣
donepezil $\cdots \mu M + *$ diphenhydramine $\cdots \mu M$	•	٧٩_٩١	•.•\±•.••Y ^{ab}	٩٨.٥١
donepezil $\cdots \mu M + {}^{\ddagger}$ diphenhydramine $\cdots \mu M$ before chlorpyriphos ${}^{\natural} \mu M$	•.•٢±•.•٢١ ª	٩٨.٦٩	•.••±•.•• ^{ab}	۱
donepezil ۲° µM + * diphenhydramine ° • µM	•. ٤٣±••0٧ a b	٦٢_٤٥	•.•Y±•.•1٤ ^{ab}	٩٤.٠٣
donepezil ^Υ ° μM + [‡] diphenhydramine [°] μM before chlorpyriphos ^٤ μM	•.• ٤±•.•) ٤ ª	۹٦ _. ૦١	•.••±•.•• ^{ab}	۱

 $N=\gamma$ / concentration groups.

* Cholinesterase inhibition was detected after \cdot min incubation of the sample with the mixture of weak ChE inhibitors.

‡ The mixture of weak ChE inhibitors was added to the reaction mixture `• min before the strong ChE inhibitors (chlorpyriphos) addition.

a Significantly different from their respective control (•) group, P<•...

b Significantly different from the strong ChE inhibitors (chlorpyriphos) (ξ μM), P<•.••

Table " : In vitro inhibition of human plasma and erythrocyte cholinesterase activities				
by a combination of weak Ch	E inhibitors (metoclopramide with			
diphenhydramine) and their effe	ct on ChEs inhibition by the strong			
inhibitor (chlorpyriphos)				

Inhibitors (M)	Plasma ChE		Erythrocyte ChE	
Inhibitors (µM)	$\Delta pH/\mathbf{Y} \cdot min$	% Inhibition	$\Delta pH/\mathbf{Y} \cdot min$	% Inhibition
• µМ	1.1V±182	٠	•.º\$±•.٣٢\$	•
metoclopramide $\circ \cdot \mu M + *$ diphenhydramine $\cdot \cdot \cdot \mu M$	•.••٩±•.•• ^a	97.12	•.٢٩±•.•٩١ ^b	١٣_٤٣
metoclopramide $\circ \cdot \mu M + {}^{\ddagger}$ diphenhydramine $\cdot \cdot \cdot \mu M$ before chlorpyriphos ${}^{\natural} \mu M$	•.•1±•.•1٤ª	۹۹_۱۳	•.17±•.•£9 ^{ab}	٦١_٤٩
metoclopramide $\circ \mu M + *$ diphenhydramine $\circ \mu M$	•_17±•_•71 a	۸۹ _. ۹٦	•.7٣±•.•• ^{vab}	٣٢.٨٤
metoclopramide ^Υ ° μM + [‡] diphenhydramine [°] • μM before chlorpyriphos ^٤ μM	•.• ٤±•.•• ٧ ^a	٩٦.٩٤	•.1V±•.•YA ^{ab}	٤٩ <u>.</u> ٢٥
metoclopramide $7 \circ \mu M + *$ diphenhydramine $7 \circ \mu M$	•	۸۲ <u>.</u> ٦٤	•.••±•.•*A	۲۸.0۷
metoclopramide ^Υ ° μM + [‡] diphenhydramine ^Υ ° μM before chlorpyriphos ^٤ μM	•.•9±•.•9Y a	٩٢_٩٨	•.00±•.•17	۲۲_۱٤
metoclopramide $17.0 \mu M + *$ diphenhydramine $0.4 \mu M$	•.º^±•.••Y ^{ab}	٥٢.٤٨	•.٦٧±•.١٢• ^{ab}	٤٩٩
metoclopramide $17.\circ \mu M + \ddagger$ diphenhydramine $\circ \cdot \mu M$ before chlorpyriphos $\ddagger \mu M$	•.•٣±•.•• ^v ^a	٩٧.٩٣	•	٤٦.٤٣
metoclopramide $17.0 \mu M + *$ diphenhydramine $70 \mu M$	•	٧٦ <u>.</u> ٨٦	•.00±•.•12ª	<u>וז זי</u> זע
metoclopramide ^{\Υ} .° μM + [‡] diphenhydramine ^Υ ° μM before chlorpyriphos [¢] μM	•.• ٤±•.•• ^a	٩٦ <u></u> ٦٩	۰.٤٧±۰.۰۲۱ ^a	Y9.00

N=Y / concentration groups.

* Cholinesterase inhibition was detected after \cdot min incubation of the sample with the mixture of weak ChE inhibitors.

b Significantly different from the strong ChE inhibitors (chlorpyriphos) (ξ μM), P<·.·•

The mixture of weak ChE inhibitors was added to the reaction mixture \cdot min before the strong ChE inhibitors (chlorpyriphos) addition.

a Significantly different from their respective control (•) group, P<•...

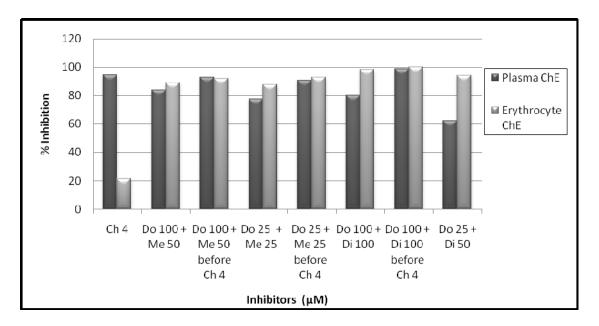


Figure 1 : % Inhibition of human plasma and erythrocyte cholinesterase by a combination of weak ChE inhibitors donepezil (Do) with metoclopramide (Me) and then donepezil (Do) with diphenhydramine (Di) and then each combination with the strong ChE inhibitor chlorpyriphos (Ch).

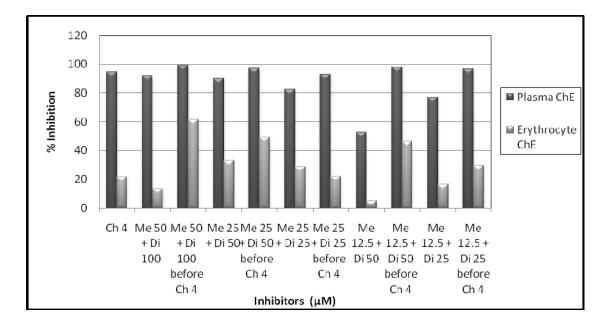


Figure Υ : % Inhibition of human plasma and erythrocyte cholinesterase by a combination of weak ChE inhibitors metoclopramide (Me), diphenhydramine (Di) and then each combination with the strong ChE inhibitor chlorpyriphos (Ch).

Discussion

In vitro ChE inhibition system is used to evaluate ChE inhibiting potential of chemicals with binding affinities to ChE YA,YA . It was found that there was a good correlation between ChE inhibitions in vitro and in vivo^r, and usually in vitro ChE inhibition assists in the clinical interpretation of pesticide intoxication Y,YY .

As expected, chlorpyriphos , which is an OP, caused ChE inhibition in the plasma and erythrocyte (in vitro). This is in correlation with previous in vitro studies in human^{YY,YE}. In the present study, chlorpyriphos inhibited plasma ChE activity more than erythrocyte ChE. This effect has been reported by others^{Yo}. It was attributed to the inherent activity of the particular OP; it is well known that OP may vary in their inhibition potentials of tissue ChE

Weak or reversible ChE inhibitors can reduce or prevent toxicity of OP', and also prevent further increase in ChE inhibition caused by $OP^{\gamma\gamma, \tau \epsilon}$. However, weak ChE inhibitors given after OP, might increase the toxicity of the latter compound^{γ_{Λ}}, this is why we use the weak inhibitor before the strong one rather than after it. These weak inhibitors increased ChE inhibition in subjects already exposed to anti ChE, the weak inhibitor may inhibit a small fraction of residual ChE activity or they do not bind the same sites that bind with OP resulting in maximum toxicity ¹.

All the drugs used in this study are of known ability to inhibit the ChE in varying degrees, metoclopramide and diphenhydramine (as a weak inhibitors) both have been tested as protective agent against OP poisoning both in vitro and in vivo $11,7,7^{\circ}$. Donepezil, a known anticholenesterase drug 7° , no previous study poses its ability to protect the ChE against OP poisoning. In this study we use each of them as ChE inhibitor and as a protector against OP, and then we combined both of them to find whether the combination will protect or further increase the OP ChE inhibition.

We found that all the weak ChE inhibitors showed different levels of inhibition of plasma ChE but all of them increased OP ChE inhibition when given before it (Table 1). The erythrocyte ChE showed a similar result (Table 1) except that metoclopramide •• µM which reduced the ability of its toxicity from $(\vee \vee, \vee \%)$ to $(\circ \xi, 9\%)$ when given before the OP (chlorpyriphos), but still higher than OP ChE inhibition (Table)). Also metoclopramide ^{Yo}µM showed further decrease in OP ChE inhibition to lower than the normal inhibitory level (7.5%) reduced to (7.5%) (not statistically significant), but it is still higher than its normal inhibitory level (\vee, \vee) (i.e. Increase its toxicity and decrease OP ChE inhibition) (Table 1). Diphenhydramine \... µM showed low level of erythrocyte ChE inhibition alone but still increased OP ChE inhibition (Table ١), whereas diphenhydramine ouM show high level of increasing ChE inhibition as alone and with OP but still lower than the other weak ChE inhibitors (Table ١).

combinations The showed slightly different results, donepezil combination with other weak ChE inhibitor show maximal increase in the toxicity for both plasma and erythrocyte ChE (increase both its own alone and the OP % of inhibition) (Table 7, Figure 1). Although the two combinations (donepezil 1.. μM with metoclopramide o. uM, donepezil Yo μM with metoclopramide $\gamma \circ \mu M$) showed increase in their own toxicity alone when used with the OP but still lower than (yet not statistically significant) the % of plasma ChE

inhibition of OP alone (Table ⁷, Figure 1). This result probably refers to the effect of metoclopramide because no such effect have been seen with the same donepezil concentration alone or with the same concentration when used as combination with the diphenhydramine (Table ^Y, Figure ^Y). However, metoclopramide affect the erythrocyte ChE more than the plasma ChE (Table ¹, Table ^r, Figure $(7)^{11,72}$, so such effect could be referred to the effect of the two weak inhibitors (donepezil ChE and metoclopramide) as a combination when used together in this concentrations.

The combinations containing metoclopramide and diphenhydramine showed different results, % of inhibition of plasma ChE showed the same result of the previous combinations (i.e. Increase in % of its inhibition alone and that of OP plasma ChE) (Table \mathcal{T} , Figure \mathcal{T}). However, in case of erythrocyte ChE showed different way of inhibition, all of the combinations showed reduction of % of inhibition of one of its component when used alone (i.e. the weak ChE inhibitors protect erythrocyte ChE from each other to produce what we call it a mean of % of inhibition which is between the % of erythrocyte inhibition of the two weak inhibitors when used alone in different degree of inhibition regarding each combination) (Table \mathcal{T} , Figure \mathcal{T}). Such protection can be caused by the competition of the two ChE inhibitors on the enzyme molecule but in different degrees of affinity for each concentration, this is why we found different abilities of lowering the % of inhibition for each concentration used alone and when used as a combination with other concentrations of the other weak ChE inhibitors (Table ^r, Figure^r).

When all the combinations were used with the strong ChE inhibitor (chlorpyriphos) they showed increase in their own toxicity compared to its use alone and higher than that the % of inhibition of OP alone . but still not like those very high in the combinations containing the donepezil (Table \mathcal{T} , Figure \mathcal{T}). This could be caused by their abilities of inhibition of the enzyme being lower than that of donepezil (i.e. the selectivity of the donepezil is higher). Although the two combinations (that containing diphenhydramine $\gamma \circ \mu M$) show the lowest % of erythrocyte ChE inhibition given before the OP when (chlorpyriphos) (slightly above the % of inhibition of OP alone), but still not considered as protective since these could not reduce the % of inhibition below the that of OP alone.

Suggesting that the diphenhydramine could have affinity to bind the enzvme more than metoclopramide and donepezil when used within a combination with other weak ChE against the OP toxicity (chlorpyriphos), and the metoclopramide have high affinity than diphenhydramine to bind the erythrocyte ChE enzyme in а combination containing no OP. This is seen in all combinations with different concentrations of both metoclopramide and diphenhydramine (Table \mathcal{T} , Figure ٢).

Conclusion

The use of weak ChE inhibitors may reduce the toxicity of strong one OP, but still not to significant degree. The use of a combination of such weak ChE inhibitor as a protector to reduce the toxicity of strong one (OP) show slightly different way of inhibition and reduction of OP toxicity than when used as alone depending on their different abilities to compete with each other and different affinities to bind the enzyme, and this phenomenon differs from one concentration to other for each one of the weak ChE inhibitor.

Acknowledgments

The study was supported by the College of Pharmacy, University of Mosul, Iraq.

References

- 1- Coggon D. Work with pesticides and organophosphate sheep dips. Occup Med, Y · · Y; oY: £7V£V · .
- Y- Wilson BW. Cholinesterase inhibition. In: Wexler P (ed.). Encyclopedia of Toxicology. Vol.
 Academic Press, San Diego 1994; YY1-YE.
- F- Bajgar J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv Clin Chem Y... £; TA: 101-T17.
- ٤- Rusyniak DE, Nanagas KA. Organophosphate poisoning. Semin Neurol Υ·· ٤;Υ٤: ١٩٧-Υ· ٤.
- Wilson BW. Clinical enzymology. In: Loeb WF,Quimby FW (eds.). The clinical chemistry of laboratory animals. Philadelphia, PA: Taylor and Francis ۱۹۹۹;۳۹۹-٤٥٤.
- ¹- Karanth S, Pope C. In vitro inhibition of blood cholinesterase activities from horse, cow, and rat by tetrachlorvinphos. Int J Toxicol $\tau \cdot \cdot \tau; \tau \tau(\tau): \epsilon \tau \eta - \tau \tau$.
- Y- Bird SB, Gaspari RJ, Lee WJ, et al. Diphenhydramine as a protective agent in a rat model of acute, lethal organophosphate poisoning. Acad Emerg Med Y...Y;9:1779-17YY.
- A- Faris GAM, Mohammad FK. Prevention and treatment of dichlorvos-induced toxicosis in mice by diphenhydramine. Vet Hum Toxicol 1997; ٣٩: ٢٢-٢٥.
- ⁹- Yakoub LK, Mohammad FK. .Medetomidine protection against

diazinon-induced toxicosis in mice. Toxicol Lett 199Y;9T:1-A.

- Y-- Petroianu GA, Hasan MY, Nurulain SM, Arafat K, Sheen R, Saleh A, Schmitt A.,. Protective drugs in acute large-dose exposure to organophosphates: A com parison of metoclopramidee and tiapride with pralidoxime in rats. Anesth Analg Y ... CYY-TAJ.
- 11- Mahmood AAJ. Interaction of Phenothiazines with Dichlorvos (Cholinesterase Inhibitors) in Vitro Study. M.Sc. Thesis, College of Pharmacy, University of Mosul, Mosul. 1000.
- ۲۲- Rang HP, Dale MM, Ritter JM, Moore PK.. Pharmacology. °th ed, Churchill Livingstone, Edinburgh. ۲۰۰۳;۳۷٤.
- Y^{*-} Petroianu GA, Hasan MY, Kosanovic M, Vijayasarathy C, Saleh AM.,. Metoclopramidee protection of cholinesterase from paraoxon inhibition. Vet Hum Toxicol Y···^{*}; ²o:Yo)-Yo^{*}.
- 1[±]- Al-Zubaidy, MHI. Interaction of metoclopramidee with cholinesterase Inhibitors in chicks.
 M.Sc. Thesis, College of Veterinary Medicine, University of Mosul, Mosul, ^{*}··[±]
- Petroainu, GA, Kuhn,F, Thyes C, et al. In vitro protection of plasma cholinesterases by metoclopramidee from inhibition by paraxon. J. Appl. Toxicol Y...Y;YY:Yo_Y9.
- N- Shinner, HJ, Girling, KJ, Whitehurst A, Nathanson, MH. Influence of metoclopramidee on plasma cholinesterase and duration of action of mivacurium. Br J Anesth \1999; \17(2):027-020.
- ۱۷- BNF. British National Formulary ۹٦, British Medical Association, Royal Pharmaceutical Society of Great Britin. UK ۲۰۰۸.
- \A- Laurence DR, Bennett PN, Brown MJ.. Clinical Pharmacology. 4th

ed., Churchill Livingstone, New York $7 \cdot 7; 77 \cdot 5 \cdot 5$.

- Potter WZ, Hollister LE. Antihistaminic agents. In. Katzung, BG. (editor). Basic and Clinical Pharmacology. ⁴th edition, Lange Medical Books / Mc Graw Hill. New York. Y •• Y; • Y) -• 75.
- Y -- Al-Baggou' B.Kh, Mohammad F.
 K. Antagonism of methomylinduced toxicosis by diphenhydramine in rats; Environ Toxicol Pharmacol, 1999;V:119-1Yo
- Y)- Al-Baggou BKh, Mohammad F.K. Effects of histamine H₁ antagonists on the acute toxicity of physostigmine and neostigmine in mice. Iraqi J Vet. Sci <u>1996</u>;11:
- YY- Fernandez G, Diaz Gomez MI, et al. Cholinesterase inhibition by phenothiazine antihistaminic: analysis of its postulated toxicity. Toxicol Appl Pharmacol 19Yo; T1:1Y9-19.
- ۲۳- Ahmed OAH, Mohammad FK.,.A simplified electrometric technique for rapid measurement of human blood cholinesterase activity. Internet J Toxicol ۲...o; ۲(1).
- Y ٤- Mohammad FK, Alias AS, Ahmed OAH., Electrometric measurement of plasma, erythrocyte and whole blood cholinesterase activities in healthy human volunteers. J Med Toxicol Y ... Y; T: Yo-T.
- Yo- Mohammad FK, Faris GA-M, Al-Kassim NA. А modified electrometric method for measurement of ervthrocvte acetylcholinesterase activity in sheep. Vet Hum Toxicol 199V; *<i>"9.777_779*

- ۲٦- Bruning JL, Kintaz, BL. Computational Handbook of Statistics. Scott, Foresman and Co., Glenview, Illinois, ۱۹۷۷: ۱۸.
- YV- Petrie A. Lecture Notes on Medical Statistics. Black Well Scientific Publications, Oxford.
 YYA
- YA- Long PW. Phenothiazine tranquilizers. Internet Mental Health. J Appl Toxicol Y · · o; \ o(A): o · - Y.
- Y۹- Nasello AG, Gidali, D, Felicio LF. A comparative study of the anticholinestrase activity of several antipsychotic agents. Pharmacol Biochem Behav Y..., Yo(i): A90-9.1.
- *•- Iyaniwura TT. In vitro toxicology of organophosphorus pesticide combinations. In Vitro Toxicol 199•; r: rvr-rvy.
- ۳۱- WHO. Methomyl. World Health Organization, Geneva ۱۹۹٦;۷٤-۷٦.
- ^{rr}- Fikes JD. Organophosphorous and carbamate insecticides. Vet. Clin. North Am: Small Anim. Prac 199.; r.: ror_riv.
- ۳۳- Somani SM, Dube SN. Physostigmine: An overview as pretreatment drug for organophosphate intoxication. Int. J. Clin Pharmacol Therap Toxicol ۱۹۸۹; ۲۷: ۳٦٧- ۳۸٧.
- ۲٤- Al-Zubaidy MHI, Mohammad FK, Metoclopramidee protection of diazinon-induced toxicosis in chickens J Vet Sci ۲۰۰۷;۸:۲٤۹-۲۰٤
- *o- Inglis F.The tolerability and safety of cholinesterase inhibitors in the treatment of dementia.Int J Clin Pract Suppl Y...Y; YY: 20-17.