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Abstract 
In this research, the effect of seawater environments and surface roughness on uniform 

corrosion rate of carbon steel (A516 grade 65) was studied depending on the experimental 
work and artificial neural network modeling. The experimental work involves chemical 
composition,  samples machining, roughness measurements (for carbon steel specimens), 
conductivity and salinity measurements (for seawater), and uniform corrosion test. Weight 
loss technique was employed in determining the uniform corrosion rate in carbon steel 
material. Also, artificial neural network (ANN) model was built to predict the values of 
uniform corrosion rate (mpy) at different values of conductivity, salinity for seawater and 
roughness factor for carbon steel depending on the experimental results which were used train 
and test the ANN. 

The results obtained of uniform corrosion rate by ANN predictions are shown to be 
agreed well against experimental values. i.e. correlation coefficient, R=0.9974 

 

دراسة تأثير محيط ماء البحر وخشونة السطح على معدل التاكل المنتظم للصلب الكربوني بأستخدام 
 الشبكات العصبية الاصطناعية

 
  جامعة البصرة– كلية الهندسة –د. حيدر معاذ محمد ، قسم هندسة المواد 

الخلاصة 
) اعتماداُ A516 grade 65في هذا البحث ، تم دراسة تأثير محيط ماء البحر وخشونة السطح على معدل التاكل المنتظم في الصلب الكربوني (

على الاختبارات العملية ونموذج الشبكة العصبية الاصطناعية. تضمنت الاختبارات العملية التحليل الكيميائي لمادة الصلب الكربوني ، تشغيل وتحضير 
العينات ، قياسات خشونة السطح للعينات ، قياسات موصلية وملوحة ماء البحر ، واختبار التاكل المنتظم. استخدمت طريقة فقدان الوزن في حساب 

معدل التاكل المنتظم في الصلب الكربوني. كذلك تم بناء نموذج الشبكة العصبية الاصطناعية لتنبؤ قيم معدل التاكل المنتظم (ملغرام/سنة) عند قيم 
مختلفة لموصلية وملوحة ماء البحر وخشونة سطح العينات وذلك بالاعتماد على نتائج الاختبارات العملية والتي استخدمت لتدريب واختبار الشيكة 

العصبية الاصطناعية. 
ظهررت نتائج البحث بأن هنالك تواف  كبير بين قيم معدل التككل المنتظم التي تم التنبؤ با بواسطة الشبكات العصبية الاصطناعية وبين قيم معدل 

  0.9974التاكل المنتظم العملية ، ظي ان قيمة معامل الارتباط = 
 

 
1. Introduction 
Corrosion involves the interaction 
(reaction) between a metal or alloy and its 
environment. Corrosion is affected by the 
properties of both the metal or alloy and 
the environment [1]. Due to aggressive 
environment prevailing in seawater, the 
materials of construction are subjected to 

corrosion of varying degree. There are 
many factors influencing the initiation of 
one or several corrosion processes. These 
factors include nature of material, surface 
finish, seawater environment ,temperature, 
etc[2].  
Carbon Steel, the most widely used 
engineering material, accounts for over 64 
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million tons, or approximately 88%, of the 
annual steel production in the United 
States. Despite its relatively limited 
corrosion resistance, carbon steel is used in 
large tonnages in marine applications, 
nuclear power and fossil fuel power plants, 
transportation, chemical processing, 
petroleum production and refining, 
pipelines, mining, construction, and metal-
processing equipment. The cost of metallic 
corrosion to the total economy must be 
measured in hundreds of millions of 
dollars per year. Because carbon steels 
represent the largest single class of alloys 
in use, both in terms of tonnage and total 
cost, it is easy to understand that the 
corrosion of carbon steels is a problem of 
enormous practical importance. This, of 
course, is the reason for the existence of 
entire industries devoted to providing 
protective systems for irons and steels [3]. 
The basic properties of ANN are that it is 
particularly suited to problems whose 
solution is complex and difficult to 
specify. Neural networks learn by 
example, and as long as examples are 
available and an appropriate design is 
adopted, effective solutions can be 
constructed far more quickly than is 
possible using traditional approaches, 
which are entirely reliant on experience in 
a particular field. Training a neural 
network is computationally intensive, but 
the computational requirements of a fully 
trained neural network when it is used on 
test data can be modest. Many other 
processing techniques are based on the 
theory of linear system; in contrast, neural 
networks can be trained to generate non-
linear mappings and this often gives them 
an advantage for dealing with complex, 
real-world problems [4]. 
One of the more important factor used in 
this study is surface roughness. The terms 
surface finish and surface roughness are 
used very widely in industry and are 
generally used to quantify the smoothness 
of a surface finish. In 1947, the American 
Standard B46.1-1947 [5], Surface texture 
is the pattern of the surface which deviates 

from a nominal surface. The deviations 
may be repetitive or random and may 
result from roughness, waviness, lay, and 
flaws. Surface finish could be specified in 
many different parameters. Due to the need 
for different parameters in a wide variety 
of machining operations, a large number of 
newly developed surface roughness 
parameters were developed. Some of the 
popular parameters of surface finish 
specification are described as follows: 
• Roughness average (Ra): This parameter 
is also known as the arithmetic mean 
roughness value, AA (arithmetic average) 
or CLA (center line average). Ra is 
universally recognized and the most used 
international parameter of roughness. 
Therefore, 

∫=
L

dxxY
L

Ra
0

)(1
                            …(1) 

where Ra = the arithmetic average 
deviation from the mean line 
L = the sampling length 
y = the ordinate of the profile curve It is 
the arithmetic mean of the departure of the 
roughness profile from the mean line. 
• Root-mean-square (rms) roughness (Rq): 
This is the root-mean-square parameter 
corresponding to Ra: 

∫=
L

dxxY
L

Rq
0
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                    …(2) 

• Maximum peak-to-valley roughness 
height (Ry or Rmax): This is the distance 
between two lines parallel to the mean line 
that contacts the extreme upper and lower 
points on the profile within the roughness 
sampling length. 
Since Ra and Rq are the most widely used 
surface parameters in industry, Ra was 
selected to express the surface roughness 
in this paper. 
Several papers have been employed for 
seawater corrosion such as Corrosion 
Behavior of Selected Metals in Arabian 
Gulf Seawater [6], Corrosion Initiation and 
Propagation of Ni-Base Alloys in Seawater 
Applications [7], Localized Corrosion 
Tendencies of Piping Materials used in 
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Chlorinated Seawater [8], and 
Understanding and Modeling Galvanic 
Corrosion in Marine Environments [9], etc. 

   
2. Experimental Work 
The experimental work includes: 
specimens preparations, surface 
preparation, conductivity/salinity 
measurements and uniform corrosion test. 
The results were used in the training and 
testing of the artificial neural network to 
predict uniform corrosion rate (mpy) for 
carbon steel.  
 
2.1 Specimens preparations 
Sixty specimen of carbon steel A516 grade 
65 were machined from solid bar (length 
1m , diameter 12 mm) by sawing Machine 
to 5 mm depth and 12mm diameter as 
shown in Fig. (1). 

 
Fig. (1) Specimens of the present work 
 
2.2 Chemical Composition 
The chemical composition of the 
specimens used in the present study was 
carried out using optical emission 
spectrometer (PM1-Master PRD model 
2008, Germany). The chemical 
composition was found correspond to 
Alloy A516 grade 65 according to ASTM 
standard values [10] given in    Table (1). 
 
2.3 Surface preparation 
The specimens were subjected to different 
degrees of surface finish. Polishing of the 
specimens is carried out by machine 
(Struers Knuth-Rotor-3) type, using 
successively different grades of abrasive 
papers. The preliminary polishing stages 
were alternately longitudinal and 

circumferential to ensure that longitudinal 
scratches made by the coarser grades of 
abrasive papers are removed, but the 
direction of the final stage was 
longitudinal. The finished test section of 
the specimens became obviously contain 
no unintentional stress raisers, such as 
transverse scratches or poorly-blended 
transition fillets. The measurements of 
surface roughness were performed using 
surface roughness tester type Qualitest TR-
110, US  in terms of surface roughness 
factor Ra in (µm) according to ISO 
4287:1997 Standard.  The prepared 
specimen surfaces with different surface 
roughness factor were utilized for 
precorrosion stage. 
 
2.4 Conductivity/Salinity Measurements 
Aqueous chloride solutions of varying 
chloride concentration and seawater (Shatt 
Al-Arab, Shatt Al-Basrah seawater) were 
used during the uniform corrosion tests. 
Conductivity is a measurement of the 
conductive material in the liquid sample. 
Measures the ability of water to carry an 
electrical current. It is dependent upon the 
concentration and type (oxidation state and 
mobility) of ions in the water and the water 
temperature. While, salinity is a measure 
of the salt concentration of water; higher 
salinity means more dissolved salts. 
Standard Operating Procedure (SOP) for 
Field Measurements of 
Conductivity/Salinity with a Conductivity 
YSI Meter and Probe.  This SOP is to be 
followed for all field measurements of 
conductivity or salinity using the YSI 30 
meter and probe. 
 
2.5 Uniform corrosion Test 
Corrosion behaviour is a combined 
property of the metal and the environment 
to which it is exposed. Therefore, there is 
no universal corrosion test for all purposes. 
The factors associated with both the metal 
and the environment should be considered 
and controlled, when necessary, to 
establish appropriate exposure conditions 
during testing. Uniform corrosion is one of 
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the most common forms of corrosion; 
therefore, it must be designed for in many 
situations. The damage appears as the 
thickness of the metal decreases uniformly 
until failure occurs. Fortunately, uniform 
corrosion is usually easy to measure and 
predict; this facilitates proper design [1]. 
The freshly prepared specimens of 12mm 
diameter and 5mm thickness were 
weighted to the nearest 0.0001 g. The 
uniform corrosion process involved 
immersion of specimens in different 
seawater conductivity/salinity at 
temperature of 25±2oC, within a specified 
duration period of 24, 48, 72 and 96 hours 
in each individual conductivity/salinity. 
After uniform corrosion test was done, the 
specimens were weighted again to 
calculate the loss mass in every specimen.  
Uniform corrosion rates are represented as 
a loss of metal thickness as a function of 
time. These values were measured from 
mass loss data. Mass loss is a measure of 
the difference between the original mass of 
the specimen and the mass when sampled 
after exposure. As mass loss was 
monitored, the reduction of thickness as a 
function of time was calculated and 
monitored. Uniform corrosion rates are 
usually expressed as millimeters per year 
(mm/yr), mils per year (mils/yr), and/or 
inches per year (in./yr). A corrosion rate in 
mils per year was calculated from weight 
loss data with the following expression: 
 
mpy=(534w/dAt)                                …(3) 
 
where w is weight loss in milligrams, d is 
metal density in grams per cubic 
centimetre (g/cm3), A is area of exposure 
in square inches (in.2), and t is exposure 
time in hours.  
 
3. Artificial Neural Network Modeling 
The artificial neural network modelling 
was used to predict the uniform corrosion 
rate in carbon steel under the effect of 
seawater environments and metal surface 
roughness. The inputs are conductivity 
(S/m), salinity (g/kg), and roughness factor 

(µm) and output was corrosion rate (mpy). 
The randomly selected data used to train 
and test neural network are 45 and 12 
respectively. 
During the training process, the network 
weights are continuously adjusted till the 
difference between the predicted output 
and experimental value is minimized, i.e. 
the error function defined as the sum of 
squares of the difference between 
predicted and experimental value on all the 
data reaches a set limit or the number of 
predetermined training operations are 
completed. A critical factor in developing 
a robust model is the numerical 
optimization technique applied for 
minimizing the error. Neural network 
functions depend non-linearly on their 
weights and so the minimization of the 
corresponding error function requires the 
use of iterative non-linear optimization 
algorithms. These algorithms make use of 
the derivatives of the error function with 
respect to the weights of the network. 
Resilient backpropagation algorithm is the 
optimization technique employed in 
building of present artificial neural 
networks. After completing the training 
process, the model is tested using another 
batch of data which has not been used in 
the training set [11]. 
The following statistical parameters of 
significance are calculated at the end of the 
training and testing calculations: 
1. Correlation coefficient (R): is a measure 
of how the actual and predicted values 
correlate to each other. The goal is to 
maximize the value of R. 
2. Mean square error (MSE): is a 
statistical measure of the differences 
between the values of the outputs in the 
training set and the output values the 
network is predicting. The goal is to 
minimize the value of MSE. 
The statistical parameters used to give a 
description for good training for the 
present artificial neural networks 
modelling are: R= 0.9974, MSE=1.232*10-6 

Two hidden layers are used in the neural 
network modelling of the present study 
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because it performs significantly better 
than one hidden layer. Although, using a 
single hidden layer might be sufficient in 
solving many functional approximation 
problems, some other problems may be 
easier to be solved with two hidden layers 
configuration [12]. 
The number of nodes in the hidden layer 
will be selected according to the following 
rules: 
1. The maximum error of the output 
network parameters should be as small 
as possible for both training patterns and 
testing patterns. 
2. Mean square error should be small as 
much as possible. 
The optimal configurations in two hidden 
layers networks with minimum mean 
square error (MSE) and maximum 
correlation coefficient for the present 
neural network are 17:8 (17 nodes in the 
first hidden layer and 8 in the second 
hidden layer). 
 
4. Discussion 
4.1 Neural Network Architecture 
The architecture of neural network for this 
model is given in Figure (2). It consists of 
three nodes in the input layer, two hidden 
layers are chosen which gives minimum 
mean square error (MSE) and maximum 
correlation coefficient, the first hidden 
layer has (17) nodes, and the second 
hidden layer has (8) nodes. The output 
layer has single node which was 
represented by uniform corrosion rate. 
The decision function used for both of the 
first hidden layer and second hidden layer 
is (tansig), and for the output layer is 
(purelin). These functions were chosen for 
first hidden, second hidden and the output 
was obtained by trial and error until the 
best performance was achieved by 
approaching the minimum values of mean 
square error and maximum correlation 
coefficient. The results obtained of 
uniform corrosion rate by artificial neural 
network prediction was shown to be agreed 
well against experimental values. i.e. 

correlation coefficient, R=0.9974 as shown 
in Figure (3). 
 
4.2 Surface Roughness  
Figure (4) shows the effect of surface 
roughness factor on uniform corrosion rate 
at different salinity weight. It was found 
that uniform corrosion rate increases 
directly with the increase of both 
roughness factor and salinity weight. For 
instance, rough surface corrodes and 
enhances general corrosion more readily 
than smooth surface [1].  
Also, the low roughness factor with 
different salinity weight (Figure 4) did not 
show a remarkable increase in uniform 
corrosion rate. In general, samples 
prepared with a smooth surface finish (low 
roughness factor) are not susceptible to 
corrosion and exhibit a higher corrosion 
potential (i.e. decrease uniform corrosion 
rate) [1].   
 
4.3 Salinity/Conductivity 
The effect of salinity weight on uniform 
corrosion rate of carbon steel A516 grade 
65 at different roughness factor was shown 
in Figure (5). It is clear that increasing of 
salinity weight will increase the uniform 
corrosion rate. Increase of salt in seawater 
increase the corrosion rate of iron. This 
increase is reported to be proportional to 
the increase of salt concentration. [13]. A 
similar effect is reported for chloride ion in 
HCl. Thus, chloride ion accelerates the 
corrosion of ion in acidic solutions [14].  
The effect of seawater conductivity on 
uniform corrosion rates of carbon steel 
A516 grade 65 at 25±2oC as studied by 
weight loss method indicate that the 
uniform corrosion rates do not follow  a 
regular pattern at different roughness 
factor but in general, the uniform corrosion 
rate increase directly  with increasing of 
seawater conductivity as shown in Figure 
(6).  
Metcalf and Eddy (1991) [15] states that 
"the electrical conductivity (EC) of water 
is used as a surrogate measure of total 
dissolved solids (TDS) concentration. 
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Conductivity typically has a strong linear 
relationship to TDS. Therefore, increasing 
of conductivity will increase of TDS and 
this means that increasing of TDS leads to 
increase of uniform corrosion rate in 
seawater because the passive film of metal 
will break down [16].   
  
5. Conclusions 
The most important conclusions that can 
be drawn from the present study are as 
follow: 

1. The results of artificial neural 
network modelling were found to 
be agreed well with that obtained 
from experimental work. 

2. In general, increasing of salinity 
weight with extended conductivity 
resulted in an increase of uniform 
corrosion rate. 

3. There is a large effect of rough 
surface on increasing of uniform 
corrosion rate.    
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Table (1) Results of chemical composition in wt% for carbon steel A516 grade 65 compared 
to ASTM Standard  

Material Carbon Manganese Phosphorus Sulphur Silicone 
Chemical Composition  0.20 0.83 0.01 0.035 0.20 
ASTM Results [21] 0.24 max. 0.79-1.30 0.035 max. 0.035 0.13-0.45 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.(3) Comparison between ANN Results and Target Results 
using Resiliant Backpropagation Algorithm

R=0.9974
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Fig. (4) Effect of roughness factor on corrosion rate at different 
salinity weight
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Fig. (5) Effect of salinity on corrosion rate at different 
roughness factor
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Fig. (6) Effect of Seawater Conductivity on corrosion rate at 
different roughness factor
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Fig. (2) The Structure of The Proposed ANNs. 


