OPTIMAL DESIGN OF REINFORCED CONCRETE COUNTERFORT RETAINING WALLS

Pro.Dr. NabeelAbdulrazzaqJasim

FalahMajeedHameed

ABSTRACT

Mathematical programming techniques have been used to minimize the cost of reinforced concrete counterfort retaining wall. The study presents a formulation based on elastic analysis and the ultimate strength method of design as per ACI-M318code. A computer program is generated to handle the considered problem. The formulation of optimization problem has been made by utilizing the interior penalty function method as an optimization method with the purpose of minimizing the objective function representing the cost of one-meter length of the counterfort retaining wall. This includes cost of concrete, reinforcement, and formwork. The design variables considered in this study are the dimensions and the amounts of reinforcement.

It is found that the optimal spacing of counterforts equals about (0.214 to 0.366) of total height of wall. The optimum width of the base is found in the range (0.50 to 0.78) of the total height of the wall. Also the thickness of the stem is in the range(0.0284 to 0.0377) of the total height and it is less than half thickness of the base.

Keywords: optimization, penalty function, reinforced concrete, Counterfortretaining walls

التصميم الأمثل للجدران الساندة للتربة من الخرسانة المسلحة والمدعمة بأجنحة

تم استخدام تقنيات رياضية برمجية لتصميم حدار خرساني ساند مدعم بأحنحة بأقل كلفة. واعتمدت الدراسة التحليل المرن للمنشأ والتصميم بطريقة المقاومة القصوى وفقا لمتطلبات نظام التصميم الأمريكي (ACI- Code). وابتكر برنامج لمعالجة مسالة البحث. وفي صياغة مسالة الأمثلية فقد تم الاستفادة من طريقة دالة الجزاء(penalty function method)للحصول على القيمة الصغربادالة الهدف وهي كلفة متر واحد من طول الجدار الساند0 وهذه الكلفة تتضمن كلفة الخرسانة وحديد التسليح وأعمال القالب.أن المتغيرات التصميمية المعتمدة في هذه الدراسةهيإبعاد وكميات حديدالتسليح .

ولقد وجد بان المسافة المثالية بين الأجنحة هي (0.214الى 0.366) من الارتفاع الكلي للحدار وان العرض المثالي للقاعدة يتراوح بين (0.50الى 0.78) من الارتفاع الكلي للحدار. وكذلك وحد بان سمك الجدار يتراوح بين (0.0377الى 0.0284) من الارتفاع الكلي وهو اقل من سمك القاعدة.

INTRODUCTION

If retaining walls having height of filling more than (6m), is designed as cantilever type retaining wall, the thickness of stem wall becomes excessive and design will be uneconomical [1]. Such walls should be designed as counterfort type retaining walls.

Analysis of a counterfort retaining wall proceeds with the selection of

provisional dimensions for the retaining wall, which are then analyzed for stability and other structural requirements, and subsequently revised, if required. Since this is a trial-and-error process, several solutions to the problem may be possible. Many of these solutions may be structurally satisfactory, but need not necessarily be so from the economic point of view. Several authors have surveyed the utilization of optimization in structural design.Chou [2] (1977) studied the optimum design of reinforced concrete Tbeam sections.The Lagrange multipliers technique was used to solve the problem.Subramanyamand

Adidam[3](1981)used the limit state method and mathematical programming to get the optimal designs of typical T-beam floor. The interior penalty method was solution. utilized get the to Α comprehensive method of finding out the optimum cross-section of a reinforced concrete cantilever retaining wall has been discussed elsewhere briefly by Choundhury [4] in 1980. Ibrahim [5] (1999) developed a computer program for the optimum design of T-beam floor based on ACI-318-89 Code requirements for both ultimate and serviceability limit states constraints.The interior penalty method was used.

In this study an attempt is made to obtain an economical design which satisfies building code requirements for reinforced concrete ACI 318M-2005 code. A mathematical programming method based on the concepts of the ultimate strengththeory and an optimization technique is developed.

Formulation of The Problem

1) Design variables

In the design procedure of the counterfort retaining wall, some parameters are considered to be constant along the designprocesses, and they should be given at the start of the program. These include:-

1. Soil parameters ϕ and *c* for both backfill and base soil (ϕ_1, ϕ_2, c_1 and c_2).

2. Height (H_2) of counterfort retaining wall

3. The bearing capacity of soil.

4. Unit weight of soils (γ_{s1} and γ_{s2}), concrete (γ_c), and steel γ_{steel} .

5. The minimum cover for the reinforcement of the stem and base.

6. The compressive strength of the concrete (f'_c) and the yield strength of the steel (f_y) .

7. The ratio (R_1) of the cost of concrete per cubic meter to cost of reinforcement per Newton, and the ratio (R_2) of the cost of formwork per square meter to cost of reinforcement per Newton.

The design variables are the geometric dimensions and the different steel reinforcement areas [Fig. (1)]. The geometric dimensions include: D_s thickness of stem; D_b thickness of base; B width of base (B=L_t+ D_s +L_h); L_c distance between counterforts center to center. While the steel reinforcement includes:

a) A_{s1} : the steelarea of main reinforcement at the bottom of toe.

b) A_{s2} and A_{s4} : the area of shrinkage and temperature steel reinforcement at the bottom and top of the toe in longitudinal direction.

c) A_{s3} : the area of shrinkage and temperature steel reinforcement at the top of toe

d) A_{s5} : the steel area of main reinforcement at the top of heel.

e) A_{s6} : the steel area of the reinforcement at the top of heel in longitudinal direction.

f) A_{s7} : the steel area of shrinkage and temperature reinforcement at the bottom of heel.

g) A_{s8} : the steel area of reinforcement at the bottom of heel in longitudinal direction.

h) A_{s9} and A_{s10} : the steel area of horizontal reinforcement at the stem in the two faces.

i) A_{s11} and As_{12} : the steel area of vertical reinforcement at the stem in the two faces.

j) A_{s13} : the steel area of reinforcement at the counterfort.

k) As_{14} and As_{15} : the tension steel to tie counterfort to the stem and the base, respectively.

In this study the followings are used:

1- ϕ_1 =30and c₁=0 or backfilland ϕ_2 =28° and c₂=1912 N\m² for the base soil.

2- The Rankine earth pressure coefficients $K_a(0.361, 0.333)$ and $K_p(2.8, 3)$ are used.

3- The load factor LF= 1.7.

4- The trial dimensions are chosen using Fig. (2) as a guide.

5- The stem thickness (Ds) based onwidebeam shearby takingthe criticalsectionat the base slab junction.This thickness is

assumed to be constant along the stem.

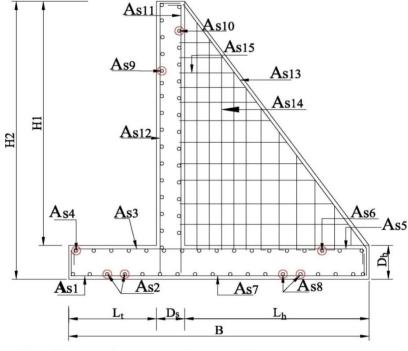


Fig. (1) reinforcement of counterfort retaining wall

6- Wall stability for overturning and sliding are checked and the resultant R is in the middle third of the base B, i.e., the eccentricity should be ($e \le L/6$).

2) Analysis of Structure

Counterfort retaining walls are indeterminate problems which can be solved using plate theory [6]. Simplified methods are commonly used to solve the problem [6].Huntington's design procedure is used in this study and shown in Figs. (2), (3) and (4).

3) DesignConstraints.

The design is required to satisfy two groups of constraints namely, the general constraints and the ultimate strength requirements in accordance with ACI-318M-2005 code. The explanations of these constraints are given below.

a) The General Constraints

These constraints relate to the general stability of the retaining wall and the soil resistance, and include:

1. Overturning: $\frac{resisting \ moment}{overturing \ moment} \ge F_o$ or $\frac{M_o}{M_r} = F_o -----(1)$ where: $F_o = Factor \ of \ safety \ against \ overturning$ 2. Sliding: $\frac{resisting \ force}{overturning \ force} \ge F_s$

or

$$\frac{P_r}{P_{a2}}$$
-----(2)

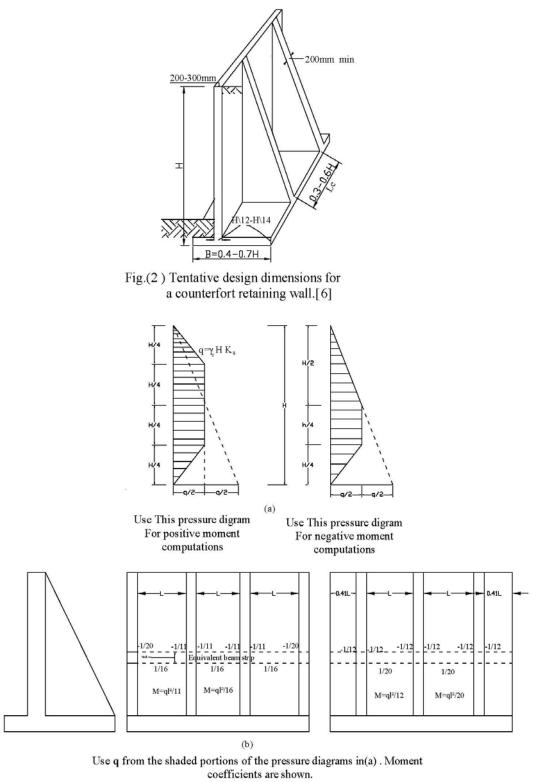


Fig. (3) Computation of bending moments in the horizontal direction for the counterfort stem[6]

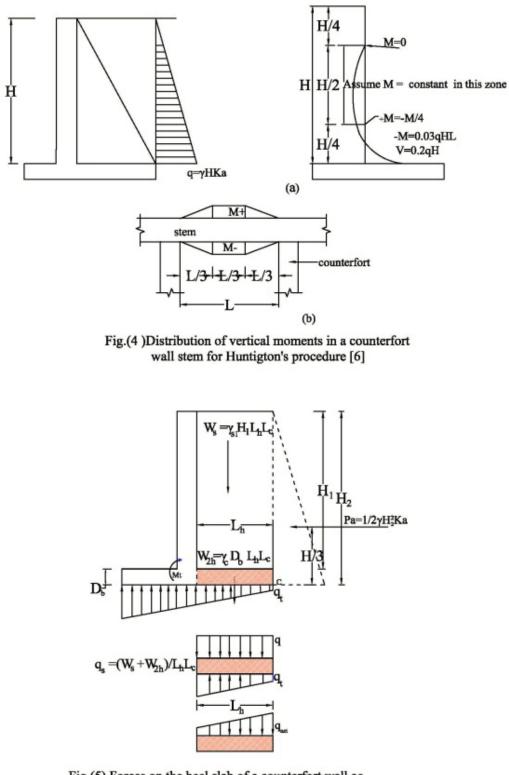


Fig.(5) Forces on the heel slab of a counterfort wall as proposed by Huntington [6]

where:

 $P_r = F_r + P_p$,

- $F_r = R \tan \delta_b + c_a B$
- F_s = Factor of safety against sliding
- P_{a2}=Total active pressure on the counterfort retaining wall
- δ_b = Angle with the horizontal, made by the sloped backfill
- R = the resultant of the vertical forces (concrete and soil)
- $c_a = (0.5 \text{ to } 0.75) \text{ c}, \text{ c cohesion of soil}$ below the base

3. The location of the resultant R is within the middle one-third the full base width B:

$$\operatorname{From}_{\overline{B \times L_{c}}}^{R} \left(1 + \frac{6e}{B}\right) \leq q_{a} \text{ and } e \leq \frac{B}{6}$$
$$\frac{3\left(M_{r}M_{o}\right)}{BR} - 1 \geq 0 - -- (3)$$

where:

e=the eccentricity of R with the respect to the base.

4. Bearing Capacity:

$$q_{a-} \frac{4R}{B \times L_c} + \frac{6(M_r \cdot M_o)}{B^2 \times L_c} \ge 0 --- (4)$$

a) The ultimate resistance constraints

These constraints ensure the design to fit the strength requirements of the ACI code, i.e., any section must be strong enough to resist the applied forces. The applied forces involve moments and shear.

For *the flexural constraints* the moments of resistance per unit length at the critical sections should not be less than the values due to the factored loads. These are represented by:

Moment in toe part:

 $\phi M_{r,t} \ge M_{u,t}$ ---- (5) Positive moment in heel:

$$\phi M_{r,hp} \ge M_{u,hp}$$
 ---- (6) Negative moment in
heel: $\phi M_{r,hn} \ge M_{u,hn}$ ---- (7)
Positive moment in stem

 $\phi M_{r,sp} \ge M_{u,sp}$ ---- (8) Negative moment in stem

$\phi M_{r,sn} \ge M_{u,sn}$ ---- (9)

where $M_{u t}$, $M_{u hp}$, $M_{u hn}$, $M_{u sp}$ and $M_{u sn}$ are the ultimate bending moments per unit length, and ϕ is the strength reduction factor (=0.9). M_{rt} , M_{rhp} , M_{rhn} , M_{rstp} and M_{rsn} are the section moments capacities per unit length.

A limiting constraint is also employed to specify that the tension reinforcement at the section is not less than the minimum area (A_{smin}) and not greater than the maximum area (A_{smax}) required by the code. This constraint is applied to the various critical sections including:

a) At the toe (section dimensions are 1m $\times D_b$),

 $A_{smax} \ge A_{s1} - - - - (11)$

b) At the heel (section dimensions are 1m \times D_b), for negative moment,

$$A_{s5} \ge A_{s\min} - - (12)$$

 $A_{smax} \ge A_{s5}$ ---- (13)

c) At the heel (section dimensions are 1m \times D_b), for negative moment in longitude direction ,

$$A_{s6} \ge A_{s \min} --- (14) A_{smax} \ge A_{s6} ---- (15)$$

d) At the heel (section dimensions are 1 m x D_b), for positive moment,

$$A_{s8} \ge A_{s\min} - - (16)A_{s\max} \ge A_{s8} - - (17)$$

e) At the stem (section dimensions are 1m \times D_s), for horizontalreinforcement in each face.

$$A_{s9} \ge A_{s \min} = (18)$$

 $A_{smax} \ge A_{s9} = (19)$
 $A_{s10} \ge A_{s\min} = (20)$

 $A_{smax} \ge A_{s10} - \dots - (21)$

f) At the stem (section dimensions are $1m \times Ds$), for vertical reinforcement in each face

$$A_{s11} \ge A_{s\min} - - - - (22)$$

$$A_{smax} \ge A_{s11} - --- (23)$$

 $A_{s12} \ge A_{s \min}$ ----- (24)

 $A_{smax} \ge A_{s12} - - - - (25)$

where D_s : thickness of stem

D_b : thickness of base

The reinforcement for the retaining wall is shown in Fig (1)

For *the shear constraints*, the section shear resistance should be greater than the applied shear force. This constraint is to be applied to the following sections:

a) At the toe (section dimensions are 1m $\times D_b$),

$$V_{c,t} \ge V_{u,t}$$
---- (26)

$$V_{u,t} = 1.7 \begin{bmatrix} (q_{toe} - \gamma_c \times D_b) \times L_t - 0.5 \times \\ (\frac{q_{toe} - q_{heel}}{B}) \times L_t^2 \end{bmatrix} -- (27)$$

where: $q_{toe} = \frac{R}{B \times c} (1 + \frac{6e}{B}), q_{toe} = \frac{R}{B \times c} (1 - \frac{6e}{B})$

L_t: length of toe,L_h: length of heel.

b) At the heel (section dimensions are 1 m x D_b),

$$V_{c,h1} \ge V_{u,h1}$$
---- (28) $V_{c,h2} \ge V_{u,h2}$ ---- (29)
where:

$$V_{u,h1} = 1.7 \begin{bmatrix} (\gamma_{c} D_{b} + \gamma_{s1} H_{1} - q_{heel}) L_{h} \\ \frac{1}{2B} (q_{toe} - q_{heel}) L_{h}^{2} \end{bmatrix}$$

$$V_{u,h2} = 1.7 [((\gamma_c D_b + \gamma_{s1} H_1) - q_{heel}) L_c]$$

H_{1:} height of stem wall,L_h: length of heel

c) At the stem (section dimensions are 1m $\times D_s$)

$$V_{c,m} \ge V_{u,m}$$
 (30) $V_{c,m} = 0.2K_a \gamma_{s1} H_1^2 L_c$ (31)

where

4. Objective Function

The statement of the problem is as follows:

Minimize C(X) subject to the inequality constraints:

 $g_j(x) \ge 0;$ j=1,2,...,m ---(32)where X is the vector of independent design variables and C(X) is the objective function.

In the present study, the objective function is defined as the total cost of counterfort retaining wall (material & labor). This includes the followings:

1- Cost of concrete including cost of materials, mixing, placing and curing.

2- Cost of various steel reinforcement. This cost includes the material and labor costs.

3- Cost of formwork.

Therefore, the cost of the counterfort retaining wall is equal to the summation of costs of the wall, the base, and the counterforts. These are given by:

For base

Cost of the concrete :

$$C_{cb}=D_b \times B \times L_c \times R_1$$
----- (33)

Cost of the reinforcement:

 $C_{rb} = (A_{stoe} + A_{s heel}) \times \gamma_{steel} - - - (34)$

Cost of the formwork:

$$C_{\rm fb}=2\times D_{\rm b}\times L_{\rm c}\times R_{\rm 2}---(35)$$

where:

$$A_{stoe} = (A_{s1} + A_{s2} + A_{s3} + A_{s4}) \times (L_t + D_s) \times L_c.$$

$$A_{sheel} = (A_{s5} + A_{s6} + A_{s7} + A_{s8}) \times (L_h) \times L_c.$$

 R_1 : the ratio of cost of the concrete per cubic meter to cost of thereinforcement per Newton

R₂: the ratio of cost of the formwork per square meter to thecost of the reinforcement perNewton

 $\gamma_{\text{steel}} =$ unit weight of steel

For the stem

Cost of the concrete:

 $C_{cs} = H_1 \times D_s \times L_c \times R_1 \quad \text{----} (36)$

Cost of the reinforcement:

 $C_{rc} = A_{s \text{ stem}} \times \gamma_{steel} - - - - (37)$

Cost of the formwork:

$$\mathbf{C}_{\mathrm{fc}} = \left(2 \times \mathbf{H}_1 \times \mathbf{L}_c - \mathbf{D}_c \times \mathbf{H}_1\right) \times \mathbf{R}_2 - \cdots (38)$$

where:

 $A_{sstem} = (A_{s9} + A_{s10} + A_{s11} + A_{s12}) \times H_1 \times L_c$ For counterfort

Cost of the concrete:

$$C_{cc} = \frac{1}{2} \times L_{h} \times D_{c} \times H_{1} \times R_{1} - \dots$$
(39)

Cost of the reinforcement:

$$C_{rc} = A_{s \text{ counterfort}} \gamma_{steel}$$
--- (40)

Cost of the formwork:

$$C_{fc} = \left(H_{1} \times L_{h} + D_{c} \times \sqrt{H_{1}^{2} + L_{h}^{2}}\right) \times R_{2} - (41)$$

where:

$$A_{s \text{ counterfort }} = \begin{pmatrix} A_{s13} \times (\sqrt{H_1^2 + L_h^2}) + \\ (A_{s14} + A_{s15}) \times (H_1 \times L_h) \end{pmatrix}$$

Thus, the objective function or the total cost, C, is expressed mathematically as: $C(x) = [C_{cb} + C_{cs} + C_{cc}] + [C_{rb} + C_{rs} + C_{rc}]$ $+ [C_{fb} + C_{fs} + C_{fc}]/L_{c}$ ----(42)

Solution Procedure

The optimization problem formulated in the previous section is a constrained non-linear programming problem. Such problem can be solved by the interior penalty function method using sequential unconstrained minimization technique. Method of Hooke and Jeeves(as cited in Ref.8)method is employed to find the search direction.

In the penalty function methodsit is to transform the problem into a sequence of unconstrained minimization problems[7and 8].

Z=C(X)+P(X)

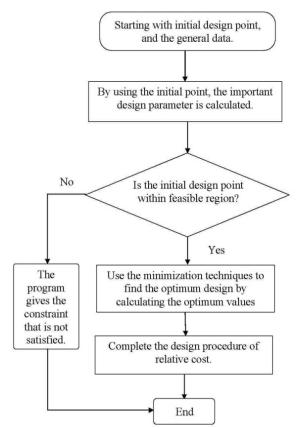
where

where P(X) is the penalty function

$$P(X) = r \sum_{j=1}^{m} \frac{1}{g_j(X)}$$

is positive. The function $Z = \phi(X, r)$ then

takes the form


$$Z = \phi(X, r) = C(X) + r_k \sum_{j=1}^{m} \frac{1}{g_j(X)}$$
(43)

The flow chart for the generated computer program based on the chosen method of solution is depicted in Fig.(6)

Results and Discussions

The objective of the present study is to obtain the minimum cost design, therefore many applications have been considered to well understand the problem.

These applications involve solving many numerical examples in order to illustrate the

effects of various design variables and different parameters on the optimal design Finally the minimum relative cost of the counterfort retaining wall for one meter length is given.

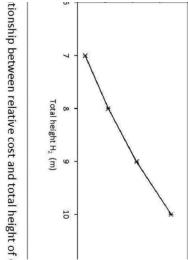
For basic values of required parameters are taken as bearing capacity of soil $q_{al1} = 120$ kN/m^2 ; yield stress of steel f_v=415 MPa; concrete cylinder compressive strength f'_c=21 MPa; thickness of counterfort =0.5 m; unit weight of reinforced concrete $\gamma_c=24$ kN/m³; unit weight of soil (backfill) $\gamma_{s1} = 20$ kN/m^3 ; unit weight of soil under base $\gamma_{s2} =$ 17.950 kN/m³; cohesive strength of soil c_2 =19.12 kN/m²; angle of internal friction (for backfill soil) ϕ_1 =30; angle of internal friction (for base soil) $\phi_2 = 28$; cost of steelC_s=1000000 I.D/ton ;cost of concrete /m³:cost $C_c = 150000$ LD of I.D $/m^2$. formworkC_f=7500 The first counterfort is started a distance $0.5 L_c$ from the end of the wall, and Fig. (1) is used.

These values are only used as a guide to starting with initial design point.

1. Effect of Total Height of Wall

Table (1) gives the optimum distance L_c between counterforts. L_c increases as the total height H₂ increases. The data from these Table also leads to a relationship between the optimum L_c and the total height H₂. It can be said that the optimum L_c equals about (0.3 to 0.36) of H₂. This relation is not unique but it usually depends on many factors like bearing capacity and material properties.

The total height of counterfort retaining wall has an effect on the optimum stem thickness which increases with the increase of total height H_2 . Also the thickness of the base increases as the wall height increases. The stem and base steel reinforcement relates to the total height H_2 of counterfort retaining wall in that it increases with increasing the total height.


The relationship between the total cost of wall and the total height H_2 is approximately linear as shown in Fig. (7).

2. Effectof soil Bearing Capacity

From the Table (2), it is clear that when the bearing capacity reduces, the optimum distance between counterforts increases. The length of the base B increases and thickness of the base D_b decreases as the bearing capacity decreases. The stem thickness D_s seems not to change as the bearing capacity reduces.

IABLE (1) Uptimum spacing of counterforts for various for various total neighbor variables. H2 optimu m Relative (N/m) H1 m L1 m Ds m Ln m B Ds m Ass mm ² Ass Ass mm ² Ass <th></th> <th>10</th> <th>6</th> <th>8</th> <th>7</th> <th>H₂ m</th> <th>lap</th>		10	6	8	7	H ₂ m	lap
Plinnum spacing of counterforts for various for line of the space of the		3.571	3.067	2.631	2.079	optimu m L _C m)le (1) (
Ha La Ds La B Da Ast m Ast mm Mat Ast mm Mat Ast mm Mat		26974	20654	15522		Relative cost (N/m)	Jptimu
Acting Ds L _h B D _h Ast m Mas Ast m Mas Ast mm Mat Ast mm Mat		9.08 1	8.22 9	7.35 2	6.47 2		m sp
B L_n B D_h A_{s1} A_{s2} A_{s3} A_{s2} A_{s3} A_{s2} A_{s3} A_{s2} A_{s3} A_{s2} A_{s3} A_{s3} A_{s3} A_{s2} A_{s3} A_{s1}		4.66 0	1.04 3	3.38 6			acing
Ln B Dn As1 As2 As3 As4 As5 As6 As7 As8 As9 As1 As1 As1 As1 As3 As4 As5 As6 As7 As8 As9 As1 As1 As1 As1 As1 As1 As1 As1 As3 As1		.388	.336	.289	.246	$\mathbf{D}_{\mathbf{S}}$	OI
B D _b A _{s1} A _{s2} A _{s3} A _{s4} A _{s5} A _{s5} A _{s7} A _{s8} A _{s9} A _{s1} A _{s1} A _{s1} A _{s5} A _{s5} A _{s7} A _{s8} A _{s9} A _{s9} A _{s1} A _{s1} A _{s5} A _{s6} A _{s7} A _{s8} A _{s9} A _{s0} A _{s1} A _{s1} A _{s15} A _{s16} A _{s9} A _{s10} A _{s10} A _{s11} A _{s12} A _{s13} A _{s14} A _{s15} 3.85 5.28 3491 856 856 1443 856 856 293 293 568 293 4051 1338 368 4.67 .648 3935 1097 1097 1850 1097 1097 377 382 718 377 5833 1716 529 5.52 .771 4580 1343 1343 2264 1343 1343 473 473 834 473 8106 2100 690 5.44 .919 4996 <td>B.C</td> <td>1.40 0</td> <td>1.14 4</td> <td>0.99 7</td> <td>.777</td> <td>$rac{\mathbf{L_h}}{m}$</td> <td>coun</td>	B.C	1.40 0	1.14 4	0.99 7	.777	$rac{\mathbf{L_h}}{m}$	coun
Db As1 As2 As3 As3 As4 As5 As6 As7 As8 As9 As9 As1 A	=120			4.67 1	3.85	B m	terto
T various total neight values of counterfort retaining wall A_{s1} A_{s2} A_{s3} A_{s10} A_{s10} A_{s11} A_{s12} A_{s13}	kN/m	.919	.771	.648	.528	$\mathbf{D}_{\mathbf{b}}$ m	rts Io
Ious total neight values of counterfort retaining wall A_{s2} A_{s3} A_{s4} A_{s5} A_{s6} A_{s7} A_{s8} A_{s9} A_{s10} A_{s10} A_{s11} A_{s12}		4996	4580	3935	3491	As1 mm ²	r var
total height values of counterfort retaining wallAs As mn^2 As mn^2 As 	$\zeta = I_S \lambda$	1639	1343	1097	856	$\mathbf{A}_{\mathbf{S2}}$ mm ²	lous
Asy nm^2 Ass nm^2 Ass nm^2 Ass nm^2 Ass nm^2 Ass nm^2 Ass nm^2 Asu nm^2 Asu <b< td=""><td>20 kN</td><td>1639</td><td>1343</td><td>1097</td><td>856</td><td>As3 mm2</td><td>tota</td></b<>	20 kN	1639	1343	1097	856	As3 mm2	tota
A_{ss} mm^2 A_{sn} mm^2 M_{sn} A_{sn} mm^2 A_{sn} mm^2 M_{sn} A_{sn} mm^2 M_{sn} A_{sn} mm^2 M_{sn} A_{sn} Mm^2 A_{sn} Mm^2 A_{sn} Mm^2 A_{sn} Mm^2 A_{sn} Mm^2 A_{sn} Mm^2 A_{sn} 	$1/m^3 f_c$	1639	1343	1097 4	856	$\mathbf{A}_{\mathbf{S4}}$ mm ²	l heig
Aues of counterfort retaining wall A_{ss} nm^2 A_{ss} nm^2 A_{su} nm^2 A_{su} nm^2 A_{su} nm^2 A_{su} nm^2 A_{su} 	=21 /	2764	2264		1443	\mathbf{A}_{85} mm^2	nt va
Asr nm^2 Ass nm^2 </td <td>$MPaf_y$</td> <td>1639</td> <td>1343</td> <td>1097</td> <td>856</td> <td>${f A_{S6}} \\ mm^2$</td> <td>alues</td>	$MPaf_y$	1639	1343	1097	856	${f A_{S6}} \\ mm^2$	alues
Ass nm^2 Asu nm^2 Asu <b< td=""><td>=415</td><td>1639</td><td>1343</td><td>1097</td><td>856</td><td>As7 mm²</td><td>OT CO</td></b<>	=415	1639	1343	1097	856	As7 mm ²	OT CO
TTORT retaining wall A_{sy2} A_{su2} A_{su2} A_{su3} <th< td=""><td>MPa</td><td>1639</td><td>1343</td><td>1097</td><td>856</td><td>${ m A}_{ m S8} \ mm^2$</td><td>ounte</td></th<>	MPa	1639	1343	1097	856	${ m A}_{ m S8} \ mm^2$	ounte
retaining wall A_{sin}^2 A_{sin}^2 A_{sin}^2 A_{sin}^2 A_{sin}^2 A_{sin}^2 A_{sin}^2 293 568 293 4051 1338 368 293 568 293 4051 1338 368 382 718 377 5833 1716 529 473 834 473 8106 2100 690 576 970 576 1022 2436 886		576	473	377	293	A _{S9} mm ²	riort
Asır mm²Asır mm²Asır mm²Asır mm²Asır mm²Asır mm²Asır 		576	473	382	293	A s10 mm ²	retai
Mall Asıa mım ² Asıa mım ² Asıa mım ² Asıa mım ² 293 4051 1338 368 377 5833 1716 529 473 8106 2100 690 576 1022 2436 886		970	834	718	568	A s11 mm ²	nıng
Asıa mm² Asıa mm² Asıa mm² 4051 1338 368 4053 1716 529 8106 2100 690 1022 2436 886		576	473	377	293	A _{S12} mm ²	wall
As14 mm ² As15 mm ² 1338 368 1716 529 2700 690 2436 886		1022 6	8106	5833	4051	$\frac{\mathbf{A}_{\mathbf{S13}}}{mm^2}$	
Asıs mm ² 368 529 886		2436	2100	1716	1338	$\mathbf{A}_{\mathbf{S14}}$ mm ²	
		886	690	529	368	As15 mm ²	

Retaining wall

		9			(~				7		т	H_2
120	100	08	09	120	100	08	00	120	100	80	60	kN/m ²	B.C
3.067	3.145	3.185	3.206	2.631	2.762	2.778	2.809	2.079	2.326	2.439	2.475	т	L _c
20654	21204	21884	22855	15522	15886	16394	17108	11367	11623	11959	12470	(N/m)	Relative cost
8.229	8.254	8.268	8.276 5.231	7.352 3.386	7.375 3.69	7.390 4.042	7.403	6.472 2.827	6.483 3.028	6.505 3.364	6.513 3.704	т	H_1
8.229 4.043	8.254 4.410	8.268 4.775			3.69		7.403 4.468	2.827			3.704	т	Ļ
.336	.338	.338	.339	.289	.290	.291	.291	.246	.247	.248	.248	т	D_{S}
1.144 5.523	1.18	1.273 6.391	1.43	0.997 4.671	1.017	1.077	1.192 5.951	.777	.863	.877	.995	т	L_{h}
	5.930	6.391	7.000 .725	4.671	.290 1.017 4.997	5.41	5.951	3.85	4.183 .517	4.488	4.947	т	В
.771	.746	.732	.725	.648	.625	.608	.597	.528	.517	.496	.487	т	D_{b}
4580	4829	4918	4888	3935	4195	4373	4430	3491	3552	3864	3891	mm^2	A_{S1}
1343	1293	1265	1248	1097	1051	1017	995	856	835	791	775	2	3 Asamm
2264	2180	2133	2105		1773	1715	1677	1443	1408	1334	1306	mm^2	A_{S5}
1343	1293	1265	1248	1850 1097	1051	2101	995	856	835	791	775	mm^2	A_{S6}
1343	1293	1265	1248	1097	1051	1017	995	856	835	791	775	mm^2	
1343	1293	1265	1248	1097	1051	1017	995	856	835	791	775	mm^2	
473	476	478	478	377	380	382	383	293	294	296	297	mm^2	
473	485	497	502	382	420	423	433	293	339	373	384	mm^2	
834	856	867	872	718	755	760	769	568	639	673	682	mm^2	
473	476	478	478	377	380	382	383	293	294	296	297	mm^2	A_{S12}
9106	8147	7704	6957	5833	6076	5815	5355	4051	4236	4430	3987	mm^2	A_{S13}
2100	1955	1755	1506	1716	1644	1467	1271	1338	1305	1237	1053	mm^2	
069	709	719	725	529	557	560	568	368	412	433	441	mm^2	A_{S15}

Table (2) The optimum design for wall total height with different bearing capacity values

(for $(\gamma_{sl}=20 \ kN/m^3 f_c=21 \ MPaf_y=415 \ MPa)$

Also thistableshows that steel areassuch as $(A_{s2} \text{ to } A_{s8}, \text{ and } A_{s14})$ decrease while the area $(A_{s1}, A_{s10}, A_{s11}, \text{ and } A_{s15})$ increases when the bearing capacity reduces. Steel areas $(A_{s9} \text{ and } A_{s12})$ seem not to alter as the bearing capacity of soil varies. In addition, the reduction of bearing capacity leads to increase the total cost.

3. Effect of materials properties

Table (3) reveals that the compressive strength of concrete has an effect on the optimum distance between counterforts L_c . The increase in compressive strength of concrete reduces L_c . Increasing the concrete compressive strength leads to a reduction in the base and stem thickness, consequently different steel areas are needed.

 A_{s2} to A_{s9} , A_{s12} , A_{S13} , A_{s14} and, A_{s15} decease as f_c increases. A_{s1} , A_{s10} , and A_{s11} increase with increasing f_c . The increase in area of steel may be attributed to the reductionin the thickness of both base and stem.

In addition, increasing the compressive strength of concrete leads to a reduction in the relative cost of the wall.Finally, according to the above results, it may be said that the optimum design is achieved by using concrete of high strength (keeping in mind that the cost of concrete is considered here as constant irrespective of its strength).

The effect of yield strength of steel is shown in Table (4). Results reveal that the increase of steel strength increases the

optimum distance between counterforts L_c while no effect is noticed on the stem thickness D_s . The increase in yield strength of steel has a little effect on the base thickness.

The effect of increasing the yield strength of steel is to reduce steel areas in optimum

section as it is clear from Table (4). Therefore, these results indicate that it is economical to use steel of high strength in design.

Concerning the effect of backfill soil, the results obtained by varying the backfill density are shown in Table (5). Increasing soil density seems to have very little effect on optimum distance between counterforts as illustrated in these Tables (with the range of γ_{s1} considered in this study). Also increasing soil density causes the base and the stem thickness , base width, all areas of steel to increase.

Proportions of counterfort retaining wall

Dimensions of counterfort retaining wall should be adequate for structural stability and to satisfy design requirements. The tentative dimensions shown in Fig. (1) is based in part on history of satisfactorily constructed walls, and may be used in the absence of other data, but in an overly conservative design.[6]

For the initial point required by the generated program, the dimensions of the wall were selected within the values given in Fig. (1). Then, and according to the parameters used, the program gives the optimum design including the optimum dimensions of the wall.

Table (6) shows a comparison between the optimum dimensions obtained in this study and the values used as the initial point which is suggested in Fig. (2). Theother values of $H_2(7, 8, and 9)$ m the same analysis is conducted, and it is found that:

	Table
	e (3)
) The
	optimum
ulev	n design
Pc (for
01 30 A0	different
50) MD	values
т С	of c
hips (71 30 40 50) MPa for ($R = 120 \ EN/m^2 = -20 \ EN$	Table (3) The optimum design for different values of concrete cylinder compress
$1/m^2$	ider (
$1 - 30 k N/m^3 f_{1-}$	compressive
-115 MDAL	sive strength

				va	lues	(21,3	0,40,	N (OC	лРа,	tor (E	values (21,50,40,50) MPa, for (B.C=120 kN/m ² γ_{sl} =20 kN/m ² fy=415 MPa)	0 kN/n	$\iota^{-} \gamma_{sI} =$	-20 kN	/m ³ fy=	:415 M	(Pa)					
\mathbf{H}_{2}	f'c MPa	$\mathbf{L}_{\mathbf{C}}$	Relative cost (N/m)	$\mathbf{H_{1}}$	\mathbf{L}_{t}	$\mathbf{D}_{\mathbf{S}}$	${f L_h}$	B m	$\mathbf{D}_{\mathbf{b}}$	$\mathbf{A}_{\mathbf{S1}}$	AS2,As2 As4mm 2 2		As6 mm ²	$\mathbf{A}_{\mathbf{S7}}$ mm ²	$\mathbf{A}_{\mathbf{S8}}$ mm ²	As9 mm ²	$\frac{\mathbf{A}_{\mathbf{S10}}}{mm^2}$	А зи тт ²	A _{S12} mm ²	А 513 тт ²	A_{S14} mm ²	A _{S15} mm ²
	21	2.079		6.472 2.827 .246	2.827	.246	.777	3.85	.528	3491	856	1443	856	856	856	293	293	568	293	4051	1338	368
4	30	2.083	10893	6.538 2.790 .225	2.790		.814	3.828	.462	4070	725	1223	725	725	725	250	321	080	250	4113	1342	372
``	40	2	10639	6.584 2.77		.210	.829	3.809 .416 4647	.416	4647	633	1066	633	633	633	231	338	752	220	3974	1294	360
	50	1.923	1.923 10521	6.614 2.739 .199	2.739	.199	.854	3.8	.386	.386 5085	572	1077	572	572	572	238	347	806	198	3777	1237	348
	21	2.631	15522	7.352 3.386 .289 0.997 4.671 .648	3.386	.289	0.997	4.671	.648	3935	1097	01 2601 0581	1097	7	1097	377	382	718	377	5833	1716	529
•	30	2.577	14773	7.44	7.44 3.800 .262		1.00	<i>I</i> .00 4.641 .559 4722	.559	4722	918	1550	816	918	918	323	431	838	323	5906 1714		524
0	40	2.475	14334	7.490 3.260 .242	3.260		1.100	1.100 4.601 .510	.510	5093	820	1383	820	820	820	310	455	928	284	5300	1596	507
	50	2.304	14098	7.531 3.24		.228	1.11	4.578	.469	.228 1.11 4.578 .469 5645	738	1359	738	738	738	298	483	963	257	4983	1490	474
	21	3.067	20654	8.229	4.043	.336	1.144	5.523	.771	4580	8.229 4.043 .336 1.144 5.523 .771 4580 1343	2264 1343 1343	1343		1343	473	473	834	473	8106 2100		069
0	30	2.941	19528	8.327 3.943 .302	3.943	.302	1.224	5.47	.674	5244	1147	1935	1147 1147		1147	405	501	953	405	7529	1995	669
Y	40	2.762	18830	8.4	3.9	.278	1.125	1.125 5.429 .601	.601	5965	1003	1692	1003 1003		1003	357	505	1031	357	7125	1884	634
	50	2.551	2.551 18416	8.443	3.82	.261	1.31	5.391	.556	6433	8.443 3.82 .261 1.31 5.391 .556 6433 913 1562 913	1562		913	913	327	477	1061	323	6414 1710	1710	588

H_2 m	$\mathbf{f}_{y} \\ MPa$	\mathbf{L}_{C}	Relative cost (N/m)	H ₁ m	\mathbf{L}_{t}	$\mathbf{D}_{\mathbf{S}}$	${f L_h}$	B	$\mathbf{D}_{\mathbf{b}}$ m	${f A_{S1}}{mm^2}$	$\substack{A_{S2},A_{s3}\\A_{s4}\\mm^2}$	Ass mm ²	As6 mm ²	A _{S7} mm ²	${ m A}_{ m S8}$ mm^2	As9 mm ²	As10 mm ²	$\frac{\mathbf{A}_{\mathbf{S11}}}{mm^2}$	Ası2 mm ²	Ası3 mm ²	As14 mm ²	${f A_{S15}}{mm^2}$
	250	1.984	13088	6.454 2.70		.245	.900	.900 3.846 .546	.546	5218	892	2497	892	892	892	291	409	898	291	5641	1972	581
J	350	2.049	11865	6.475 2.848	2.848	.246	.760	.760 3.859 .525		4207	850	6691	850	850	850	293	311	675	293	4962	1575	429
``	415	2.079	11367	6.472 2.827 .246	2.827		.777	3.85	.528	3491	856	1443	856	856	856	293	293	568	293	4051	1338	368
	460	2.203	10916	6.462 2.759 .246	2.759		.847	.847 3.851 .538	.538	2972	720	1333	720	720	720	240	275	545	240	3638	1236	350
	250	2.092	18081	7.371 3.526	3.526	.290	.856	.856 4.672	.628	7166	1056	2957	1056	1056	1056	380	396	938	380	8824	2391	699
¢	350	2.500	16205	7.355 3.406 .289	3.406	.289	.971	.971 4.665 .645		4736	1091	2181	1091 1091		1091	377	406	807	377	6722	1954	596
٥	415	2.631	15522	7.352 3.386	3.386	.289	0.997 4.671	4.671	.648	3935	1097	1850 1097		1097	1097	377	382	718	377	5833	1716	529
	460	2.857	14908	7.335 3.251	3.251	.288	1.123	1.123 4.662 .664		3277	928	1717	928	928	928	309	409	706	309	5088	1593	516
	250	2.604	23776	8.199 3.835 .335 1.337 5.507 .801	3.835	.335	1.337	5.507		0189	6810 1402	3923 1402 1402	1402	1402	1402	470	552	1168	470	9630	2687	896
0	350	2.873	21581	8.228 4.043	4.043	.336	1.141 5.521	5.521	.772	5425	1344	2687	1344	1344	1344	473	480	923	473	9866	2325	765
Y	415	3.067	20654	8.229 4.043 .336 1.144 5.523 .771	4.043	.336	1.144	5.523		4580	4580 1343	2264 1343 1343	1343		1343	473	473	834	473	9018	2100	069
	460	3.165	19757	8.222	3.992	.335	1.194	5.523	.778	4021	8.222 3.992 .335 1.194 5.523 .778 4021 1115 2064 1115 1115	2064	1115		1115	387	444	777	387	7234	1913	640

Table (4) The optimum design different values of yield strength of steel , for $(\gamma_{sl}=20 \text{ kN/m}^3B.C = I20 \text{ kN/m}^2f_c=21 \text{ MPa})$

Table (5) The optimum design different values of density of soil (16, 18, 20) kN/m³, for ($B.C= 120 \ kN/m^2 f_c=21 \ MPaf_y=415 \ MPa$)

H_2 m	Υ _{s1} kN/m ³	L с т 2.083	Relative cost (N/m) 9998	H_1 L_t D_s L_h B D_b m m m m m m m 6.523 2.517 .219 .779 3.515 .477	L _t m	D _S <i>m</i> .219	L _h m	В т 3.515	D ь т	A sı mm ² 3137	$\begin{array}{c c} \mathbf{A_{S1}}\\ \mathbf{A_{S1}}\\ mm^2 \end{array} \begin{array}{c} \mathbf{A_{S2}} \mathbf{A_{S3}}\\ \mathbf{A_{S4}}mm^2 \end{array} \begin{array}{c} \mathbf{A_{S5}}\\ mm^2 \end{array}$	Ass mm ² 1271	As6 mm ² 754	A _{S7} mm ² 754	A ₃₈ mm ² 754	A _{\$9} mm ² 238	As10 mm ² 270	A sıı mm ² 576	A _{S12} mm ² 238	A _{S13} mm ² 3467	$\frac{A_{SI4}}{mm^2}$	$\begin{array}{c c} A_{SI5} \\ mm^2 \\ mm^2 \end{array}$
	16	2.083	8666	6.523	2.517	.219	.779	3.515	.477	3137		1271	754		754	238		576		3467	117	6
7	18	2.083	10679	6.497 2.675 .233 .779 3.686 .503 3319 806	2.675	.233	.779	3.686	.503	3319	806	1359 806	806	806	806	266	271	572	266	3818 1261	126	1
	20	2.079	11367	6.472 2.827 .246 .777 3.85 .528 3491	2.827	.246	.777	3.85	.528	3491	856	1443	856	856	856	293	293	568	293	4051	1338	8
	16	2.525	13506	7.427	3.064	.254	.940	4.258	.573	3705	7.427 3.064 .254 .940 4.258 .573 3705 947	1597 947	947	947	947	308	349	695	308	4967 1482	1482	
8	18	2.488	14512	7.396	3.279	.272	0.918	4.469	.604	3966	7.396 3.279 .272 0.918 4.469 .604 3966 1008	1701 1009	1009	1009	1009 1009	344	344	680	344	5503	1577	
	20	2.631	15522	7.352	3.386	.289	0.997	4.671	.648	3935	7.352 3.386 .289 0.997 4.671 .648 3935 1097	1850 1097	1097	1097	1097 1097 377		382	718	377	5833 1716	1716	
	16	3.049	17865	8.311	3.590	.293	1.171	5.053	.668	4125	8.311 3.590 .293 1.171 5.053 .668 4125 1177	1985 1177	1177	1177	1177 1177	386	455	838	386	0199	6610 1794	
6	18	3.067	19257	8.272	3.84	.315	1.141	5.296	.728	4406	8.272 3.84 .315 1.141 5.296 .728 4406 1257 2119 1263	2119	1263	1257	1257 1257	430	460	838	430	7498	7498 1965	
	20	3.067	3.067 20654	8.229	4.043	.336	1.144	5.523	.771	4580	8.229 4.043 .336 1.144 5.523 .771 4580 1343 2264 1343	2264	1343	1343	1343 1343 473		473	834	473	8106 2100	2100	069

1. The distance between counterforts is from 0.214 to 0.366 of the wall height H_2 .

2. The width of the base is from 0.5 to 0.78 of the wall height H_2 . The value 0.78 H_2 appeared where the bearing capacity of soil is less than 80 kN/m²

3. The thickness of the base is from 0.055 to 0.0941 of the wall height H_2 .

4. The thickness of the wall is from 0.0284 to 0.0377 of the height H₂ and it is less than half thickness of the base.

Conclusions

Based on the results obtained in this study the following conclusions may be drawn:

1- The optimum distance between counterforts is equal to (0.275 to 0.366) of the height of wall H₂, and on increasing the price of concrete this percentage decreases to 0.214 H_2

2- The total cost of counterfort retaining wall linearly increases with increasing the total height (H_2)

3- Reduction of bearing capacity of soil leads to increasing the length of the base and decreasing the thickness of the base while the thickness of the stem is not affected.

4- The relative cost of wall increases as the bearing capacity of soil decreases.

REFERENCES

- Singh, G. "Theory and design of R.C.C. Structures ", Standard Publishers Distributors, 1705-B, naiSarak, Delhi- 110006, 1978.
- [2] Chou Takashi, "Optimum Reinforced Concrete T-Beam Sections", the Journal of Structural Division, ASCE, Vol. 103, No. ST8, Aug. 1977.
- [3] Subramanyam, A. V., and Adidam

S. R., "Design Charts for Optimal Design of a T-beam floor, International Journal of Structures, Vol. 1, No.2, pp.145-151, 1981.

- [4] Choudhury, A. B., "Optimum Cross-Section For A Reinforced Concrete Cantilever Retaining Wall", Journal of Building and Environment, Vol. 54 No. 9, pp, 231-237, 1980
- [5] Ibrahim, N. A., "Optimal design of reinforced concrete T-beam floors" M.Sc., thesis, University of Basrah , 1999.
- [6] Bowles, J. E. "Foundation Analysis And Design" McGraw-Hill Book Company, New York, 1982.
- [7] Rao, S.S., "Optimization Theory and Application", Wiley Eastern Limited, New Delhi, India, 1979.
- [8] Bunday, B. D., "Basic Optimization Methods ", John Wiley & Sons New York, 1984.
- [9] Nilson, H."Design of concrete structures "McGraw-Hill Book Higher Education, New York, 2004.
- [10] "Building Code Requirement for Reinforced Concrete ", American concrete institute Standard 318M-2005, American concrete Institute Committee 318, American concrete Institute, Detroit, Nov. 2005.