When compact sets are g-closed Saheb¹. K. Jassim and Haider² G. Ali

Abstract: This paper is devoted to introduce new concepts which are called K(gc), gK(gc), L(gc), gL(gc) and locally L(gc)-spaces. Several various theorems about these concepts are proved. Further more properties are stated as well as the relationships between these concepts and LC-spaces are investigated.

Key words: g-closed, KC-spaces and LC-spaces.

1-Introduction: It is known that compact subset of a Hausdorff space is closed, this motivates the author [7] to introduce the concept of KC-space, these are the spaces in which every compact subset is closed. Lindelof spaces have always played a highly expressive role in topology. They were introduced by Alexandroff and Urysohn back in 1929. In 1979 the authors [5] introduce a new concept namely LC-spaces, these are the spaces whose lindelof sets are closed. The aim of this paper is to continue the study of KC-spaces (LC-spaces).

2-Preliminaries: The basic definitions that needed in this work are recalled. In this work, spaces always mean topological spaces on which no separation axioms are assumed unless explicitly stated, a topological space is denoted by (X, τ) (or simply by X). For a subset A of X, the closure and the interior of A in X are denoted by cl(A) and Int(A) respectively. A space X is said to be K_2 - space if cl(A) is compact, whenever A is compact set in X[6]. Also a subset F of a space X is g-closed if $cl(F) \subset U$, whenever U is open and containing F[4], X is said to be gT_1 if for every two distinct points x and y in X, there exist two g-open sets U and V such that $x \in U$ and $y \notin U$, also $x \notin V$ and $y \in V$ [3], and gT_2 if for every two distinct points x and y in X, there exist two disjoint g-open sets U and V containing x and y respectively [3]. A space X is said to be g-regular if whenever F is g-closed in X and $x \in X$ with $x \notin F$, then there are two disjoint g-open sets U and V containing x and F respectively [3]. A space X is said to be gT_3 if whenever it is gT_1 and g-regular [3] and X is said to be g-compact if for every g-open cover of X has a finite subcover[2]. A function f from a space X into a space Y is said to be g^{**} -continuous if $f^{-1}(U)$ is g-open, whenever U is g-open subset of a space Y. Also f is said to be g^{**} -closed if f(F) is g-closed, whenever F is g-closed [3].

3-Weak forms of KC-spaces:

The author in [7] introduce the concept KC-spaces; in the present paper we introduce a generalization of KC-spaces namely K(gc) and gK(gc), also we study the

¹⁻Ass. Prof., Department of Mathematics, College of Science, Al-Mustansiriya University

²⁻Lectuerer, Department of Mathematics, College of Science, Al-Mustansiriya University, E-Mail: haiderali89@yahoo.com

Properties and facts about these concepts and the relationships between this concepts and KC-space.

Definition 3.1 A space X is said to be K(gc)-space if every compact set in X is g -closed. So every KC-space is K(gc), but the converse is not true in general.

Example 3.1: Let $X \neq \phi$ and Γ be the indiscrete topology on X. Then (X, Γ) is K(gc) but not KC-space. Since if B is a nonempty proper set in X. Clearly B is compact but not closed. Also it is g-closed, since the only open set which contains B is the whole space and cl(B) = X.

Definition 3.2 A space X is said to be gK(gc)-space if every g-compact set in X is g -closed. So every K(gc)-space is gK(gc), but the converse is not true in general.

Definition 3.3 A space X is said to be gK_2 if g-cl(A) is compact, whenever A is compact set in X.

Theorem 3.1: Every K(gc)-space is $gK_{2.}$ **Proof:** Let K be compact set in K(gc)-space X, then it is g-closed, that is, $Cl_g(K) = K$, which implies to $Cl_g(K)$ is also compact.

Definition 3.4 A space X is said to be locally g-compact if for each point in X has a neighbourhood base which is consisting of g-compact sets. So every locally compact space is locally g-compact, but the converse is not true in general.

Lemma 3.1[1]: A space X is gT₁ if and only if every singleton set is g-closed.

Theorem 3.2 Every K(gc)-space is gT₁.

Proof: Suppose X is K(gc)-space and $x \in X$, since $\{x\}$ is finite, then it is compact in X, which is K(gc)-space, then it is g-closed. So by lemma 3.1 X is gT_1 .

Theorem 3.3 Every gT₃-space is gT₂.

Proof: Let x and y be two distinct points in X, so $\{x\}$ is g-closed, since X is gT_1 and $y \notin \{x\}$, but X is g-regular, then there exist two disjoint g-open sets U and V such that $x \in \{x\} \subset U$ and $y \in V$. Therefore X is gT_2 -space.

Definition 3.5: A set M is said to be g-neighbourhood of a point $x \in X$ if there exists a g-open set U such that $x \in U \subset X$. Clearly every neighbourhood is g-neighbourhood but the converse may be not true.

Example 3.2: Let $X \neq \phi$ and Γ be the indiscrete topology on X. Then in (X, Γ) the one point set $\{x\}$ is g-neighbourhood but not neighbourhood.

Theorem 3.4 The following are equivalent for a space X:

- 1) X is g-regular
- If U is g-open in X and x∈ X with x∈ U, then there is a g-open set V containing x such that g-cl(V)⊂U.
- 3) Each $x \in X$ has ag-neighbourhood base consisting of g-closed sets.

Proof: (1) \rightarrow (2) Suppose X is g-regular, U is g-open in X and $x \in U$, then X-U is a g-closed set in X not containing x, so disjoint g-open sets V and W can be found with $x \in V$ and X-U \subset W. Then X-W is a g-closed set contained in U and containing V, so g-cl(V) \subset U. (2) \rightarrow (3) if (2) applies, then every g-open set U containing x contains a g-closed neighbourhood (namely g-cl(V)) of X, so the g-closed neighbourhoods of x form a neighbourhood base. (3) \rightarrow (1) suppose (3) applies and A is a g-closed set in X not containing x. Then X-A is a g-neighbourhood of x, so there is a g-closed neighbourhood B of x with B \subset X-A. Then g-Int(B) and X-B are disjoint g-open sets containing x and A respectively, where g-Int(B) the set of all g-interior points. Thus X is g-regular.

Theorem 3.5: Every T₂-space is K(gc)space.

Theorem 3.6 If X is locally g-compact and K(gc)-space, then X is gT₂-space.

Proof: Given X is locally g-compact, then every $x \in X$ has a neighbourhood base consisting of g-compact sets, but X is K(gc), then these compact sets are g-closed and hence x has neighbourhood base consisting of g-closed sets, then by theorem 3.4, X is g-regular space and by theorem 3.2 X is gT₁, then it is gT₃-space, that is, X is gT₂.

Theorem 3.7: Every g-compact set in gT₂-space is g-closed.

Proof: Let A be a g-compact set in a gT_2 -space X. If $p \in X$ -A, so for each $q \in A$, there are two disjoint g-open sets U and V containing q and p respectively. The collection $\{U(q):q \in A\}$ is a g-open cover of A which is g-compact, then there is finite subcover of A, that is, $A \subset \bigcup_{i=1}^{n} U(q_i)$. Put $V_1 = \bigcap_{i=1}^{n} V_{qi}(p)$ and $U_1 = \bigcup_{i=1}^{n} U(q_i)$. Then V_1 is a g-open set containing p. We claim that $U_1 \cap V_1 = \phi$, so let $x \in U_1$, then $x \in U(q_i)$ for some i, so $x \notin V_{qi}(p)$, hence $x \notin V_1$. Thus $U_1 \cap V_1 = \phi$. Also $A \subset U_1$, that is, $A \cap V_1 = \phi$ which implies $V_1 \subset X$ -A. Therefore A is g-closed.

Corollary 3.1: Every gT₂-space is gK(gc)-space.

Theorem 3.8: The g^{**} -continuous image of g-compact set is g-compact.

Proof: Let f be g^{**} -continuous function from a space X into a space Y and suppose B is g-compact set in X. To show that B is also g-compact, let $\{U_{\alpha}\}_{\alpha \in \Lambda}$ be g-open cover of f(B), that is, $f(B) = \bigcup_{\alpha \in \Lambda} U_{\alpha}$. So $B \subset f^{-1}f(B) = f^{-1}(\bigcup_{\alpha \in \Lambda} U_{\alpha}) = \bigcup_{\alpha \in \Lambda} f^{-1}(U_{\alpha})$, then $\{f^{-1}(U_{\alpha})\}$ is a g-open cover of B, which is g-compact, then $B \subseteq \bigcup_{i=1}^{n} f^{-1}(U_{\alpha i})$. But $f(B) \subseteq f \bigcup_{i=1}^{n} f^{-1}(U_{\alpha i}) = \bigcup_{i=1}^{n} f^{-1}(U_{\alpha i}) \subset \bigcup_{i=1}^{n} U_{\alpha i}$. Therefore f(B) is g-compact set.

Theorem 3.9: Every continuous function from compact into a K(gc)-space is g-closed function.

Proof: Let A be closed set in X, which is compact, then A is compact. But f is continuous, then f(A) is compact in Y, which is K(gc)-space, then f(A) is g-closed. Therefore f is g-closed.

Lemma 3.2[1]: Every g-closed subset of g-compact space is g-compact. **Theorem 3.10:** Every g^{**} -continuous function from g-compact into K(gc)-space is g^{**} -closed function.

Proof: Let f be g^{**} -continuous function from g-compact X into K(gc)-space Y. Also let B be g-closed set in X. So by lemma 3.2 B is g-compact also by theorem 3.8 f(B) is g-compact, which implies it is compact in Y, which is K(gc), then f(B) is g-closed. Therefore f is g^{**} -closed.

Corollary 3.2: Every g^{**} -continuous function from g-compact space into gK(gc) -space is g^{**} -closed.

Remark 3.2: The continuous image of K(gc)-space is not necessarily K(gc).

Example 3.3: Consider I_R : $(R, \Gamma_u) \rightarrow (R, \Gamma)$, where I_R is the identity function, Γ_u and Γ are usual and cofinite topologies respectively. Clearly (R, Γ_u) is K(gc)space.. Since every compact set in R is closed and bounded, this implies it g-closed. But $I_R(R) = R$ and (R, Γ) K(gc)-space. Since if given [0, 1], which is compact and $U=R-\{5\}$, so $U \in \Gamma$, then $[0, 1] \subset U$, but cl($[0, 1])=R \not\subset U$. So (R, Γ) is not K(gc).

Theorem 3.11: Let f be g^{**} -continuous injective function from X into a gK(gc) – space Y, then X is also gK(gc).

Proof: Let W be any g-compact subset of X, then by theorem 3.7 f(W) is g-compact set in Y, which is gK(gc), then f(W) is g-closed also f is g^{**} -continuous, so $f^{-1}(f(W))=W$. Therefore X is gK(gc)-space.

Theorem 3.12: The property of space being K(gc) is a hereditary property.

Proof: Let Y be a subspace of K(gc)-space X and A be any compact subset of Y, then A is compact in X, which is K(gc), then A is g-closed in X. But $A = A \cap X$, then A is g-closed in Y. Therefore Y is also K(gc).

Theorem 3.13: Let f be a homeomorphism function from a space X into a space Y, if U is g-open set in X, then f(U) is also g-open.

Proof: Let F be any closed subset of f(U), so $f^{-1}(F) \subset f^{-1}f(U)=U$, but U is gclosed, then $f^{-1}(F) \subset Int(U)$, which implies $F = f(f^{-1}(F)) \subset f(Int(U))=Int(f(U))$. Therefore f(U) is also g-open.

Corollary 3.3: Let f be a homeomorphism function from a space X into a space Y, if U is g-closed set in X, then f(U) is also g-closed.

Corollary 3.4: Let f be a homeomorphism function from a space X into a space Y, if M is g-compact set in X, then f(M) is also g-compact.

Theorem 3.14: The property of space being K(gc) is a topological property.

Proof: Let f be a homeomorphism function from a K(gc)-space X into a space Y and B be compact set in Y, then $f^{-1}(B)$ is compact in X, which is K(gc), then $f^{-1}(B)$ is g-closed and by corollary 3.3 f($f^{-1}(B)$)=B is g-closed set in Y.

Corollary 3.5: The property of space being gK(gc) is a topological property.

4. Further type of LC-spaces:

In 1979 the authors [5] introduce a new concept namely LC-spaces, these are the spaces in which every lindel of sets are closed. In the present paper we introduce a new concept namely L(gc)-spaces which is a weak form of LC-spaces.

Definition 4.1 A space X is said to be L(gc)-space if every lindelof set is g-closed. So every LC-space is L(gc) but the converse is not true in general.

Example 4.1: Let R with the indiscrete topology Γ . Clearly (R, Γ) is L(gc), since for every Lindelof set difference from R and ϕ is g-closed but not closed.

Theorem 4.1 Every L(gc)-space is gT₁.

Theorem 4.2 Every locally g-compact L(gc) is gT₂.

Proof: Let X be a locally g-compact and L(gc)-space, then X is K(gc). So by theorem 3.6 X is gT_2 -space.

Theorem 4.3 The property of space being L(gc) is a hereditary property.

Proof: The proof is similar to theorem 3.12.

Theorem 4.4: If X is L(gc) and $T_{\frac{1}{2}}$ -space, then every compact set in X is finite.

Proof: Let A be compact set in X. If A is finite, then the proof is finished, if A is infinite, then either A is countable or uncountable. Suppose A is countable and U is any set in A, then U is countable, so U is lindelof in A, which implies it is lindelof in X, which is L(gc), then U is g-closed in X. But X is T_{\perp} , and then U is closed in X. But

U \cap A=U, then U is closed in A, that is, A is discrete but A is compact, then A is finite, which is a contradiction. If A is uncountable, then there exists a subset K of A is countable and so K is lindelof in A, so it is lindelof in X, which is L(gc) and $T_{\frac{1}{2}}$ -

space, then K is closed. Put K= $\{a_1, a_2 ...\}$. Let $U_1 = K^c$, now $a_1 \in U_2 = A - \{a_1, a_2, ...\}$

and $a_{2 \in} A \{a_{3}, a_{4}...\}...$, then $\{U_{i}\}_{i=1}^{\infty}$ is an open cover of A, which has no finite subcover, which is a contradiction. Then A is finite.

Definition 4.3: A space X is said to be g-lindelof if for every g-open cover of X has a countable subcovre. Clearly every g-lindelof-space is lindelof but the converse may be not true.

Example 4.2: Let R with the indiscrete topology Γ . Clearly every subset of R is lindelof, since the only open cover of any set is just R. But (R, Γ) is not g-lindelof, since if given $Q^c = \text{R-Q}$, then it is not g-lindelof, since $\{\{x\}\}: x \in Q^c\}$ is a cover of Q^c consisting of g-open sets, which can not be reduce to a countable subcover.

Theorem 4.5: The g^{**} -continuous image of g-lindelof set is also g-lindelof.

Proof: Let f be g^{**} -continuous function from a space X into a space Y and let K be glindelof set in X. To show that f(K) is also g-lindelof, let $\{U_{\alpha}\}_{\alpha \in \Lambda}$ be a g-open cover of f(K), that is, f(K) $\subseteq \bigcup_{\alpha \in \Lambda} \{U_{\alpha}\}$, then $K \subset f^{-1}f(K) \subseteq f^{-1} \bigcup_{\alpha \in \Lambda} \{U_{\alpha}\} = \bigcup_{\alpha \in \Lambda} \{f^{-1}U_{\alpha}\}$, which is also g-open cover of K, but K is g-lindelof, then it is has a countable subcover, that is, $K \subseteq \bigcup_{i=1}^{\infty} \{f^{-1}U_{\alpha i}\}$, which implies to $f(K) \subseteq \bigcup_{i=1}^{\infty} \{U_{\alpha i}\}$. Therefore f(K) is g-lindelof.

Theorem 4.6: The property of space being g-lidelof is a topological property. **Proof:** Let f be a homeomorphism function from a g-lindelof space X into a space Y. Suppose $\{U_{\alpha}\}_{\alpha\in\Lambda}$ be g-open cover of Y, that is, $Y = \bigcup_{\alpha\in\Lambda} \{U_{\alpha}\}$, then $X = f^{-1}(Y)$ $= f^{-1} \bigcup_{\alpha\in\Lambda} \{U_{\alpha}\}$. So by theorem 3.13 $\{f^{-1}U_{\alpha}\}$ is g-open cover of X, which is glindelof, then $X = \bigcup_{i=1}^{\infty} \{f^{-1}U_{\alpha i}\}$, which implies to

$$Y=f(X)=f(\bigcup_{i=1}^{\infty} \left\{f^{-1}U_{\alpha i}\right\})=\bigcup_{i=1}^{\infty} f\left\{f^{-1}U_{\alpha i}\right\}=\bigcup_{i=1}^{\infty} \left\{U_{\alpha i}\right\}.$$
 Therefore Y is also g-lindelof.

Definition 4.3: A space X is said to be gL(gc)-space if every g-lindelof set in X is gclosed. So every LC-space is gL(gc) and every L(gc)-space is gL(gc) but the converses are not true in general. **Theorem 4.7:** Let f be a homeomorphism function from a space X into a space Y if X is gL(gc)-space, then Y is also is gL(gc).

Proof: Let B be a g-lindelof set in Y, then $f^{-1}(B)$ is g-lindelof in X, which is gL(gc)-space, then it is g-closed, but f is a homeomorphism. So by theorem 3.13 f($f^{-1}(B)$)=B is g-closed in Y. Therefore Y is also gL(gc).

Definition 4.4: A space X is said to be locally L(gc)-space if every point in X has L(gc)-neighbourhood. So every L(gc)-space is locally L(gc).

Lemma 4.1[3]: If (Y, Γ_Y) is a g-closed subspace of a space (X, Γ_X) , then if B is g-closed in Y, then it is g-closed in X.

Theorem 4.8: A space X is an L(gc)-space if and only if each point has closed neighbourhoood which is an L(gc)-subspace.

Proof: If X is L(gc)-space, then for each $x \in X$, X itself is a closed neighbourhood of x, which is L(gc). Conversely, Let L be a lindelof set in X and a point $x \in X$ such that $x \notin L$. Choose a closed neighbourhood W_x of x, which is L(gc)-subspace, then $W_x \cap L$ is closed in L, which is lindelof, then $W_x \cap L$ is lidelof in W_x , but W_x is L(gc)-subspace, then $W_x \cap L$ is g-closed in W_x , which is closed so it is g-closed. So by lemma 4.1 $W_x \cap L$ is g-closed in X. Then $W_x - (W_x \cap L) = W_x$ -L is a g-open set containing x and disjoint with L. Therefore L is g-closed set in X.

References

[1] H. J. Ali and A. J. Mohammed, On g, g^* , g^{**} -compact functions, Journal of Al-Nahrain University Vol. 13(2), June, 2010, pp.205-209.

[2] K. Balachandran, P. Sandram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Uni. Ser. A Math. 12(1991), pp.5-13.

[3] J. M.. Esmail, On g-closed functions, M.Sc. Thesis, college of education Al-Mustansiriyah University, 2002.

[4] N. Liven, Generalized closed sets in topology, Rend. Circ. Math. Paleremo(2) 19 (1970), 89-96.

[5] T. K. Mukherji and M. Sarkar, On a class of almost discrete spaces, Mat. Vesnik 3(16) (31) (1979), 459-474.

[6] N. V. Velicko, H-closed topological spaces, Mat. sb. (N.S) 70(112) (1966), 98-112.

[7] Wilansky A., Between T₁ and T₂, Amer. Math. Monthly 74(1967) 261-266.