Certain Properties of N- Proper Functions

خصائص معينة للدوال الفعلية-N

المدرس هيام حسن كاظم أ.د. هادي جابر مصطفى قسم الرياضيات- كلية الرياضيات وعلوم الحاسبات - جامعة الكوفة

Abstract

In this work, we introduce and study N-proper function by using the concept of N-closed function .A function f: $(X,\tau) \rightarrow (Y,\sigma)$ from topological space (X,τ) into a topological space (Y,σ) is said to be a N-proper function if f is continuous, N- closed ,and for every $y \in Y$, f⁻¹(y) is compact. Several properties of N-proper functions are proved.

المستخلص //

في هذا البحث ، قدمنا ودرسنا الدالة الفعلية-N باستخدام مفهوم الدالة المغلقة-N . الدالة (Y, σ) →(Y, σ) . أن الفضاء التبولوجي (X, τ) إلى الفضاء التبولوجي (Y, σ) ،تسمى دالة فعلية-N أذا كانت f مستمرة ، مغلقة-N، ولكل y ∈ Y يكون (y)-f aتراص. وبرهنا عدة خصائص للدالة الفعلية-N .

1.Introduction:

In [1], Bourbaki study in details the concept of proper mapping . In [4], Hadi Jaber Mustaffa study proper functions and semi- proper functions. In this work, we introduce and study N- proper functions using the concept of N- closed functions.

Now, let us state the following definitions from [1,2]. Let (X, τ) be a topological space , let $A \subseteq X$ and let $p \in X$, we say that :

- i) p is a limit point (L.P.) of A if and only if, given G open in X and $p \in G$ then $(G \{p\}) \cap A \neq \phi$, A' = the set of all limit points of A ,and A is closed if and only if, $A' \subseteq A$.
- ii) p is a C-point(C.P.) of A if and only if, given G open in X and $p \in G$ then $G \cap A$ is a countable subset of A (we emphases that $G \cap A$ is infinite).

 $(A')_c$ = the set of all C- points of A ,and we say that A is C- closed if and only if, $(A')_c \subseteq A$.

- iii) p is a N-point(N.P.) of A if and only if, given G open in X and $p \in G$ then $G \cap A$ is a uncountable subset of A.
 - $(A')_N$ = the set of all N- points of A ,and we say that A is N- closed if and only if, $(A')_N \subseteq A$. Some time we use X to denote the topological space (X, τ) and we will use |A| to indicate the cardinality of A , w means cardinality of countable sets and the symbol \mathfrak{Q} to indicate the end of the proof , .

1.1 Remark:

i) Every N-point is C-point and every C-point is a limit point. N.P→C.P→L.P
So, every closed set is a C- closed set and every C- closed set is a N- closed set.
N- closed←C- closed← closed

ii) The complement of N- closed (C- closed) is called N-open(C-open).

2.Basic definitions and examples:

In this section, we introduce and recall the basic definitions needed in this work. First, we state the following definition:

2.1 Definition[1,2]:

Let f: $X \rightarrow Y$ be a function from a topological space X into a topological space Y, we say that: i) f is closed if and only if, the image of every closed set in X is closed in Y.

ii) f is continuous if and only if, the inverse image of every closed set in Y is closed in X.

Next, we introduce the following definition:

2.2 Definition:

Let f: $X \rightarrow Y$ be a function from a topological space X into a topological space Y, we say that: i) f is C- closed if and only if, the image of every closed set in X is C- closed in Y.

ii) f is N- closed if and only if, the image of every closed set in X is N- closed in Y.

2.3 Definition[1, 4]:

Let f: $X \rightarrow Y$ be a function from a topological space X into a topological space Y, we say that f is proper if and only if, f is continuous, closed, and for every $y \in Y$, f⁻¹(y) is compact.

2.4 Definition:

Let f: $X \rightarrow Y$ be a function from a topological space X into a topological space Y, we say that:

i) f is C- proper if and only if, f is continuous, C- closed and for every $y \in Y$, f⁻¹(y) is compact.

ii) f is N- proper if and only if, f is continuous, N- closed and for every $y \in Y$, f⁻¹(y) is compact. 2.5 Remarks and examples:

i) Every proper function is C- proper and every C- proper is N- proper.

Proper \rightarrow C- proper \rightarrow N- proper

ii)Let X={a,b,c} with indiscrete topology τ_I define on X ,and let A={a}. We have A'= {b,c,d}, so we observe that b is L.P but not N.P ,and A' $\not\subset$ A, but (A')_N = $\phi \subseteq$ A, that is A is N- closed but not closed.

iii)Let X={1,2,3} and Y={a,b,c,d}, with discrete topology τ_d define on X and indiscrete topology σ_i define on Y. Let f: $X \rightarrow Y$ be a function defined by :

$$f(x)=a, \forall x \in X.$$

Let A={a} be a subset of Y. In this example, we have $A' = \{b,c,d\} \not\subset A$ so A is not a closed set in Y, but A is an N- closed set in Y. Now, f is N- proper but not a proper function.

3.Main Results:

In this section, we prove that several properties of N-proper functions.

3.1 Theorem:

If (X, τ) be a compact topological space and $A \subseteq X$ be N-closed, then A is also compact. **<u>Proof</u>**: Let $\mathcal{L} = \{\omega_{\alpha} | \alpha \in \Omega\}$ be an open cover of A. Since A is N- closed, then A^c is N-open, so, for each $x \in A^c$ there is an open set V_x such that $x \in V_x$ and $|V_x \cap A| \le w$ $(|V_x \cap A| = \text{cardinality of } V_x \cap A \text{ and } w = \text{cardinality of countable sets})$. Let $\mathcal{L}_1 = \{v_x | x \in A^c\}$. Now $\pounds \cup \pounds_1$ is an open cover of X, but X is compact. So , $\pounds \cup \pounds_1$ has a finite sub cover say

$$\{\omega_{\alpha_1}, \dots, \omega_{\alpha_n}\} \cup \{\nu_{x_1}, \dots, \nu_{x_m}\}, \text{ but } \bigcup_{i=1}^m \{\nu_i \cap A\} \text{ is finite, so for each } x_i \in \bigcup_{i=1}^m \{\nu_i \cap A\}$$

choose $\omega_{x_t} \in \mathcal{L}$ such that $x_t \in \omega_{x_t}$. Then, $\{\omega_{\alpha_1}, \dots, \omega_{\alpha_n}\} \cup \{\omega_{x_t} \mid x_t \in \bigcup_{i=1}^m \{v_{x_i} \cap A\}\}$ is a

finite sub cover of A. So, A is compact. 🗘

From remark (1.1) part (i), we can get the following corollary:

<u>3.2 Corollary:</u> Every closed subset of a compact space is compact.

<u>3.3 Theorem</u>: Let f: $X \rightarrow Y$ be a continuous function from a space X onto a space Y, then f is Nclosed if and only if, for each $y \in Y$ and any open set W in X such that $f^{-1}(y) \subset W$, there exists an Nopen set V_v in Y such that $y \in V_v$ and $f^{-1}(V_v) \subseteq W$.

Journal of Kerbala University, Vol. 7 No.4 Scientific . 2009

Proof:⇒) Suppose that f: X→Y is N- closed and y∈Y, let W be any open set in X such that f⁻¹(y) ⊆W, then X-W is closed in X. So, f (X-W) is N- closed in X. Let $V_y = Y - f(X-W)$, then V_y is N-open in Y and y∈ V_y such that $f^{-1}(V_y)=X-f^{-1}(f(X-W)) \subseteq W$.

 \Leftarrow)Let A be any closed subset of X and $y \in Y$ -f(A), so $f^{-1}(y) \subseteq X$ -A=W. Then, there exists an N-open set V_y such that $y \in V_y$ and $f^{-1}(V_y) \subseteq W$ =X-A.Now, $V_y \subseteq Y$ -f(A). Hence, Y-f(A) is N-open, then f(A) is N- closed which means that f: X→Y is N- closed.

<u>3.4 Remark</u>: If we add to the above theorem the condition that : for each $y \in Y$, $f^{-1}(y)$ is compact, then f: $X \rightarrow Y$ will be N-proper from the definition of N-proper function.

<u>3.5 Example:</u> Let $X=(\mathfrak{R},\tau_u)$ where \mathfrak{R} is the set of real numbers and τ_u is the usual topology on \mathfrak{R} . Consider A=[0,1]. Now, A is compact, also A is a G_{δ}-set, but A is not N-open (recall that A is called a G_{δ}-set if A is the intersection of a countable number of open sets).

<u>3.6 Theorem</u>: Let f: $X \rightarrow Y$ be N-proper function from a space X onto a compact space Y, then X is also compact.

<u>Proof</u>: Let $\mathscr{L} = \{\omega_{\alpha} | \alpha \in \Omega\}$ be an open cover of X, since $f^{-1}(y)$ is compact, $f^{-1}(y) \subseteq \bigcup_{i=1}^{m} W_{\alpha_{i}}$. Let

 $V_y = Y - f(X - \bigcup_{i=1}^{n} W_{\alpha_i})$. Now, f is N- closed, so V_y is N- open for each $y \in Y$, so there exists an

open set V_y^* of y such that $|V_y^* \cap V_y^c| \le w$. Now, $V_y^* = [V_y \cap V_y^*] \cup [V_y^* \cap V_y^c]$, also $\mathcal{L}_1 = \{V_y^* \mid y \in Y\}$ is an open cover of Y and Y is compact, so \mathcal{L}_1 has a finite sub cover, therefore X is the union of finite many members of $\{f^{-1}(V_y^*) \mid y \in Y\}$. Since each $f^{-1}(y)$ is contained many members of \mathcal{L} , so X is compact. \mathfrak{Q}

Similarly, we can prove:

<u>3.7 Theorem</u>: Let f: $X \rightarrow Y$ be N-proper function of a space X onto a Lindelöf space Y , then X Lindelöf .

Before , we state the next theorem , we recall the followings:

<u>3.8 Definition[3]</u>: A function f: $X \rightarrow Y$ is called a compact function if the inverse of each compact set in Y is compact in X.

<u>3.9 Definition[2]</u>: A space X is called a P- space if the intersection of countable number of open sets is open (that is , each G_{δ} -set is open)[2].

Similarly X is called a P^* - space if each G_{δ} -set is N-open .

<u>3.10 Theorem</u>: Let f: $X \rightarrow Y$ be a continuous function from a space X onto a space Y, where Y is compact Hausdorff P^* - space, then f is N- proper if and only if, f is a compact function. **Proof**:=>)Follows from theorem 3.6.

 $\Leftarrow) \text{ Let } f: X \rightarrow Y \text{ be a continuous compact function . It suffices to show that } f \text{ is N-closed let } F \text{ be a closed subset of } X \text{ , assume that } f(F) \text{ is not N-closed , so there exists a point } y_o \in Y \text{ - } f(F) \text{ such that } for every open set V of y_o, |V \cap f(F)| > w since Y is locally compact , there is an open set G of y_o such that <math>\overline{G} = cl(G)$ is compact. Now, $f(F) \cap \overline{G}$ is not compact if it is compact , then it will be N-closed , so there exists an open set M of y_o such that $|M \cap f(F)| \leq w$ which is impossible . Now, \overline{G} is compact , so $f^{-1}(\overline{G})$ is compact and $F \cap f^{-1}(\overline{G})$ is a compact subset of X, therefore $f(F \cap f^{-1}(\overline{G})) = f(F) \cap \overline{G}$ is compact , which is a contradiction . Hence , f(F) is N-closed which means that f is N-closed . \diamondsuit

References:

- [1] N. Bourbaki, General Topology, Vol. 1 , Addison-Wesley Puplishing Company, Reading-Massachussetts , 1966.
- [2] R. Engelking, Out Line of General Topology, North Holland Puplishing Company , Amsterdam , 1968 .
- [3] Hadi J. Mustaffa and D. Ibraheem , Compact Functions , M.Sc thesis, College of Education , AL- Mustansiriyah University ,2001.
- [4] Hadi J. Mustaffa, Proper Functions, Journal of Babylon University, 2002.