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ABSTRACT

Approximation calculations using Hartree-Fock wave function are carried out on the %S ground
state for the Beryllium atom in position space .For each shell in this atom the partial distribution
function, radial statistical coefficients, density distributions and expectation values are studied .This
properties are achieved from the partitioned form of the density distribution. The effects of the
electron—spin in both inter-and intra-shell on the above properties is taken into account.
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INTRODUCTION

One of the first and most simple approximations aimed to solve the problem arise from repulsive
of electrons in many electron system is due to Hartree in 1927 @ .In this approximation ,the total
wave function is constrained to be a product of N one-electron orbitals where the spin of electrons
and the anti- symmetry are not take into account . The most property which is neglected by Hartree
it is the indistinguishability of the electrons, and this noticed independently by Fock ® and Slater ®
in 1930, and it was corrected again to takes the form of a so-called Slater determinant
(see equation 1).

The mathematical consequence of the indistinguishability among a set of N-quantum object of
the same type (such electrons,...etc) is the requirement that the total N-particle wave function after
exchange any pair of a particles coordinates must either remain unchanged (symmetric), in this
case, the particles are bosons and must have integer spin, or change sign (anti-symmetric) and a
particles her called fermions and have semi-integer spin. Since the electrons are fermions, therefore,
the total wave function must be anti-symmetric under the exchange of any pair of electrons . Thus,
this property cannot satisfy by the Hartree product, but it is satisfy by linear combination form,
which proposed by Slater determinant.

Many studies deal with the distribution function g (r12, r1), Banyard and Mobbs © used the
HF and CI systems in their studying for this function and determined the partial coulomb hole Ag
(r12, r1)for Be atom, Banyard and Reed © studied this distribution function by using of (FNC) and
HF wave functions for HeH" ,Al-Bayati and Banyard () used the Cl and HF wave functions through
their studying of Li-like ions in first excited  state. Statistical correlations between electrons can
be studies in many ways, Cooper and Pounder ®, Sharma and Thakkar © studied this correlation by
analyzing electron correlation holes, Sanders and Banyard®®, Wang et al *» and Koga™
examining the pair correlation density itself.

In the present paper we apply the g (12, r1) and the idea of Kutzelnigg et al ™ for statistical
correlation to the ground state of Be-atom by using of HF wave function. To study these properties
in depth we used portioning technique and represent the distribution function as a surface and
contour diagrams.
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THEORY AND WAVEFUNCTTION

In the Hartree-Fock system, the total anti-symmetric wave functions written as Slater
determinant ;-

Py X ) =12 (0 72 (%2 ) iy (), (1)

In this equation the Dirac notations represent the Slater determinant and the normalization
constant(N), the one-electron orbital, in addition to, normalized property, it is also mutually
orthogonal

(wilwi)=5; i,j=12,.,N )
Also, we used one-electron wave function /; dependent also on the spin o ,thus, our wave
function is spin-orbitals. A general spin-orbital may be written as ;-
w(x)=p(r o)+ o(r)Blc) 3
Where the functions « and £ corresponding to the spin-up and spin-down.
Every one-electron orbital function (p(r)consists of normalized Slater type orbitals®®:-

Prmic (r): Rn (r)Y|m(0, ¢) 4
Where RI()=Nr" exp(—¢r), N=(22)"%/J@n) ,n,l and m are quantum numbers

and ¢ is called exponent parameter.

In many electron systems the Hamiltonian is given by 7.

A

H=T+V, +V, :—Zj/zvz ZZ/r +J/221/ (5)

i#]

or
N N

H=>"h+12> 1r; (6)
i=1 i=1

Where r;in equation (5) is the distance of one electron to the nucleus.

Then:

(PR[E) = (¥ | 2)+1/2 3 (1 [ '¥) ™
This leads to:-I -

() =(h)+v2(r,) ®)

Now, we will useful from the <ﬁi> to calculate the expectation value for r; and then calculates the

partial distribution function g(rlz, rl) and radial statistical coefficients.

To satisfy our goal we will use the partitioning technique to studing each two-electron in one
shell, and use the wave function in terms of the radial two-particle density distribution I}; (r, r21)

which obtained from® :-

("11"2) ]/2[ |(X1)‘/’ (x2)- l//J'(Xl)Wi(Xz)]2 )

By substituting the equations (3 and 4) in equation (9) and integrating over spin and angular
function we can get:-
For intra-shell KK (K(*S)) i=1,j=2:-

,(n.r)=REA(n)RE(r,) (10)
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For inter-shell KL(3S) i=1,j=3 :-
I3 =T5 =12 x

[Rls (rl)2 RZS (r2 )2 - 2R15 (rl)RZS (rl)RZS (r2 )R:Ls (r2)+ R25 (rl)2 Rls (r2 )2] (ll)
For inter-shell KL(*S) i=1, j=4:-
Fig =Tos =1/2 % [Rus ()7 Ros (12)7 +Ros (1R (72 (12)
For the intra-shell L(*S) i=3, j=4:-
F34(I‘1, I ) = Rzzs (r1 )Rzzs (rz ) (13)
Now the partial distribution function is given by :-
rp+n)
g(rp.n)=1/2 Irij(rlirZ)errZ EP) (14)
LPSA

Where 1, is the distance between the two electrons.
For our two-electron shells, the radial statistical coefficients can be introduced as 18)._

.E — {Tl?r:}_trj_}z -E:I. — {?ﬂj._lrz_l}_{?ﬂl_liz
TTOH-F and T 0T -0TF (15)
Such that the one-electron expectation value in (a.u.) is given by ¢9:-
0

I'(r;) is one-particle radial density and defined as® :-

Finally, our parameters (c, n, ¢ ) are taken from atomic data and nuclear data tables for Rothaan-

Hartree-Fock ground state wave function for Beryllium which cited by Ref.(20) ,and the Mathcad
program used her to solve the integrations.

RESULTS AND DISSCUTION

Firstly, we can defined the distribution function g(ri,,r1) to represent the probability of
finding an inter-electronic separation ri; when a test electron r; is located at a distance r; from the
nucleus, where the nucleus located at the center of coordinates. Also, the integration over gug(riz,r1)
from 0—oo gives the radial distribution function Dyg(r1) which is normalized to unity. The function
gue(riz,r1) is important to studying the partial coulomb holes (4g(ri2,r1)= Gexact (r12,r1)-
gur(riz,r)),these holes are enable us to examine the effect of electron correlation when a test
electron is located at a specific distance from the nucleus.

Figure (1-a,b) represents the contour and surface diagrams behavior of gpe(ri2,r1) against
(rio ,r1) for KKg shell, we see the main characteristic feature located about the diagonal line where
ri= 1 and these feature also parallel to the ry, axis for small r;. For surface diagram, we see that the
maximum for gue(rio,r1) =3.784 occurs at ri= r(K.Kp)=0.27 ,where the ry represent the mode of
Dur(ry) for the K-shell, this mean that the higher probability of radial distribution function Dyg(ry)
occurs at ry (see figure 5-a).At this maximum value of gue(ri2,r1) we note that ry, > ry,it is found
0.36. In contour diagram figure (1-a) we can see this behavior, but the maximum value not appears
here because we select some contours to get a good picture. It is worth to mention here that the
value appear in each contours represent the value of gue(ri2,r1) for fixed r; and various ry,.

For inter-shells KL(S) (KoL.= KgLg) where the two electrons with same spin direction, figure
(2) show us a different behaviors of gue(ri2,r1),where two main features appear instead of one as in
K-shell. These two features are characteristic of an inter-shell distribution ?%. It is clear from the
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contour and surface diagrams (3-a, b) that one of these features lie parallel to ry, axis starting from
small ry, with value 0.386 at ri,= 2.04, ri= r,= 0.26 and the other along the diagonal axis (ri2=r;)
with value of 0.368 at ri,= 2.05 and r;= r .= 2.04. Also, the r; values which located the two
maximum values of distribution function are the local K and L-shell modes of Dug(ri)
(see figure 5-b ) .Because of the same spin components of our two electrons the Fermi effects a
raises and the consequence no value of gue(riz,r1) at small ry, for all ranges of r;.

The partial distribution function gue(rz,r1) for inter-shells KL(*S) (KaLp =KgL, ) represented
by figure(3-a,b),this figure shows features similar to those appeared in previous inter- shells but
with new feature at a distance close to nucleus. At the diagonal (ri» = r;) and parallel axes we see
that the maximum distribution is similar to the previous inter-shells in maximum and locations
.Since the two electrons with opposite spin direction Fermi effect will not present, hence, additional
feature "mini-shell” will appears close to the nucleus. This mini-K-shell with small value of
gur(riz,r1) and same in shape and location the feature of K-shell, it is arise from penetrated of L-
shell electron to K-shell then interacted with its electron as a consequence mini-shell seen at a
small r; and ry,.

In the intra-shell (L-shell) the two electrons with the opposite spin direction, then we see
that the maximum value of function gue(ri2,r1) is less than those for previous inter-shell, it is 0.100
at r;=2.05 and ry; =2.11. Figure (4-a, b) show another probability in this shell located at small value
of axes, r;=0.21 and r12,=0.43, the small probability of L-shell a raises from attraction interaction of
our electrons because their spins.

For any intershells there is spatial interaction between the two electrons, this interaction so-
called electron correlation, it is means that the motion of the electrons are statistically correlated *®
(these effects has been partially taken into account by the Hartree-Fock model). According to
standard concept for mathematical statistics and probability theory Kutzelnigg et al. ** used the
statistical coefficients as a probe for the analysis of electron correlation in the atomic system,

I
depending on some expectation values ,the expectation valuefri*}and FTTZ) for n =2 2 are
listed in tables (1,2).

The spatial correlation can seen in the intershells that occupied by two electrons with same
spin components or with opposite components. In these cases, the electrons separated by a distance
between each others, therefore, spatial correlation (statistical correlation) will a raise. So, for shells
(K or L) the electrons in the same shell, therefore, must be with opposite spin directions as a result,
they are suffered from repulsive interaction, then no chance for spatial interaction. The last leads to

all the T for the HF wave function are zero except for the radial coefficients for intershells. Table
(3) show us zero value of (K or L) shells and non zero values of intershells.
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Table (1): Some one-particle expectation values for intra-and inter shells

of Be-atom.
Shell {r1"} a.u.
n=-2 n=-1 n=1 n=2
1 27.7533 3.6818 0.4149 0.2329
K(*S) 27.7590° 3.6819° 0.4149° 0.2330°
KL(*S)=KL(’S) | 14.4033 2.1020 1.5321 4.3295
14.4080° 2.1022° 1.5324% 4.3324°
L(*S) 1.0555 0.5224 2.6491 8.4254
1.0506° 0.52252 2.6498° 8.4318°
Total 14.4036 2.1020 1.5320 4.3293
14.4078° 2.1022° 1.5324° 4.3324°

& from reference(5).
b calculated for ref.(5).
® the total listed here is given by 1/6(K(*S)+L(*S)+KL(*S)+3KL(%S))

Table (2): Some two-particle expectation values for intra-and inter shells of Be-atom.

Shell r'13°) q.u.
n=-2 n =-1 n =1 n=2
) 770.2500 13.5562 0.1722 0.0542
KCS) | 13.557° 0.1722° | -
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KL(S) 7.9839 1.7399 1.0895 1.9359
------ 1.7400° 1.0896°
KL('S) 29.2976 1.9238 1.0994 1.9629
------ 1.9239° 1.0996°
L('S) 1.1143 0.2730 7.0193 70.9998
------ 0.2730° 7.0199¢
Total © 140.9878 3.5261 1.9282 13.1419
------ 3.5263¢ 1.9284°

¢ from reference (22)

Table (3): Some radial statistical coefficients for intra-and inter shells of Be-atom.

Shell K('S) KLCS) | KL('S) L('S) Total
0.0009 —0.6345 | -0.6295 0.0011 —1264 0
= 0.0 € —0.6343 ¢ - 0.0 ¢ —1.2586 ¢
0.6243°
0.0 —0.2682 -0.2498 | 0.0 -0.5180
T
T 0.0 € —0.2682 € | - 0.0 ¢ -0.4996°
0.2314°

¢ from Ref(5)
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Figure (1): distribution function gue (r2, rl) against (rip, rl) for K-shell (a) contour diagram (b)
surface diagram (scales for figures 1—4 divided on 0.05).
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Figure (2): distribution function gue (r12, rl) against (ri, r1) for KL (3S)-shell (a) contour diagram
(b) surface diagram.
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Figure (3): distribution function gwr (12, rl) against (riz, rl) for KL (*S)-shell (a) contour diagram
(b) surface diagram.
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Figure (4): distribution function gue (r12, rl) against (ri2, rl) for L-shell (a) contour diagram (b)
surface diagram.
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Figure (5): One particle radial density against distance for ground state of Be-atom. (a)K- shell.
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