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ABSTRACT 
    Approximation calculations using Hartree-Fock wave function are carried out on the 

2
S ground 

state for the Beryllium atom in position space .For each shell in this atom the partial distribution 

function, radial statistical coefficients, density distributions and expectation values are studied .This 

properties are achieved from the partitioned form of the density distribution. The effects of the 

electron–spin in both inter-and intra-shell on the above properties is taken into account. 

 الخلاصة
 

الوسةحى   ارريةي لةذر  فةى  لدراسةة  –اجزيث في هذا البحث حسابات ججزيبية اسحخدهث فيها الدالة الوىجيةة لهةارجز  

البزيليىم في فضاء الوىقع. ولكل قشز  هي قشز هذا الٌظةام جةن اراسةة االةة جىسيةع الكاافةة الجشليةة والولةاهتت السةحاجيكية الشةلا ية 

ي هةذٍ واالة جىيع الكاافة والقين الوحىقلة . جن اًجاسالخصةال  الودروسةة ا ةتٍ باسةححدام  ةيتة الحجشلةة لحىسيةع الكاافةة فوقةد جةن فة

 الدراسة ارخذ بليي ار حبار جاثيز بزم ارلكحزوى لجويع القشز والقشز الداخلية هع هقارًة الٌحالج هع الٌحالج اللالوية الوحاحة.

  

INTRODUCTION  
 

   One of the first and most simple approximations aimed to solve the problem arise from repulsive 

of electrons in many electron system is due to Hartree in 1927 
(1)

 .In this approximation ,the total 

wave function is constrained to be a product of  N one-electron orbitals where the spin of electrons 

and the anti- symmetry are not take into account . The most property which is neglected by Hartree 

it is the indistinguishability of the electrons, and this noticed independently by Fock
 (2)

 and Slater
 (3)

 

in 1930, and it was corrected again to takes the form of a so-called Slater determinant                                 

(see equation 1). 

    The mathematical consequence of the indistinguishability among a set of N-quantum object of 

the same type (such electrons,…etc) is the requirement that the total N-particle wave function after 

exchange any pair of a particles coordinates must either remain unchanged (symmetric), in this 

case, the particles are bosons and must have integer spin, or change sign (anti-symmetric) and a 

particles her called fermions and have semi-integer spin. Since the electrons are fermions, therefore, 

the total wave function must be anti-symmetric under the exchange of any pair of electrons
 (4)

.Thus, 

this property cannot satisfy by the Hartree product, but it is satisfy by linear combination form, 

which proposed by Slater determinant. 

 Many studies deal with the distribution function g (r12, r1), Banyard and Mobbs
 (5)

 used the 

HF and CI systems in their studying for this function and determined the partial coulomb hole 𝜟g 

(r12, r1)for Be atom, Banyard and Reed 
(6)

 studied this distribution function by using of (FNC) and 

HF wave functions for HeH
+ 

,Al-Bayati and Banyard 
(7)

 used the CI and HF wave functions through 

their studying of Li-like ions in first excited      state. Statistical correlations between electrons can 

be studies in many ways, Cooper and Pounder 
(8)

, Sharma and Thakkar
 (9)

 studied this correlation by 

analyzing electron correlation holes, Sanders and Banyard
(10)

, Wang et al
 (11)

 and Koga
(12)

 

examining the pair correlation density itself.  

 

In the present paper we apply the g (r12, r1) and the idea of Kutzelnigg et al 
(13)

 for statistical 

correlation to the ground state of Be-atom by using of HF wave function. To study these properties 

in depth we used portioning technique and represent the distribution function as a surface and 

contour diagrams. 
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THEORY AND WAVEFUNCTTION 

 
In the Hartree-Fock system, the total anti-symmetric wave functions written as Slater 

determinant 
(14)

:- 

        ,,...,.,..., 22111 NNN xxxxx                                                 (1) 

In this equation the Dirac notations represent the Slater determinant and the normalization 

constant  N , the one-electron orbital, in addition to, normalized property, it is also mutually 

orthogonal 
(15)

 

Njiijji ,...,2,1,                 (2) 

Also, we used one-electron wave function i  dependent also on the spin  ,thus, our wave 

function is spin-orbitals. A general spin-orbital may be written as
 (4)

:- 

         rrx                                                                           (3) 

Where the functions   and   corresponding to the spin-up and spin-down. 

Every one-electron orbital function  r consists of normalized Slater type orbitals
(16)

:- 

       ,m
l

l
nnml YrRr                                                                            (4) 

Where        !22,exp
5.01 nNrrNrR nl

n
     , ln ,  and  m  are quantum numbers 

and  is called exponent parameter. 

In many electron systems, the Hamiltonian is given by 
(17)

:- 





N

ji

ij

N

i

i

N

i

ieeeN rrZVVTH 12121ˆˆˆˆ

11

2                                          (5) 

or 





N

i

ij

N

i

i rhH
11

121ˆ                                                                                  (6) 

Where ir in equation (5) is the distance of one electron to the nucleus. 

Then: 





ji

ij

i

i rhH 121ˆ                                               (7) 

This leads to:- 

iji rhH 121ˆˆ                                                                                  (8) 

Now, we will useful from the iĥ  to calculate the expectation value for ir  and then calculates the 

partial distribution function  112,rrg  and radial statistical coefficients. 

   To satisfy our goal we will use the partitioning technique to studing each two-electron in one 

shell, and use the wave function in terms of the radial two-particle density distribution  
12, rrij  

which obtained from
(5)

 :- 

          2212121 21, xxxxrr ijjiij                                             (9) 

 

 

By substituting the equations (3 and 4) in equation (9) and integrating over spin and angular 

function we can get:- 

For intra-shell KαKβ (K(
1
S)) 2,1  ji :- 

     2

2

11

2

12112 , rRrRrr ss                                                                              (10) 
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For inter-shell KL(
3
S) 3,1  ji  :- 

 212413  

                2

21

2

1221221211

2

22

2

11 2 rRrRrRrRrRrRrRrR ssssssss                            (11) 

For inter-shell KL(
1
S) 4,1  ji :- 

 212314          2
21

2
12

2
22

2
11 rRrRrRrR ssss                           (12) 

For the intra-shell L(
1
S) 4,3  ji :- 

     2

2

21

2

22134 , rRrRrr ss                                                                             (13) 

Now the partial distribution function is given by
 
:- 

    122221112

112

112

,21, rdrrrrrrg

rr

rr

ij













 





                                                    (14) 

Where 12r  is the distance between the two electrons. 

    For our two-electron shells, the radial statistical coefficients can be introduced as
 (18)

:- 

      , and                                       (15) 

Such that the one-electron expectation value in (a.u.) is given by
 (19)

:- 

   1
2

1

0

1
2

1 drrrr 


                                                                                 (16) 

 1r   is one-particle radial density and defined as
(18)

 :- 

    2211 , drrrr                                                                                  (17) 

 Finally, our parameters  ,, nc  are taken from atomic data and nuclear data tables for Rothaan-

Hartree-Fock ground state wave function for Beryllium which cited by Ref.(20) ,and the Mathcad 

program used her to solve the integrations.  

 

RESULTS AND DISSCUTION  
Firstly, we can defined the distribution function g(r12,r1) to represent the probability of 

finding an inter-electronic separation r12 when a test electron r1 is located at a distance r1 from the 

nucleus, where  the nucleus located at the center of coordinates. Also, the integration over gHF(r12,r1) 

from 0→∞ gives the radial distribution function DHF(r1) which is normalized to unity. The function 

gHF(r12,r1) is important to studying the partial coulomb holes (𝜟g(r12,r1)= gexact.(r12,r1)- 

gHF(r12,r1)),these holes are enable us to examine the effect of electron correlation when a test 

electron is located at a specific distance from the nucleus. 
 

Figure (1-a,b) represents the contour and surface diagrams behavior of gHF(r12,r1) against                   

(r12 ,r1) for KαKβ shell, we see the main characteristic feature located about the diagonal line where 

r12= r1 and these feature also parallel to the r12 axis for small r1. For surface diagram, we see that the 

maximum for gHF(r12,r1) =3.784 occurs at r1= rk(KαKβ)=0.27 ,where the r1 represent the mode of  

DHF(r1) for the K-shell, this mean that the higher probability of radial distribution function DHF(r1)  

occurs at rk (see  figure 5-a).At this maximum value of gHF(r12,r1) we note that r12 > r1,it is found 

0.36. In contour diagram figure (1-a) we can see this behavior, but the maximum value not appears 

here because we select some contours to get a good picture. It is worth to mention here that the 

value appear in each contours represent the value of  gHF(r12,r1) for fixed r1 and various r12.  

For inter-shells KL(
3
S) (KαLα= KβLβ) where the two electrons with same spin direction, figure 

(2) show us a different behaviors of gHF(r12,r1),where two main features appear instead of one as in 

K-shell. These two features are characteristic of an inter-shell distribution
 (21)

. It is clear from the 
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contour and surface diagrams (3-a, b) that one of these features lie parallel to r12 axis starting from 

small r12 with value 0.386 at r12= 2.04, r1= rk= 0.26 and the other along the diagonal axis (r12=r1) 

with value of 0.368 at r12= 2.05 and r1= rL= 2.04. Also, the r1 values which located the two 

maximum values of distribution function are the local K and L-shell modes of DHF(r1)                                 

(see figure 5-b ) .Because of  the same spin components of our two electrons the Fermi effects a 

raises and the consequence no value of  gHF(r12,r1) at small r12 for all ranges of r1. 

 

The partial distribution function gHF(r12,r1) for inter-shells KL(
1
S) (KαLβ =KβLα ) represented 

by figure(3-a,b),this figure shows features similar  to those appeared in previous inter- shells but 

with new feature at a distance close to nucleus. At the diagonal (r12 = r1)  and parallel axes we see 

that the maximum distribution is similar to the previous inter-shells in maximum and locations 

.Since the two electrons with opposite spin direction  Fermi effect will not present, hence, additional 

feature "mini-shell" will appears close to the nucleus. This mini-K-shell with small value of 

gHF(r12,r1) and same in shape and location the feature of K-shell, it is arise from penetrated of L-

shell electron to K-shell then interacted  with its electron as a consequence mini-shell seen at a 

small r1 and r12. 

 

In the intra-shell (L-shell) the two electrons with the opposite spin direction, then we see 

that the maximum value of function gHF(r12,r1) is less than those for previous inter-shell, it is  0.100 

at r1=2.05 and r12 =2.11. Figure (4-a, b) show another probability in this shell located at small value 

of axes, r1=0.21 and r12=0.43, the small probability of L-shell a raises from attraction interaction of 

our electrons because their spins.  

 

For any intershells there is spatial interaction between the two electrons, this interaction so-

called electron correlation, it is means that the motion of the electrons are statistically correlated
 (18)

 

(these effects has been partially taken into account by the Hartree-Fock model). According to 

standard concept for mathematical statistics and probability theory Kutzelnigg et al.
 (13)

 used the 

statistical coefficients as a probe for the analysis of electron correlation in the atomic system, 

depending on some expectation values ,the expectation value and  for n =-2 →2 are 

listed in tables (1,2). 

 

The spatial correlation can seen in the intershells that occupied by two electrons with same 

spin components or with opposite components. In these cases, the electrons separated by a distance 

between each others, therefore, spatial correlation (statistical correlation) will a raise. So, for shells 

(K or L) the electrons in the same shell, therefore, must be with opposite spin directions as a result, 

they are suffered from repulsive interaction, then no chance for spatial interaction. The last leads to 

all the   for the HF wave function are zero except for the radial coefficients for intershells. Table 

(3) show us zero value of (K or L) shells and non zero values of intershells. 
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Table (1): Some one-particle expectation values for intra-and inter shells 

of  Be-atom. 

 

Shell  a.u. 

n =-2 n =-1 n =1 n =2 

 

K(
1
S) 

27.7533 3.6818 0.4149 0.2329 

27.7590
a 

3.6819
a 

0.4149
a 

0.2330
a 

KL(
1
S)=KL(

3
S) 14.4033 2.1020 1.5321 4.3295 

14.4080
a 

2.1022
a 

1.5324
a 

4.3324
a 

L(
1
S) 1.0555 0.5224 2.6491 8.4254 

1.0506
a 

0.5225
a 

2.6498
a 

8.4318
a 

Total
 c 

14.4036 2.1020 1.5320 4.3293 

14.4078
b 

2.1022
b
 1.5324

b
 4.3324

b 

 

 

a
 from reference(5).  

b
 calculated for ref.(5). 

c
 the total listed here is given by 1/6(K(

1
S)+L(

1
S)+KL(

1
S)+3KL(

3
S)) 

 

 

 

 

Table (2): Some two-particle expectation values for intra-and inter shells of Be-atom. 

 

Shell  a.u. 

n =-2 n  =-1 n  =1 n =2 

 

K(
1
S) 

770.2500 13.5562 0.1722 0.0542 

   ------ 13.557
d
 0.1722

d
    ------ 

http://www.physics.metu.edu.tr/~sturgut/hf.pdf
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KL(
3
S) 7.9839 1.7399 1.0895 1.9359 

   ------
 

1.7400
d
 1.0896

d
    ------

 

KL(
1
S) 29.2976 1.9238 1.0994 1.9629 

  ------
 

1.9239
d 

1.0996
d 

   ------
 

L(
1
S) 1.1143 0.2730 7.0193 70.9998 

  ------
   

0.2730
d 

7.0199
d
     ------

 

Total
 c 

140.9878 3.5261 1.9282 13.1419 

   ------
 

3.5263
d 

1.9284
d 

    ------
 

 
d
 from reference (22) 

 

 

 

Table (3): Some radial statistical coefficients for intra-and inter shells of Be-atom. 

 

Shell K(
1
S) KL(

3
S) KL(

1
S) L(

1
S) Total 

 

 

  -0.6295  0 

  e e -

0.6243
e
 

 e e 

 

 

  -0.2498  -0.5180 

e 
 
e -

0.2314
e 

 
e -0.4996

e 

 
e
 from  Ref(5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          

(a)                                                                           

(b) 
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Figure (1): distribution function gHF (r12, r1) against (r12, r1) for K-shell (a) contour diagram (b) 

surface diagram (scales for figures 1→4 divided on 0.05). 

 

 

         

                               (a)                                                                            (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2): distribution function gHF (r12, r1) against (r12, r1) for KL (
3
S)-shell (a) contour diagram 

(b) surface diagram. 
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Figure (3): distribution function gHF (r12, r1) against (r12, r1) for KL (
1
S)-shell (a) contour diagram 

(b) surface diagram. 

 

 

         (a)                                                                               (b) 

 

 

 
 

 

Figure (4): distribution function gHF (r12, r1) against (r12, r1) for L-shell (a) contour diagram (b) 

surface diagram. 

 

 

 

 

 

 

 

 

(a)                   (b) 
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(c)                                                                                       (d) 

 

 

 

 

 

 

Figure (5): One particle radial density against distance for ground state of Be-atom.  (a)K- shell.   

(b) Intershells (
3
S)  (c) intershells (

1
S) (d) L-shell.  

 

 

 

 


