# The Order of Elements in $T_{\mathbf{n}}$ and $P_{\mathbf{n}}$ Semigroups رتبة العناصر في شبه الزمرة Tn وشبه الزمرة 

Neeran Tahir Al-Khafaji<br>sajda Kadhum Mohammed<br>Dep.of Math. , College Of Education for Girls, Al-Kufa University<br>Yiezi Kadham Mahdi<br>Dep.of Math., College Of Education, Babylon University

## Abstract:

In this paper we obtain a formula for the order of elements in $\mathrm{T}_{\mathrm{n}}$ (The symmetric Semigroup) and $\mathrm{P}_{\mathrm{n}}$ (The Partial symmetric Semigroup ) semigroups .

> الخلاصة //

في هذا البحث أوجدنا صيغة لحساب رتبة العناصر في شبه الزمرة التناظرية Tn وفي شبه الزمرة التناظرية الجزئية . $\mathbf{P}_{\mathrm{n}}$

## 1. Introduction:

Let $\mathrm{X}_{\mathrm{n}}=\{1,2, \ldots, \mathrm{n}\}$ then a partial transformation $\alpha: \operatorname{Dom} \alpha \subseteq \mathrm{X}_{\mathrm{n}} \rightarrow \operatorname{Im} \alpha \subseteq \mathrm{X}_{\mathrm{n}}$ is said to be $a$ full or total transformation if $\operatorname{Dom} \alpha=\mathrm{X}_{\mathrm{n}}$, otherwise it is called strictly partial .The three fundamental semigroups of transformations under the usual composite of mapping that have been extensively studied are : $T_{n}$ the full transformation semigroup ( or the symmetric Semigroup); $\mathrm{I}_{\mathrm{n}}$, the semigroup of partial one-one mappings ( or the symmetric inverse semigroup); and $\mathrm{P}_{\mathrm{n}}$ the semigroup of partial transformations(or the Partial symmetric Semigroup ), [1],[2] .

In a semigroup $S$, the order of an element in $S$ is the order of the cyclic subsemigroup of $S$ generated by this element, [3]. Let $S$ be the $T_{n}$ or $P_{n}$ semigroup so we will know the order of these semigroup if we get a repeated element or the 0 element, [4] where

$$
0=\left(\begin{array}{cccc}
\mathrm{x}_{1} \mathrm{x}_{2} & \ldots & \mathrm{X}_{\mathrm{n}} \\
- & -\ldots & -
\end{array}\right) \in \mathrm{P}_{\mathrm{n}} \text {, that is mean } \alpha: \operatorname{Dom} \alpha=\Phi \subseteq \mathrm{X}_{\mathrm{n}} \rightarrow \operatorname{Im} \alpha \subseteq \mathrm{X}_{\mathrm{n}}
$$

In this paper we want to find the order of each element in $T_{n}$ and $P_{n}$.
Definition 1.1: A semigroup $S$ is generated by a subset $G$ if every element of $S$ can be written as a product of some elements of G. A semigroup generated by a subset consisting of a single element is a cyclic semigroup. If A is a non- empty subset of a semigroup S , then the set
$\left\{\mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{n}}: \mathrm{a}_{\mathrm{i}} \in \mathrm{A}\right.$ and n is arbitrary $\}$,
is the subsemigroup of $S$ generated by A ,[3] .
Definition 1.2: The order of a semigroup $S$ is the number of its element if $S$ is finite, otherwise $S$ is of infinite order .The order of an element s of a semigroup S is the order of the cyclic
subsemigroup of $S$ generated by s, [3] .
Exampe 1.1: $\mathrm{p}_{2}$ is the set of all mapping $\alpha_{1}, \ldots, \alpha_{9}$ where
if Dom $\alpha=\mathrm{X}_{2}$,
$\alpha_{1}(1)=\alpha_{1}(2)=1$
$\alpha_{2}(1)=\alpha_{2}(2)=2$
$\alpha_{3}(1)=1, \alpha_{3}(2)=2$ is the identity element (e)
$\alpha_{4}(1)=2, \alpha_{4}(2)=1$
if Dom $\alpha \subset \mathrm{X}_{2}$ and contains one elements
$\alpha_{5}(1)=1, \alpha_{5}(2)=-$, where $\alpha_{5}(2)=-$ means that $2 \notin$ Dom $\alpha_{5}$.
$\alpha_{6}(1)=2, \alpha_{6}(2)=-$
$\alpha_{7}(1)=-, \alpha_{7}(2)=1$
$\alpha_{8}(1)=-, \alpha_{8}(2)=2$

## Journal of Kerbala University , Vol. 7 No. 4 Scientific . 2009

if Dom $\alpha=\Phi \subset X_{2}$
$\alpha_{9}(1)=-, \alpha_{9}(2)=-$ is the zero element .
We must note that $\left\{\alpha_{1}, \ldots, \alpha_{4}\right\}=T_{2}$. Because we can deal with these mapping easily we will write the mapping above as following:

$$
\begin{aligned}
& \alpha_{1}=\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right), \alpha_{2}=\left(\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right), \alpha_{3}=\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right), \alpha_{4}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right), \alpha_{5}=\left(\begin{array}{ll}
1 & 2 \\
1 & -
\end{array}\right), \\
& \alpha_{6}=\left(\begin{array}{ll}
1 & 2 \\
2 & -
\end{array}\right), \alpha_{7}=\left(\begin{array}{ll}
1 & 2 \\
- & 1
\end{array}\right), \alpha_{8}=\left(\begin{array}{ll}
1 & 2 \\
- & 2
\end{array}\right), \alpha_{9}=\left(\begin{array}{ll}
1 & 2 \\
- & -
\end{array}\right) .
\end{aligned}
$$

## 2. The Main Result:

The subset $T_{n}$ of $P_{n}$ consisting of all mappings from $X_{n}$ into $X_{n}$ form a subsemigroup. Now inside $T_{n}$ and $P_{n}$ we find one or more than one element of the form

$$
\alpha=\left(\begin{array}{llll}
\mathrm{x}_{1} \mathrm{x}_{2} & \ldots & \mathrm{x}_{\mathrm{k}-1} & \mathrm{x}_{\mathrm{k}} \\
\mathrm{x}_{2} & \mathrm{x}_{3} & \ldots & \mathrm{x}_{\mathrm{k}}
\end{array} \mathrm{x}_{\mathrm{k}}\right) \text {, where } \mathrm{k}>1 \text { and } \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha, \mathrm{i}=\mathrm{k}+1, \ldots, \mathrm{n} \text { are fixed } .
$$

We shall call $\alpha$ the element of the first kind I with length $k$ and we say $x_{k}$ is fixed element in $\alpha$ where $\alpha\left(\mathrm{x}_{\mathrm{k}-1}\right)=\mathrm{x}_{\mathrm{k}}$ and $\alpha\left(\mathrm{x}_{\mathrm{k}}\right)=\mathrm{x}_{\mathrm{k}}$. We must note that every element of the form
$\alpha=\left(\begin{array}{ccccccc}\mathrm{x}_{1} & \mathrm{x}_{2} & \ldots & \mathrm{x}_{\mathrm{u}} & \mathrm{x}_{\mathrm{u}+1} & \ldots & \mathrm{x}_{\mathrm{h}} \\ \mathrm{x}_{2} & \mathrm{x}_{3} & \ldots & \mathrm{x}_{1} & \mathrm{x}_{\mathrm{u}+2} & \ldots & \mathrm{x}_{\mathrm{i}}\end{array}\right)=\left(\begin{array}{ccccccc}\mathrm{x}_{1} & \mathrm{x}_{2} & \ldots & \mathrm{x}_{\mathrm{u}} & \mathrm{x}_{\mathrm{u}+1} & \ldots & \mathrm{x}_{\mathrm{h}} \\ \mathrm{x}_{2} & \mathrm{x}_{3} & \ldots & \mathrm{x}_{1} & \mathrm{x}_{\mathrm{u}+1} & \ldots & \mathrm{x}_{\mathrm{h}}\end{array}\right)\left(\begin{array}{ccccccc}\mathrm{x}_{1} & \mathrm{x}_{2} & \ldots & \mathrm{x}_{\mathrm{u}} & \mathrm{x}_{\mathrm{u}+1} & \ldots & \mathrm{x}_{\mathrm{h}} \\ \mathrm{x}_{1} & \mathrm{x}_{2} & \ldots & \mathrm{x}_{\mathrm{u}} & \mathrm{x}_{\mathrm{u}+2} & \ldots & \alpha^{-1}\left(\mathrm{x}_{\mathrm{i}}\right)\end{array}\right)$ $=\lambda \gamma$
, where $\mathrm{i}=1, \ldots \mathrm{u}$ and $\alpha^{-1}\left(\mathrm{x}_{\mathrm{i}}\right)$ is the pre-image of the $\mathrm{x}_{\mathrm{i}}$ such that it is belong to the cyclic $\lambda$ we shall called this element is the element of the first kind II with length $h$,, then $\alpha$ can be written as a product of cyclic and element of the first kind .also we find one or more than one element of the form
$\alpha=\left(\begin{array}{lllll}\mathrm{x}_{1} & \mathrm{x}_{2} & \ldots & \mathrm{x}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}} \\ \mathrm{x}_{2} & \mathrm{x}_{3} & \ldots & \mathrm{x}_{\mathrm{j}}-\end{array}\right)$, where either $\mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha$ is fixed or $\mathrm{x}_{\mathrm{i}} \in \mathrm{X}_{\mathrm{n}} / \operatorname{Dom} \alpha \forall \mathrm{i}=\mathrm{j}+1, \ldots, \mathrm{n}$.
We shall call $\mathrm{s} \alpha$ the element of the second kind with length j .
Note: we will use L.C.M.( least common multiple for lengths of its cycles) for the order of $m$ cycles , h for the length of the longest element of the first kind $\mathrm{I}, \mathrm{k}$ for the length of the longest element of the first kind II and $f$ for the length of the longest element of the second kind, and we will not care for the element of the form $\alpha\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{x}_{\mathrm{i}}$ in $\alpha$ where $\mathrm{x}_{\mathrm{i}}$ is not the fixed element that is because it doesn't affect on the order of $\alpha$. We say $h=0$ if there is no element of the first kind I in $\alpha$ also $\mathrm{k}=0$ if there is no element of the first kind II in $\alpha$ and $\mathrm{f}=0$ if there is no element of the second kind in $\alpha$.

In this paper we interested in finding the order of each element in $T_{n}$ and $P_{n}$.
Theorem 2.1: let $\alpha \in \mathrm{T}_{\mathrm{n}}$ such that $\alpha$ has m cycles and L elements of the first kind I or of the first kind II then the order of
$\mathrm{o}(\alpha)=\left\{\begin{array}{l}\text { h }-1 \\ \text { L.C.M. }+\mathrm{h}-2 \\ \text { L.C.M. }+\mathrm{k}-1 \\ \text { L.C.M. }\end{array}\right.$
if $\quad$ L.C.M. $=0$
if $\quad 2 \leq$ L.C.M. and $\mathrm{h}-1 \geq \mathrm{k}$ or $\mathrm{k}=0$ and $2 \leq$ L.C.M.
if $\quad 2 \leq$ L.C.M.and $\mathrm{h}-1<\mathrm{k}$ or $\mathrm{h}=0$ and $2 \leq$ L.C.M.
$\mathrm{h}=0$ and L.C.M. $\geq 1$

Proof: We have several cases:
Case 1 : $\mathrm{m}=0, \mathrm{~L} \geq 1$ so L.C.M. $=0$.
First, let $\mathrm{L}=1$ so $\alpha=\mathrm{w}_{1}$ with length h so $\alpha=\left(\begin{array}{lllll}\mathrm{x}_{1} & \mathrm{x}_{2} & \ldots & \mathrm{x}_{\mathrm{h}-1} & \mathrm{x}_{\mathrm{h}} \\ \mathrm{x}_{2} & x_{3} & \ldots & \mathrm{x}_{\mathrm{h}} & \mathrm{x}_{\mathrm{h}}\end{array}\right)$. By using the operation of $\mathrm{T}_{\mathrm{n}}$ then $\alpha^{\mathrm{h}-1}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{x}_{\mathrm{h}} \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha$ where $\mathrm{x}_{\mathrm{k}}$ is the fixed element in $\alpha$ therefore the order of $\alpha=\mathrm{o}(\alpha)=\mathrm{h}-1$, now, let $\mathrm{L}>1$ so $\alpha=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{L}}$, where $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{L}}$ are elements of the first kind I with lengths $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots \mathrm{~s}_{\mathrm{L}}$ respectively, $\mathrm{s}_{1 \leq} \mathrm{s}_{2} \leq \ldots \leq \mathrm{s}_{\mathrm{L}}=\mathrm{h}$.
$\alpha^{s_{1}-1}\left(\mathrm{x}_{\mathrm{i}}\right)=$ the fixed element in $\mathrm{w}_{1} \forall \mathrm{x}_{\mathrm{i}} \in$ Dom $^{\mathrm{w}_{1}}$ and
$\alpha^{s_{2}-1}\left(x_{i}\right)=$ the fixed element in $w_{2} \forall x_{i} \in$ Dom $_{w_{2}}$, since $\mathrm{s}_{1} \leq s_{2}$ then
$\alpha^{s_{2}-1}\left(x_{i}\right)=$ the fixed element in $w_{2} \forall x_{i} \in \operatorname{Dom} w_{2}$ and the fixed element in $w_{1} \forall x_{i} \in \operatorname{Dom} w_{1}$, and so on, therefore $\alpha^{s_{L}-1}$ make the image of each element belong to the Dom $w_{j}$ equal to the image of the fixed element in $w_{j}$, where $j=1, \ldots L$, thus
order of $\alpha=\mathrm{o}(\alpha)=$ the length of the longest element in it $\left(\mathrm{s}_{\mathrm{L}}=\mathrm{h}\right)-1$.
so we can say the order of the element of the first kind $\mathrm{I}=\mathrm{h}-1$.
case 2 : $\mathrm{m} \geq 1, \mathrm{~L}=0$ so $\mathrm{h}=0$ and L.C.M. $\geq 1$.
so $\alpha \in S_{n} \subset T_{n}$ and o( $\alpha$ )=L.C.M. of lengths for its cycles ,[5], where $S_{n}$ is a symmetric group. it is clear that $o$ (the identity element $)=o(e)=1$

Case 3:A. $\mathrm{m} \geq 1, \mathrm{~L}=1$ and L.C.M. $\geq 2$
first if $L$ is the number of elements of the first kind II so
$\alpha=\lambda_{1} \lambda_{2} \ldots \lambda_{\mathrm{m}} \mathrm{w}_{1}$, where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{m}}$ are cycles and $\mathrm{w}_{1}$ is the element of the first kind II with length k , where $\mathrm{k} \neq 0$ because if it is so, we have just proved in case 2 , so by using the operation of $\mathrm{T}_{\mathrm{n}}$ we have $\alpha^{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}\right)$ will belong to one of $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{m}}$ which related to it , now by case 2 ,
$\alpha^{\text {L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{x}_{\mathrm{i}} \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ and $\alpha^{1+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ but not in $<\alpha>\operatorname{since} \alpha^{1+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right) \neq \alpha^{1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in$ Dom w $_{1}$ unless $\mathrm{k}=1, \alpha^{2+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{2}\left(\mathrm{x}_{\mathrm{i}}\right)$ $\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ but not in $\left\langle\alpha>\right.$ since $\alpha^{2+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right) \neq \alpha^{2}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in$ Dom w $_{1}$ unless $\mathrm{k}=2$, and so on until $\alpha^{\mathrm{k+L.C.M.}}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ and $\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Domw}_{1}$ so $\alpha^{\mathrm{k+L.C.M} .}$ will be repeated element in $\langle\alpha\rangle$ so
$\mathrm{o}(\alpha)=$ L.C.M. + length of $\mathrm{w}_{1}-1=$ L.C.M $+\mathrm{k}-1$.
Second if $L$ is the number of element of the first kind $I$ and $w_{1}$ is the element of the first kind $I$ with length $\mathrm{h} \neq 0$ so $\alpha^{\mathrm{h}-1}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{x}_{\mathrm{h}} \forall \mathrm{x}_{\mathrm{i}} \in$ Dom $_{1}$ where $\mathrm{x}_{\mathrm{h}}$ is the fixed element in $\mathrm{w}_{1}$.
$\alpha^{1+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ but not in $\langle\alpha\rangle$ since by case1, $\alpha^{1+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right) \neq \alpha^{1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in$ Dom w $_{1}$ unless $\mathrm{h}-1=1, \alpha^{2+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{2}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ but not in $\langle\alpha\rangle$ since $\alpha^{2+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right) \neq \alpha^{2}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in$ Dom w $_{1}$ unless $\mathrm{h}-1=2$
and so on until $\alpha^{\text {h+L.C.M.-1 }}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{h}-1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ and $\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom~}_{1}$ so $\alpha^{\mathrm{h}-1+\mathrm{LLC.M}}$ will be repeated element in $\langle\alpha\rangle$ so
$o(\alpha)=$ L.C.M. +length of $w_{1}-2=$ L.C.M. + h- 2 .
B. $\mathrm{m} \geq 1, \mathrm{~L}=2$ and L.C.M. $\geq 2$
$\alpha=\lambda_{1} \lambda_{2} \ldots \lambda_{\mathrm{m}} \mathrm{W}_{1} \mathrm{~W}_{2}$, so that $\mathrm{w}_{1}$ is the element of the first kind I and $\mathrm{w}_{2}$ the element of the first kind II with lengths $h$, $k$ respectively if $h-1>k$ where $h-1$ is the order of $w_{1}$ and $k$ is the length of $w_{2}$, now since $\mathrm{w}_{2}$ is the element of the first kind II
therefore by case 3: A , $\alpha^{\mathrm{k}+\mathrm{LC.C.M.}}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ and $\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Domw}_{2}$
and since $\mathrm{w}_{1}$ is the element of first kind I so by case 3: A, $\alpha^{\mathrm{h}+\mathrm{LC.M-1}}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{h}-1}\left(\mathrm{x}_{\mathrm{i}}\right)$
$\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ and $\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Domw}_{1}$ so,
Since $\mathrm{h}-1>\mathrm{k}$
$\alpha^{\mathrm{k}+\mathrm{L} \cdot \mathrm{C} \cdot \mathrm{M}+1}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{k}+1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ and $\forall \mathrm{x}_{\mathrm{i}} \in$ Dom $_{2}$ but not in $\langle\alpha>$ since by case 1, $\alpha^{\mathrm{k}+\text { L.C.M. }+1}\left(\mathrm{x}_{\mathrm{i}}\right) \neq \alpha^{\mathrm{k}+1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in$ Dom w $\mathrm{w}_{1}$ unless $\mathrm{k}+1=\mathrm{h}-1$, and so on,
$\alpha^{\text {h+L.C.M.- }}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{h}-1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ and $\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom}_{1}, \mathrm{w}_{2}$,so
$\mathrm{o}(\alpha)=$ L.C.M. +length of the longest element $\left(\mathrm{w}_{1}\right)-2=$ L.C.M M h-2.
Now, if $\mathrm{k}>\mathrm{h}-1$
$\alpha^{\text {h+L.C.M.- }}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{h}-1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ and $\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom}_{\mathrm{w}}$ but not in $\langle\alpha>$ since
$\alpha^{\text {h+L.C.M.1 }}\left(\mathrm{x}_{\mathrm{i}}\right) \neq \alpha^{\mathrm{h}-1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in$ Dom $_{2}$ unless $\mathrm{k}=\mathrm{h}-1$,
$\alpha^{\text {hLL.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{h}}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ and $\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom}_{1}$ but not in $\langle\alpha>$ since
$\alpha^{\text {h LL.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right) \neq \alpha^{\mathrm{h}}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in$ Dom $_{2}$ unless $\mathrm{h}=\mathrm{k}$ we will continue in this way until
$\alpha^{k+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}\right) \quad \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ and $\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom~}_{1}, \mathrm{w}_{2}$, , so
$\mathrm{o}(\alpha)=$ L.C.M. +length of the longest element $\left(\mathrm{w}_{2}\right)-1=$ L.C.M $+\mathrm{k}-1$.
Where $\mathrm{h} \neq 0$ and $\mathrm{k} \neq 0$ because if they are so, we have just proved in case3: A.
In general: let $\alpha \in \mathrm{T}_{\mathrm{n}}$ such that $\mathrm{m} \geq 1, \mathrm{~L} \geq 1$ and L.C.M. $\geq 2$
$\alpha=\lambda_{1} \lambda_{2} \ldots \lambda_{\mathrm{m}} \mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{L}}$, where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{m}}$ are cycles and $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{L}}$ are the elements of the first kind I or the first II with lengths $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{L}}$ respectively, $\mathrm{s}_{1 \leq} \mathrm{s}_{2} \leq \ldots \leq \mathrm{s}_{\mathrm{L}}$. By case 2 , the order of $\lambda_{1} \lambda_{2} \ldots \lambda_{\mathrm{m}}$ is L.C.M., we have three cases:
A: if $w_{1}, \ldots, w_{L}$ are the elements of the first kind $I$ so by case $1, \alpha^{s_{L}-1}\left(x_{i}\right)=$ fixed element in $w_{j}$ $\forall \mathrm{x}_{\mathrm{i}} \in \mathrm{w}_{\mathrm{j}}$ such that $\mathrm{j}=1, \ldots, \mathrm{~L}$, by case 2 , $\mathrm{o}\left(\lambda_{1} \lambda_{2} \ldots \lambda_{\mathrm{m}}\right)=$ L.C.M. therefore
$\alpha^{1+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ but not in $<\alpha>\operatorname{since} \alpha^{1+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right) \neq \alpha^{1}\left(\mathrm{x}_{\mathrm{i}}\right)$
$\forall \mathrm{x}_{\mathrm{i}} \in$ Dom $_{\mathrm{w}}^{1}, \ldots, \mathrm{w}_{\mathrm{L}}$ unless $\mathrm{s}_{\mathrm{L}}-1_{=} 1$, so it is new element in $\langle\alpha\rangle$ and
$\alpha^{2+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{2}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ but not in $\langle\alpha\rangle$ since
$\alpha^{2+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right) \neq \alpha^{2}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in$ Dom $_{1}, \ldots, \mathrm{w}_{\mathrm{L}}$ unless $\mathrm{s}_{\mathrm{L}}-1=2$, and so on until
$\alpha^{s_{\mathrm{L}}+\text { L.C.M. }-1}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{s}_{\mathrm{L}}-1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ and $\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom}_{\mathrm{w}}, \ldots, \mathrm{w}_{\mathrm{L}}$ so
$\mathrm{o}(\alpha)=$ L.C.M. + the length of the longest element $\left(\mathrm{s}_{\mathrm{L}}\right)-2=$ L.C.M. $+\mathrm{h}-2$,
Where $\mathrm{s}_{\mathrm{L}}=\mathrm{h} \neq 0$ because if it is so, we have just proved in case 2 .
B : if $w_{1}, \ldots, w_{L}$ are the elements of the first kind II ,if $L=1$ then by case $3, o(\alpha)=$ L.C.M. +length of $\mathrm{w}_{1}-1=$ L.C. $\mathrm{M}+\mathrm{s}_{1}-1$. Now if $\mathrm{L}>1$ then
$\alpha^{\mathrm{s}_{1}}\left(\mathrm{x}_{\mathrm{i}}\right)$ belong to the related cy clic $\forall \mathrm{x}_{\mathrm{i}} \in$ Dom $\mathrm{w}_{1}$ and
$\alpha^{s_{2}}\left(x_{i}\right)$ belong to the related cy clic $\forall x_{i} \in$ Dom $_{w_{2}}$, since $\mathrm{s}_{1} \leq \mathrm{s}_{2}$ then
$\alpha^{\mathrm{s}_{2}}\left(\mathrm{x}_{\mathrm{i}}\right)$ belong to the related cy clic $\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom~}_{\mathrm{w}}$ and $\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom~}_{1}$,
and so on, therefore $\alpha^{\mathrm{s}_{\mathrm{L}}}\left(\mathrm{x}_{\mathrm{i}}\right)$ belong to the related cy clices $\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom~}_{\mathrm{w}}, \ldots, \mathrm{w}_{\mathrm{L}}$
and $\mathrm{o}\left(\lambda_{1} \lambda_{2} \ldots \lambda_{\mathrm{m}}\right)=$ L.C.M. , $\alpha^{1+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ but not in $<\alpha>$ since

## Journal of Kerbala University , Vol. 7 No. 4 Scientific . 2009

$\alpha^{1+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right) \neq \alpha^{1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in$ Dom $_{1}, \ldots, \mathrm{w}_{\mathrm{L}}$ unless $\mathrm{s}_{\mathrm{L}}=1$, and so on until
$\alpha^{\text {s. }_{\mathrm{L}}+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{s}_{\mathrm{L}}}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ and $\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom}_{1}, \ldots, \mathrm{w}_{\mathrm{L}}$ so
$\mathrm{o}(\alpha)=$ L.C.M. + the length of the longest element $\left(\mathrm{s}_{\mathrm{L}}\right)-1=$ L.C.M. $+\mathrm{k}-1$,
Where $\mathrm{s}_{\mathrm{L}}=\mathrm{k} \neq 0$ because if it is so, we have just proved in case 2 .
C: if some of $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{L}}$ are the elements of the first kind II and the other are the elements of the first kind I . let $\mathrm{h}=$ the length of the longest element of the first kind I and $\mathrm{k}=$ the length of the longest element of the first kind II ,by the general case: A, we have $\alpha^{\mathrm{h}+\mathrm{LC.C.M-1}}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{h}-1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ and for each $\mathrm{x}_{\mathrm{i}}$ belong to the domain of the elements of the first kind I also by the general case : B. we have $\alpha^{\text {k+L.C.m. }}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ and for each $\mathrm{x}_{\mathrm{i}}$ belong to the domain of the elements the first kind II, now if $\mathrm{h}-1>\mathrm{k}$ then
$\alpha^{\mathrm{k}+\mathrm{LC.M} \cdot+1}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{k}+1}\left(\mathrm{x}_{\mathrm{i}}\right) \quad \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ and for each $\mathrm{x}_{\mathrm{i}}$ belong to the domain of the elements the first kind II but not in $\langle\alpha\rangle$ since $\alpha^{k+L \cdot C \cdot M+1}\left(\mathrm{x}_{\mathrm{i}}\right) \neq \alpha^{\mathrm{k}+1}\left(\mathrm{x}_{\mathrm{i}}\right)$ for each $\mathrm{x}_{\mathrm{i}}$ belong to the domain of the elements of the first kind I unless $\mathrm{k}+1=\mathrm{h}-1$, and so on until $\alpha^{\mathrm{h}+\mathrm{LC.M} \cdot \mathrm{l}}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{h}-1}\left(\mathrm{x}_{\mathrm{i}}\right)$ $\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ and for each $\mathrm{x}_{\mathrm{i}}$ belong to the domain of the elements of the first kind I and for each $x_{i}$ belong to the domain of the elements of the first kind II so
$\mathrm{o}(\alpha)=$ L.C.M. +length of the longest element(h)-2= L.C.M+h-2.
Now, if $\mathrm{k}>\mathrm{h}-1$ by the same manner we have $\alpha^{\mathrm{k}+\mathrm{LC.M} .}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ and for each $x_{i}$ belong to the domain of the elements of the first kind $I$ and for each $x_{i}$ belong to the domain of the elements of the first kind II so
$\mathrm{o}(\alpha)=$ L.C.M. +length of the longest element( k$)-1=$ L.C.M $+\mathrm{k}-1$.
We must note that $\mathrm{h} \neq 0$ or $\mathrm{k} \neq 0$ because if it is so, we have just proved case 3 or case 2 .

Example2.1:case1:m=0, L>=1
Suppose that L=1, L.C.M. $=0$
Let $\alpha=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 3\end{array}\right) \in \mathrm{T}_{3}, \mathrm{~h}=3$

$$
\alpha^{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 3 & 3
\end{array}\right),\langle\alpha\rangle=\left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 3 & 3
\end{array}\right)\right\} \text { so } \mathrm{O}(\alpha)=2 .
$$

Suppose that L>1, L.C.M. $=0$
Let $\alpha=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 4 & 6 & 8 & 7 & 8\end{array}\right)=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 4 & 5 & 6 & 7 & 8\end{array}\right)\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 4 & 6 & 8 & 7 \\ 1\end{array}\right)=w_{1} w_{2}$, where $\alpha(7)=7$,
$\alpha \in \mathrm{T}_{8}$ it is clear that length of $\mathrm{w}_{1}=4$ and length of $\mathrm{w}_{2}=3$ where
so $\alpha^{4-1}\left(\mathrm{x}_{\mathrm{i}}\right)=4 \forall \mathrm{x}_{\mathrm{i}} \in$ Dom $_{1}$ where $\alpha(4)=4$ is a fixed element in $\mathrm{w}_{1}$
$\alpha^{3-1}\left(\mathrm{x}_{\mathrm{i}}\right)=8 \forall \mathrm{x}_{\mathrm{i}} \in$ Dom $^{2}$ where $\alpha(8)=8$ is a fixed element in $\mathrm{w}_{2}$,
$\alpha^{3}\left(\mathrm{x}_{\mathrm{i}}\right)=4 \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom}_{\mathrm{w}}$
$\alpha^{3}\left(\mathrm{x}_{\mathrm{i}}\right)=8 \forall \mathrm{x}_{\mathrm{i}} \in$ Dom $_{\mathrm{w}}^{2}$

$$
\langle\alpha\rangle=\left\{\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 3 & 4 & 4 & 6 & 8 & 7 & 8
\end{array}\right),\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 4 & 4 & 4 & 8 & 8 & 7 & 8
\end{array}\right),\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 4 & 4 & 4 & 8 & 8 & 7 & 8
\end{array}\right)\right\}
$$

So $o(\alpha)=$ the length of the longest element in it (4) $-1=3$
Case 2: $\mathrm{m}=2, \mathrm{~L}=0$

## Journal of Kerbala University, Vol. 7 No. 4 Scientific . 2009

Let $\alpha=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 3 & 6\end{array}\right)=(12)(345) \in \mathrm{T}_{6}, \alpha \in \mathrm{~S}_{6}$ where $\mathrm{S}_{6}$ is the symmetric group so by [5], $\mathrm{o}(\alpha)=$ L.C.M. $=6$
to explain the general case A. we take this example: let

$$
\begin{aligned}
& \alpha=\left(\begin{array}{lllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
2 & 1 & 4 & 5 & 3 & 7 & 8 & 9 & 10 & 10 & 12
\end{array}\right), \mathrm{T}_{12} \text {, , where } \mathrm{m}=2 \text { and } \mathrm{L}=2 \\
& \alpha=\left(\begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
2 & 1 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}\right)\left(\begin{array}{lllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
1 & 2 & 4 & 5 & 3 & 6 & 7 & 8 & 9 & 10 & 11
\end{array} 12\right) \\
& \left(\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
1 & 2 & 3 & 4 & 57 & 12 \\
\hline
\end{array}\right)\left(\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
1 & 11 & 12 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
12 & 12
\end{array}\right)=\lambda_{1} \lambda_{2} w_{1} w_{2}
\end{aligned}
$$

it is clear that L.C.M. $=6$ and $\mathrm{h}=\mathrm{S}_{\mathrm{L}}=5$
$\mathrm{o}(\alpha)=9$, where $\alpha^{9}=\left(\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 1 & 3 & 4 & 5 & 10 & 10 & 10 & 10 & 10 & 12 & 12\end{array}\right)$ we must note that $\alpha^{10}=\alpha^{4}$,i.e., $\alpha^{10}$ is a repeated element in $\langle\alpha\rangle$.
Now let
$\alpha=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 4 & 5 & 3 & 7 & 8 & 1\end{array}\right)=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 3 & 4 & 5 & 6 & 7 & 8\end{array}\right)\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 4 & 5 & 3 & 6 & 7 & 8\end{array}\right)\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 4 & 5 & 7 & 8\end{array}\right)=\lambda_{1} \lambda_{2} w_{1}$ such that $\alpha^{-1}(2)=1$ and $1 \in \lambda_{1}$, it is clear that L.C.M. $=6$ and $k=S_{L}=$ the length of the element of the first kind $\mathrm{II}=3$, so $\mathrm{o}(\alpha)=$ L.C.M. $+\mathrm{k}-1=8$ since $\alpha^{9}=\alpha^{3}$.

Let $\alpha=\left(\begin{array}{lllllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\ 2 & 3 & 4 & 1 & 6 & 5 & 8 & 9 & 10 & 3 & 12 & 13 & 14 & 15 & 16 & 16 & 18 & 19 & 6\end{array}\right) \in \mathrm{T}_{19}$ L.C.M. $=4, \mathrm{~h}=6, \mathrm{k}=4$ since $\alpha^{9}=\alpha^{5}$ so $\mathrm{o}(\alpha)=8$.

Corollary 2.1: let $\alpha \in \mathrm{P}_{\mathrm{n}}$ and $\alpha=\left(\alpha_{1} \ldots \alpha_{\mathrm{m}} \lambda_{1} \lambda_{2} \ldots \lambda_{\mathrm{L}}\right)\left(\theta_{1} \ldots \theta_{\mathrm{g}}\right)=\mathrm{w}_{1} \mathrm{w}_{2}$, where $\alpha_{1}, \ldots, \alpha_{\mathrm{m}}$ are cycles, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{L}}$ are elements of the first kind I or of the first kind II and $\theta_{1}, \ldots, \theta_{\mathrm{g}}$ are elements of the second kind then
$o(\alpha)= \begin{cases}\mathrm{f} & \text { if }(\mathrm{h}=\mathrm{k}=0 \text { or } \mathrm{f} \geq \mathrm{h}-1, \mathrm{k}=0) \text { and L.C.M. }=0 \\ \mathrm{o}\left(\mathrm{w}_{1}\right) & \text { if } \mathrm{h}-1 \geq \mathrm{f}, \mathrm{L} . \mathrm{C} . \mathrm{M}=0 \text { or } \mathrm{f}=0 \text { or }(\mathrm{h}-1>\mathrm{k}, \mathrm{h}-1>\mathrm{f}, \text { or } \mathrm{h}-1<\mathrm{k}, \mathrm{f}<\mathrm{k}, \\ & \text { or }, \text { or } \mathrm{k}<\mathrm{f}, \mathrm{f}<\mathrm{h}-1 \text { or } \mathrm{k} \geq \mathrm{f} \text { or } \mathrm{h}=0 \text { or } \mathrm{h}-1 \geq \mathrm{f}, \mathrm{k}=0 \text { ) and L.C.M. } \geq 2 \\ \text { L.C.M. }+\mathrm{f}-1 \mathrm{t}(\mathrm{f}>\mathrm{h}-1, \mathrm{~h}-1>\mathrm{k}, \text { or } \mathrm{k}>\mathrm{h}-1, \mathrm{f}>\mathrm{h}-1, \mathrm{f}>\mathrm{k}, \text { or } \mathrm{h}=\mathrm{k}=0 \text { or } \mathrm{f} \geq \mathrm{k}, \mathrm{h}=0 \\ & \text { or } \mathrm{f} \geq \mathrm{h}-1, \mathrm{k}=0) \text { and L.C.M. } \geq 2\end{cases}$

Proof: We have several cases:
case 1:A. $\mathrm{m}=0, \mathrm{~L}=0, \mathrm{~g}=1$ therefore $\mathrm{h}=\mathrm{k}=0$,L.C.M. $=0$
Let
$\alpha=\left(\begin{array}{lllll}\mathrm{x}_{1} & \mathrm{x}_{2} & \ldots & \mathrm{x}_{\mathrm{f}-1} \mathrm{x}_{\mathrm{f}} \\ \mathrm{x}_{2} & \mathrm{x}_{3} & \ldots & \mathrm{x}_{\mathrm{f}} & -\end{array}\right)$, where either $\mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha$ is fixed or $\mathrm{x}_{\mathrm{i}} \in \mathrm{X}_{\mathrm{n}} / \operatorname{Dom} \alpha \forall \mathrm{i}=\mathrm{f}+1, \ldots$, n. By using the operation of $P_{n}$ we have $\alpha^{f}\left(x_{i}\right)=-\forall x_{i} \in \operatorname{Dom} \alpha$ so o $(\alpha)=$ the length of $\alpha=f$. B. $\mathrm{m}=0, \mathrm{~L}=0, \mathrm{~g}>1$.

## Journal of Kerbala University, Vol. 7 No. 4 Scientific . 2009

Let $\alpha=\mathrm{w}_{2}=\theta_{1} \ldots \theta_{\mathrm{g}}$, where $\theta_{1,}, \ldots, \theta_{\mathrm{g}}$ are elements of the second kind with lengths $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{g}}$ respectively, $\mathrm{s}_{1 \leq} \mathrm{s}_{2 \leq} \ldots \leq \mathrm{s}_{\mathrm{g}}=\mathrm{f}$, so by case $1: \mathrm{A}$,
$\alpha^{s_{1}}\left(\mathrm{x}_{\mathrm{i}}\right)=-\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{1}$ otherwise $\alpha^{s_{1}}\left(\mathrm{x}_{\mathrm{i}}\right) \neq-$ then
$\alpha^{\mathrm{s}_{2}}\left(\mathrm{x}_{\mathrm{i}}\right)=-\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{2} \quad$ otherwise $\alpha^{\mathrm{s}_{2}}\left(\mathrm{x}_{\mathrm{i}}\right) \neq-$
Since $\mathrm{s}_{1}<\mathrm{s}_{2}$ so $\alpha^{\mathrm{s}_{2}}\left(\mathrm{x}_{\mathrm{i}}\right)=-\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{1}, \theta_{2}$, and so on ,
$\alpha^{s_{\mathrm{g}}}\left(\mathrm{x}_{\mathrm{i}}\right)=-\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{1}, \ldots, \theta_{\mathrm{g}}$, where $\mathrm{s}_{1} \leq \ldots \leq \mathrm{s}_{\mathrm{g}}=\mathrm{f}$, therefore $\mathrm{o}(\alpha)=$ the length of the longest element in $\alpha=\mathrm{f}$.
case 2 : $\mathrm{m} \geq 1, \mathrm{~L}=0, \mathrm{~g} \geq 1$ so L.C.M. $\geq 2$ and $\mathrm{h}=\mathrm{k}=0$
so $\alpha=\alpha_{1} \ldots \alpha_{\mathrm{m}} \theta_{1} \ldots \theta_{\mathrm{g}}$
by case1: $\mathrm{B}, \quad \alpha^{\mathrm{s}_{\mathrm{g}}}\left(\mathrm{x}_{\mathrm{i}}\right)=-\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{1}, \ldots, \theta_{\mathrm{g}}$ so $\alpha^{\mathrm{s}_{\mathrm{g}}+1}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{s_{\mathrm{g}}}=-\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{1}, \ldots, \theta_{\mathrm{g}}$ and since $\alpha^{1+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha_{1}, \ldots, \alpha_{\mathrm{m}}$ but not in $\left\langle\alpha>\right.$ since $\alpha^{1+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right) \neq \alpha^{1}\left(\mathrm{x}_{\mathrm{i}}\right)$ $\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{1}, \ldots, \theta_{\mathrm{g}}$ unless $\mathrm{s}_{\mathrm{g}}=1$ so $\alpha^{1+\text { L.C. } . \mathrm{M}}$ is new element in $\left\langle\alpha>\right.$ unless $\mathrm{s}_{\mathrm{g}}=1$, and so on until $\alpha^{\mathrm{s}_{\mathrm{g}}+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{s}_{\mathrm{g}}}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha$,therefore

$$
\mathrm{o}(\alpha)=\text { L.C.M. }+ \text { the length of the longest element in } \alpha-1=\text { L.C.M. }+\mathrm{s}_{\mathrm{g}}-1=\text { L.C.M. }+\mathrm{f}-1 .
$$

C: if $\mathrm{m} \geq 1, \mathrm{~L} \geq 1, \mathrm{~g}=0$ so $\mathrm{f}=0$,
$\alpha=\alpha_{1} \ldots \alpha_{\mathrm{m}} \lambda_{1} \lambda_{2} \ldots \lambda_{\mathrm{L}}$ therefore $\alpha \in \mathrm{T}_{\mathrm{n}}$ where we discussed this in theorem above .
Case 3 : $\mathrm{m}=0, \mathrm{~L}>1, \mathrm{~g}>1$ and $\mathrm{k}=0$,
A. L.C.M. $=0$ and $\mathrm{f} \geq \mathrm{h}-1$
$\alpha=\lambda_{1} \lambda_{2} \ldots \lambda_{\mathrm{L}} \theta_{1} \ldots \theta_{\mathrm{g}}$, suppose that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{L}}$ are elements of the first kind I since $\mathrm{f} \geq \mathrm{h}-1$ then by case1: $B, \alpha^{f}\left(x_{i}\right)=-\forall x_{i} \in \operatorname{Dom} \theta_{1}, \ldots, \theta_{\mathrm{g}}$, by theorem above $\alpha^{\mathrm{h}-1}\left(\mathrm{x}_{\mathrm{i}}\right)=$ the fixed element in $\lambda j$ where $j=1, \ldots, L$, so $\alpha^{h}\left(x_{i}\right)=$ the fixed element in $\lambda j$ where $j=1, \ldots, L$ and by case 1 , $\alpha^{\mathrm{h}}\left(\mathrm{x}_{\mathrm{i}}\right) \neq-\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{1}, \ldots, \theta_{\mathrm{g}}$ unless $\mathrm{f}=\mathrm{h}$ so $\alpha^{\mathrm{h}}$ is new element in $<\alpha>$ unless $\mathrm{f}=\mathrm{h}, \alpha^{\mathrm{h}+1}\left(\mathrm{x}_{\mathrm{i}}\right)=$ the fixed element in $\lambda \mathrm{j}$ where $\mathrm{j}=1, \ldots, \mathrm{~L}$ but $\alpha^{\mathrm{h}+1}\left(\mathrm{x}_{\mathrm{i}}\right) \neq-\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{1}, \ldots, \theta_{\mathrm{g}}$ unless $\mathrm{f}=\mathrm{h}+1$, and so on, we have $\alpha^{\mathrm{f}}\left(\mathrm{x}_{\mathrm{i}}\right)=$ the fixed element in $\lambda \mathrm{j}$ where $\mathrm{j}=1, \ldots, \mathrm{~L}$ and $\alpha^{\mathrm{f}}\left(\mathrm{x}_{i}\right)=-\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{1}, \ldots, \theta_{\mathrm{g}}$ therefore $\alpha^{\mathrm{f}+1}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{f}}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha$ so $\mathrm{o}(\alpha)=$ the length of the longest element in $\alpha=\mathrm{f}$.
B. L.C.M. $=0$ and $\mathrm{f}<\mathrm{h}-1$
since $\mathrm{h}-1>\mathrm{f}$ then by the same argument $\alpha^{\mathrm{f}+1}\left(\mathrm{x}_{i}\right)=-\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{1}, \ldots, \theta_{\mathrm{g}}$ so by the theorem above $\alpha^{\mathrm{f}+1}\left(\mathrm{x}_{\mathrm{i}}\right) \neq$ the fixed element in $\lambda \mathrm{j}$ where $\mathrm{j}=1, \ldots, \mathrm{~L}$ unless $\mathrm{f}+1=\mathrm{h}-1$, and so on we have $\alpha^{\mathrm{h}-1}\left(\mathrm{x}_{\mathrm{i}}\right)=$ the fixed element in $\lambda \mathrm{j}$ where $\mathrm{j}=1, \ldots, \mathrm{~L}$ and $\alpha^{\mathrm{h}-1}\left(\mathrm{x}_{\mathrm{i}}\right)=-\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{1}, \ldots, \theta_{\mathrm{g}}$ so $\mathrm{o}(\alpha)=$ the length of the longest element in $\alpha-1=\mathrm{h}-1$.

In general: $m \geq 1, L \geq 1, g \geq 1$ such that L.C.M. $\geq 2$,
Let $\alpha=\left(\alpha_{1} \ldots \alpha_{\mathrm{m}} \lambda_{1} \lambda_{2} \ldots \lambda_{\mathrm{L}}\right)\left(\theta_{1} \ldots \theta_{\mathrm{g}}\right)=\mathrm{w}_{1} \mathrm{w}_{2}$
Case1: $\mathrm{h}-1>\mathrm{k}$ then by theorem above $\alpha^{\mathrm{h}+\mathrm{LC.CM}-1}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{h}-1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha_{1}, \ldots, \alpha_{\mathrm{m}}, \lambda_{1}, \ldots, \lambda_{\mathrm{L}}$ and by case $2, \alpha^{\text {L.C.M }+\mathrm{f}}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{f}}\left(\mathrm{x}_{\mathrm{i}}\right)=-\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{1}, \ldots, \theta_{\mathrm{g}}$ and $\alpha^{\text {L.C.M }+\mathrm{f}}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{f}}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha_{1}, \ldots, \alpha_{\mathrm{m}}$ there are two cases:
A. if $h-1<f, h-1>k$

## Journal of Kerbala University, Vol. 7 No. 4 Scientific . 2009

$\alpha^{\text {hLL.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{h}}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha_{1}, \ldots, \alpha_{\mathrm{m}}, \lambda_{1}, \ldots, \lambda_{\mathrm{L}}$ but by case 2 above,$\alpha^{\text {h+L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right) \neq-$ $\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{1}, \ldots, \theta_{\mathrm{g}}$ unless $\mathrm{f}=\mathrm{h}$ therefore will be have new element in $<\alpha>$ unless $\mathrm{f}=\mathrm{h}$, $\alpha^{\mathrm{h}+\mathrm{LC.} . \mathrm{M}+1}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{h}+1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha_{1}, \ldots, \alpha_{\mathrm{m}}, \lambda_{1}, \ldots, \lambda_{\mathrm{L}}$ but not in $\langle\alpha\rangle$ since $\alpha^{\text {L.C.M. }+\mathrm{h}+1}\left(\mathrm{x}_{\mathrm{i}}\right)=\neq-\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{1}, \ldots, \theta_{\mathrm{g}}$ unless $\mathrm{h}+1=\mathrm{f}$
and so on, $\alpha^{\text {L.C.M }+\mathrm{f}}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{f}}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha$ so $\alpha^{\mathrm{f}+\mathrm{L} . \mathrm{C} . \mathrm{M}}$ is repeated element in $\langle\alpha\rangle$ so $\mathrm{o}(\alpha)=$ L.C.M. $+\mathrm{f}-1$, special case if $\mathrm{k}=0$
B. if $\mathrm{h}-1>\mathrm{f}$ since $\mathrm{h}-1>\mathrm{k}$
by case 2 above, $\alpha^{\text {L.C.M. }+\mathrm{f}}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{f}}\left(\mathrm{x}_{\mathrm{i}}\right)=-\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{1}, \ldots, \theta_{\mathrm{g}}$ and
$\alpha^{\text {L.C.M }+\mathrm{f}}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{f}}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha_{1}, \ldots, \alpha_{\mathrm{m}}$ but
$\alpha^{\text {L.C.M. }+\mathrm{f}}\left(\mathrm{x}_{\mathrm{i}}\right) \neq \alpha^{\mathrm{f}}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha_{1}, \ldots, \alpha_{\mathrm{m}}, \lambda_{1}, \ldots, \lambda_{\mathrm{L}}$ unless h-1=f therefore will be have new element in $\langle\alpha\rangle$ unless $\mathrm{f}=\mathrm{h}-1, \alpha^{\text {L.C.M. }+\mathrm{f}+1}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{f}+1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha_{1}, \ldots, \alpha_{\mathrm{m}}, \theta_{1}, \ldots, \theta_{\mathrm{g}}$ but not in $\langle\alpha\rangle$ since $\alpha^{\text {L.C. } .+\mathrm{f}+1}\left(\mathrm{x}_{\mathrm{i}}\right) \neq \alpha^{\mathrm{f}+1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \lambda_{1}, \ldots, \lambda_{\mathrm{L}}$ unless $\mathrm{f}+1=\mathrm{h}-1$, and so on until $\alpha^{\text {L.C.M.h }+\mathrm{h}-1}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{h}-1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha$ so $\alpha^{\text {L.C.M.th-1 }}$ repeated element in $\langle\alpha\rangle$ so $\mathrm{o}(\alpha)=$ L.C.M. $+\mathrm{h}-2=\mathrm{o}\left(\mathrm{w}_{1}\right) \quad$ where $\mathrm{h}-1>\mathrm{k}$ in theorem above, special case if $\mathrm{k}=0$

Case2: $\mathrm{h}-1<\mathrm{k}$ then by theorem above $\alpha^{\mathrm{k}+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha_{1}, \ldots, \alpha_{\mathrm{m}}, \lambda_{1}, \ldots, \lambda_{\mathrm{L}}$
A. if $\mathrm{f}>\mathrm{h}-1$ there is two cases first $\mathrm{f}<\mathrm{k}$ so $\alpha^{\text {L.C.M. } \mathrm{f}}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{f}}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{1}, \ldots, \theta_{\mathrm{g}}, \alpha_{1}, \ldots, \alpha_{\mathrm{m}}$ and for each element of the first kind I but $\alpha^{\mathrm{f}+\mathrm{LLC.M.}}\left(\mathrm{x}_{\mathrm{i}}\right) \neq \alpha^{\mathrm{f}}\left(\mathrm{x}_{\mathrm{i}}\right)$ for each element of the first kind II, unless $\mathrm{f}=\mathrm{k}$ therefore $\alpha^{\mathrm{f}+\mathrm{LC.M} .}$ will be new element in $\left.<\alpha\right\rangle$ unless $\mathrm{f}=\mathrm{k}$, $\alpha^{\text {L.C.M. }+\mathrm{f}+1}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{f}+1}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{1}, \ldots, \theta_{\mathrm{g}}, \alpha_{1}, \ldots, \alpha_{\mathrm{m}}$ and for each element of the first kind I but not in $\langle\alpha\rangle$ since $\alpha^{\mathrm{f}+\mathrm{LC.M}+1}\left(\mathrm{x}_{\mathrm{i}}\right) \neq \alpha^{\mathrm{f}+1}\left(\mathrm{x}_{\mathrm{i}}\right)$ for each element of the first kind II unless $\mathrm{f}+1=\mathrm{k}$, and so on until $\alpha^{\mathrm{k}+\mathrm{LLC.M}}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha_{1}, \ldots, \alpha_{\mathrm{m}}, \lambda_{1}, \ldots, \lambda_{\mathrm{L}}$ and $\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{1}, \ldots, \theta_{\mathrm{g}}$ so $\alpha^{\text {L.C.M.t. }}$ repeated element in $\langle\alpha\rangle$ therefore
$\mathrm{o}(\alpha)=$ L.C.M. $+\mathrm{k}-1=\mathrm{o}\left(\mathrm{w}_{1}\right) \quad$ where $\mathrm{h}-1<\mathrm{k}$ in theorem above, special case if $\mathrm{h}=0$
Second if $\mathrm{f}>\mathrm{k}$ then by the similar way above we have $\alpha^{\mathrm{f}+\mathrm{LC.CM}}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{f}}\left(\mathrm{x}_{\mathrm{i}}\right)$ for each element of the first kind II and $\forall \alpha_{1}, \ldots, \alpha_{\mathrm{m}}$ since $\mathrm{f}>\mathrm{h}-1 \quad \alpha^{\mathrm{f}+\mathrm{LLC.M}}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{f}}\left(\mathrm{x}_{\mathrm{i}}\right)$ for each element of the first kind II and $\forall \alpha_{1}, \ldots, \alpha_{\mathrm{m}}$ so

$$
\alpha^{\mathrm{f}+\mathrm{LC.M} .}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{f}}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha_{1}, \ldots, \alpha_{\mathrm{m}}, \lambda_{1}, \ldots, \lambda_{\mathrm{L}} \text { and } \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{1}, \ldots, \theta_{\mathrm{g}} \text { so }
$$

$o(\alpha)=$ L.C.M. $+\mathrm{f}-1$, special case if $\mathrm{h}=0$.
B. $\mathrm{f}<\mathrm{h}-1$ and $\mathrm{h}-1<\mathrm{k}$ so $\mathrm{f}<\mathrm{k}$,
by the same above way and since $\mathrm{f}<\mathrm{k}$ so $\alpha^{\mathrm{k+L.C.M}}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}\right), \forall \mathrm{x}_{\mathrm{i}} \in \alpha_{1}, \ldots, \alpha_{\mathrm{m}}$ and
$\forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \theta_{1}, \ldots, \theta_{\mathrm{g}}$, since $\mathrm{k}>\mathrm{h}-1$ so by theorem above
$\alpha^{\text {k+L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha_{1}, \ldots, \alpha_{\mathrm{m}}, \lambda_{1}, \ldots, \lambda_{\mathrm{L}}$ and since $\mathrm{f}<\mathrm{k}$ so
$\alpha^{\mathrm{k}+\text { L.C.M. }}\left(\mathrm{x}_{\mathrm{i}}\right)=\alpha^{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}\right) \forall \mathrm{x}_{\mathrm{i}} \in \operatorname{Dom} \alpha_{1}, \ldots, \alpha_{\mathrm{m}}, \lambda_{1}, \ldots, \lambda_{\mathrm{L}}, \theta_{1}, \ldots, \theta_{\mathrm{g}}$ that is mean this is repeated element in $\langle\alpha\rangle$ so
$\mathrm{o}(\alpha)=$ L.C.M. $+\mathrm{k}-1$,special case if $\mathrm{h}=0$.
we must note that $\mathrm{f} \neq 0$ because if it is so, we have just proved in case $1: \mathrm{C}$, also $\mathrm{L} \neq 0$ since if it is then $\mathrm{h}=\mathrm{k}=0$ so, we proved it in case 2 .

Example 2.2:let $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & -\end{array}\right) \in \mathrm{p}_{4}$, L.C.M. $=0$ and $\mathrm{f}=4$ so $o(\alpha)=4$,
Where $\langle\alpha\rangle=\left\{\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & -\end{array}\right),\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & - & -\end{array}\right),\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & - & - & -\end{array}\right),\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ - & - & - & -\end{array}\right)\right\}$.
1 et $\alpha=\left(\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 1 & 4 & 5 & 6 & 7 & 7 & 9 & 10 & -\end{array}\right) \in \mathrm{P}_{10}$,
$\alpha=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline\end{array}\right)\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 9\end{array}\right)$
L.C.M. $=2, \mathrm{~h}=5, \mathrm{f}=2, \mathrm{k}=0$, note that $\mathrm{h}-1=4>\mathrm{f}$ and
$\langle\alpha\rangle=\left\{\begin{array}{l}\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 10\end{array}\right),\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 10 \\ 1 & 2 & 5 & 6 & 7 & 7 & 7 & 10 & - \\ \hline\end{array}\right),\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 1 & 6 & 7 & 7 & 7 & 7 & - & -\end{array}\right) \\ ,\left(\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 2 & 7 & 7 & 7 & 7 & 7 & - & - & -\end{array}\right),\left(\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 1 & 7 & 7 & 7 & 7 & 7 & - & - & -\end{array}\right)\end{array}\right\}$
So $o(\alpha)=5$.
Now let $\alpha=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 1 & 6 & 6 & 8 & 9 \\ -\end{array}\right) \in \mathrm{P}_{9}$,
$\alpha=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 1 & 5 & 6 & 7 & 8 & 9\end{array}\right)\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 6 & 6 & 7 & 8 \\ 9\end{array}\right)\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 8 & 9\end{array}\right)-\quad w_{1} w_{2}$ $\mathrm{h}=2, \mathrm{f}=3$ and L.C.M. $=4$, so by corollary above $\mathrm{o}(\alpha)=$ L.C.M. $+\mathrm{f}-1=6$ since $\alpha^{7}=\alpha^{3}$

## 3.conclusions:

In this paper we have discussed two important semigroups in the semigroup theory, namely $\mathrm{T}_{\mathrm{n}}$ and $\mathrm{P}_{\mathrm{n}}$. The element in a symmetric semigroup ( $\mathrm{T}_{\mathrm{n}}$ ) is a mapping from $\operatorname{Dom} \alpha=\mathrm{X}_{\mathrm{n}} \rightarrow \mathrm{X}_{\mathrm{n}}$ and the binary operation defined on it is the usual composite of mapping. The order of an element in any semigroup practical $\mathrm{T}_{\mathrm{n}}$ semigroup is the order of a cyclic subsemigroup generated by this element and since the elements of $T_{n}$ can be classified into elements of the first kind $I$ or of the first kind II, we observation that every element in $\mathrm{T}_{\mathrm{n}}$ can be written as a product of one or more than one of cycles or elements of the first kind I or of the first kind II as we explain above we use these fact to find the order for each element in $T_{n}$ by compute the number of elements in the subsemigroup generated by this element ,by similar way and by observation that every element in $\mathrm{P}_{\mathrm{n}}$ can be written as a product of one or more than one of cycles or elements of the first kind $I$ or of the first kind II or element of the second kind we find the order for each element in $P_{n}$ semigroup .

## Journal of Kerbala University, Vol. 7 No. 4 Scientific . 2009

## References:

[1]. A.Laradji and A.Umar, On The Number of Nilpotents in The Partial Symmetric Semigroup,King Fahad University of Petroleum and Minerals, Technical Report Series,TR305,available at www.kfupm.edu.sa/math,2003 .
[ 2]. Howie, J.M.," Fundamentals of Semigroup Theory", Clarendon Press, Oxford, 1995.
[3]. Petrich, M., "Introduction to Semigroups", A Bell and Howell company, Columbus, 1973.
[4]. Lallewent , G.,"Semigroup and Combinatorial Applications" ,John Wiley and Sons, NewYork , 1979.
(5] الصصلار العربية
[5]. نحوم كساب و احمد مصطفى سلمان "مقدمة في الجبر الحديث " ،دار الكتب للطباعة والنشر ، بغاد ،9199. .

