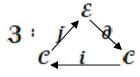
١

On Some Relationships Between Spectral Sequences And The New Exact Sequences

Dheia Gaze Salih Al-Khafajy Department of Mathematics College of Computer Science and Mathematics Al-Qadisiya University Al-Qadisiya, Iraq E-mail: dheia.salih@yahoo.com

الخلاصة

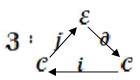
هذا البحث يصف علاقة ربط بين مفهوم المتتالية الطيفية والمتتالية الجديدة المضبوطة . وجدت أن المتتالية الجديدة المضبوطة هي المشتقة الثانية للثنائي المضبوط . ليكن



$$\begin{aligned} & \text{therefore} \mathbf{X} = \mathbf{NES} = \mathbf{NES} = \mathbf{1} \mathbf{X} \quad \mathbf{NES} = \mathbf{1} \mathbf{X} \quad \mathbf{NES} = \mathbf{1} \mathbf{X} \quad \mathbf{NES} \quad \mathbf{X} \quad \mathbf{NES} \quad \mathbf{X} \quad \mathbf{NES} \quad \mathbf{X} \quad \mathbf{X} \quad \mathbf{NES} \quad \mathbf{X} \quad \mathbf$$

Abstract

In this paper I introduce and study relationships between spectral sequences and the new exact sequences. I will show that the new exact sequence is the second derived exact couple.



be an exact couple , we derive 3 to get the second exact couple $3^1 = NES$ which is the new exact sequence . the process of derivation can

be iterated indefinitely, yielding an infinite sequence of exact couples .

I establish some results ,for examples ;

The class of all exact couples and morphisms between these couples formed a category $\mathfrak{T} = (\mathfrak{Z}, \mathcal{F})$. There is a functor from the category of cw - complexes into \mathfrak{T} .

If $K \equiv L$ (are cw - complexes), then $\Im^r(K) \cong \Im^r(L) \quad \forall r, r = 0, 1, 2, \cdots$. If K be any (n-1) - connected complex, then $\mathcal{E}_{p,q}^r = 0 \quad \forall r \& \forall p, p = 1, 2, \cdots, n-1$, and $\mathcal{E}_{n,q}^r \cong \mathcal{C}_{n,q}^r \quad \forall r$.

Introduction

In this work I introduce and study relationships between spectral sequences and the new exact sequences (in short NES) introduced in [D]. I mean by the term " complex " in the sequel a " connected cw-complex ", see [H].

This work contains two sections ; in first section , I construct a spectral sequence from exact couples and I construct a categories whose objects are exact couples and morphisms between these couples . In second section ,I establish some results about our work , some of these results are purely algebraic and others depend on the topology of space , for examples ;

If K be any (n-1) - connected complex, then $\mathcal{E}_{p,q}^r = 0 \quad \forall r \otimes \forall p, p = 1, 2, \dots, n-1$, and $\mathcal{E}_{n,q}^r \cong \mathcal{C}_{n,q}^r \quad \forall r$.

<u>Section 1 (Construction)</u>

Let K be a cw-complex. For each integer p and q, let $\mathcal{E}_{p,q}$ be $\pi_{p+q}(K^p, K^{p-1})$ if $q \ge -p$ and zero otherwise, and

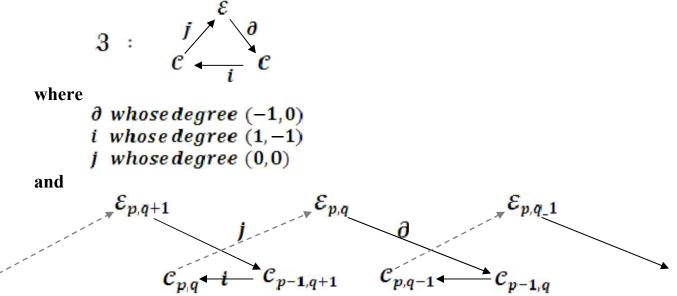
Let

 $\mathcal{C}_{p,q}$ be $\pi_{p+q}(K^p)$ if $q \ge -p$ and zero otherwise.

Consider the following sequence which is known to be exact, see [D],

 $\cdots \to \pi_{p+q}(K^{p-1}) \stackrel{i_{p,q}}{\to} \pi_{p+q}(K^p) \stackrel{j_{p,q}}{\to} \pi_{p+q}(K^p, K^{p-1}) \stackrel{\partial_{p,q}}{\to} \pi_{p+q-1}(K^{p-1}) \to \cdots$

which forms a first exact couple,



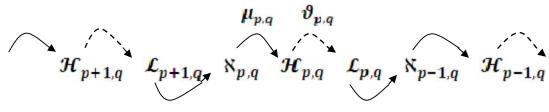
From this exact couple, we construct a second exact couple, which is itself the new exact sequence (NES), (see [D]), by taking

$$\mathcal{E}_{p,q}^{1} = \frac{\ker d_{p,q}}{im d_{p-1,q}} (= \mathcal{H}_{p,q})$$

$$\mathcal{C}_{p,q}^{1} = \frac{\mathcal{C}_{p,q}}{im \partial_{p+1,q}} (= \aleph_{p,q})$$

$$\mathcal{C}_{p,q}^{1} = \ker j_{p,q} (= \mathcal{L}_{p,q})$$

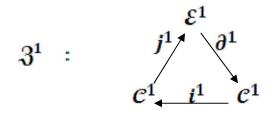
where $d_{p,q} = j_{p-1,q} \circ \partial_{p,q}$. and



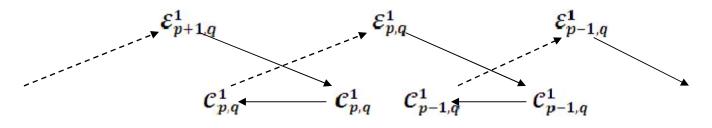
 $\theta_{p,q}$

It is easy to see that the NES is an exact sequence, (for details see [D])

Hence we have a second exact couple ;



where



Now, we will construct a third exact couple.

Let $d_{p,q}^1 = j^1 \circ \partial^1: \mathcal{E}_{p,q}^1 \to \mathcal{E}_{p-1,q}^1$. It is clear that $d^1 \circ d^1 = 0$, implies that \mathcal{E}^1 is a chain complex.

Denote

$$\varepsilon^{2} = \frac{\ker d^{1}}{im d^{1}}$$
$$C^{2} = \ker j^{1} = im i^{1}$$
$$C^{2} = \frac{C^{1}}{ker i^{1}}$$

Define

$$\begin{array}{ll} i^2: \ \mathcal{C}^2 \longrightarrow \mathcal{C}^2 & by \quad i^2(x) = [x], & \forall x \in \mathcal{C}^2 \\ j^2: \ \mathcal{C}^2 \longrightarrow \mathcal{E}^2 & by \quad j^2([y]) = [j^1(y)], \quad \forall [y] \in \mathcal{C}^2 \\ \partial^2: \ \mathcal{E}^2 \longrightarrow \mathcal{C}^2 & by \quad \partial^2([z]) = \partial^1(z), \quad \forall [z] \in \mathcal{E}^2 \end{array} .$$

and

Remark 1.1

The homomorphisms i^2 , j^2 and ∂^2 are well defined.

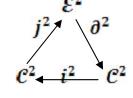
To prove
$$j^2$$
 is well defined ;
Let $[y] \in C^2 = \frac{C^1}{\ker i^1}$, $y \in C^1 \implies j^1(y) \in \mathcal{E}^1$
 $\implies d^1(j^1(y)) = j^1 \circ \partial^1(j^1(y)) = 0$
 $\implies j^1(y) \in \ker d^1 \implies [j^1(y)] \in \mathcal{E}^2$
Now, suppose $[y_1] = [y_2]$
 $\implies y_1 - y_2 \in \ker i^1 = im . \partial^1$
 $\implies \exists x \in \mathcal{E}^1$ such that $\partial^1(x) = y_1 - y_2$
 $\implies j^1(y_1 - y_2) = j^1 \partial^1(x) \in im . d^1 \implies [j^1(y_1)] = [j^1(y_2)].$

To prove ∂^2 is well defined; Let $[z] \in \mathcal{E}^2 = \frac{\ker d^1}{im d^1}$, $z \in \ker d^1$ $\Rightarrow 0 = d^1(z) = j^1 \circ \partial^1(z) \Rightarrow \partial^1(z) \in \ker j^1 = im i^1 = C^2$. Now, suppose $[z_1] = [z_2]$ $\Rightarrow z_1 - z_2 \in im d^1$, $\Rightarrow \exists y \in \mathcal{E}^1$ such that $d^1(y) = z_1 - z_2$ $\Rightarrow \partial^1(z_1 - z_2) = \partial^1(d^1(y)) = \partial^1(j^1 \circ \partial^1(y)) = 0$ $\Rightarrow \partial^1(z_1) = \partial^1(z_2)$.

And it is clear that i^2 is well defined

Theorem 1.2

The diagram



is an exact couple.

<u>proof</u>

First, to prove;
$$im.j^2 = ker.\partial^2$$
.
Let $a \in C^2$, $a = [x]$, where $x \in C^1$
 $\partial^2(j^2(a)) = \partial^2([j^1(x)]) = \partial^1(j^1(x)) = 0$, $\Rightarrow im.j^2 \subseteq ker.\partial^2$.
Let $b \in \mathcal{E}^2$, $b = [z]$, where $z \in ker.d^1$

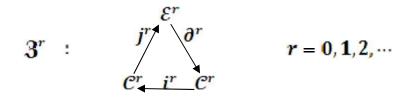
assume that $\partial^2(b) = 0 \implies \partial^1(z) = 0 \implies z \in ker. \partial^1 = im. j^1$ $\implies z = j^1(y) \text{ for some } y \in C^1 \implies [y] \in C^2$ so we let $j^2([y]) = [j^1(y)] = [z] = b \implies ker. \partial^2 \subseteq im. j^2$.

Second, to prove;
$$im.i^2 = ker.j^2$$
.
Let $a \in C^2$, $a = [x]$, where $x \in C^1$
assume $j^2(a) = 0 \implies [j^1(x)] = 0$ in $\mathcal{E}^2 = \frac{ker.d^1}{im.d^1}$
 $\Rightarrow j^1(x) \in im.d^1$ so that $d^1(y) = j^1(x)$ for some $y \in \mathcal{E}^1$
thus $j^1\partial^1(y) = j^1(x) \implies (x - \partial^1(y)) \in ker.j^1 = im.i^1 = C^2$
so we let $i^2(x - \partial^1(y)) = [x] = a \implies ker.j^2 \subseteq im.i^2$.
Let $x \in C^2 = im.i^1 = ker.j^1$
 $\Rightarrow j^2(i^2(x)) = j^2([x]) = [j^1(x)] = 0 \implies im.i^2 \subseteq ker.j^2$.

Final, to prove; $im.\partial^2 = ker.i^2$. Let $b \in \mathcal{E}^2$, b = [z], where $z \in ker.d^1$ $\Rightarrow i^2(\partial^2(b)) = i^2(\partial^2([z])) = i^2(\partial^1(z)) = 0 \Rightarrow im.\partial^2 \subseteq ker.i^2$. Let $x \in \mathcal{C}^2 = im.i^1 = ker.j^1$ assume $i^2(x) = [x] = 0$ in $\mathcal{C}^2 = \frac{\mathcal{C}^1}{ker.i^1}$ $\Rightarrow x \in ker.i^1 = im.\partial^1 \Rightarrow \partial^1(y) = x$, for some $y \in \mathcal{E}^1$ so $d^1(y) = j^1\partial^1(y) = j^1(x) = 0 \Rightarrow y \in ker.d^1$ Let $[y] \in \mathcal{E}^2 \Rightarrow \partial^2([y]) = \partial^1(y) = x \Rightarrow x \in im.\partial^2$ $\Rightarrow ker.i^2 \subseteq im.\partial^2$

<u>Remark 1.3</u>

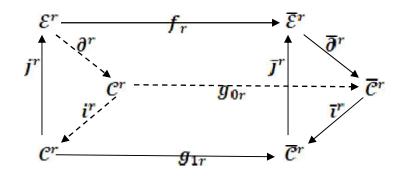
The exact couple 3^1 is called the derived couple of the original exact couple 3. the process of derivation can be iterated indefinitely, yielding an infinite sequence of exact couples ;



such that $3^0 = 3$, $3^1 = NES$ and 3^{r+1} is the derived couple of 3^r . The endomorphism $d^r = j^r \circ \partial^r$ has the property that $d^r \circ d^r = 0$, so that \mathcal{E}^r is a chain complex under d^r , whose homology group is \mathcal{E}^{r+1} . In this way we obtain a spectral sequence.

Definition 1.4

Define a morphism between two exact couple $3^r, \overline{3}^r$ $\mathcal{F}_r: 3^r \to \overline{3}^r$, we mean a family of homomorphisms (f_r, g_r) showing in the following diagram



such that

 $\overline{\partial}^{r} \circ f_{r} = g_{0r} \circ \partial^{r}$ $\overline{\iota}^{r} \circ g_{0r} = g_{1r} \circ i^{r}$ $\overline{j}^{r} \circ g_{1r} = f_{r} \circ j^{r}$

So that \mathcal{F}_r is a chain morphism and induces a morphism $\mathcal{F}_r^1 = \mathcal{F}_{r+1}$, and f_r^1 , g_r^1 defined a maps between the derived couples, such that;

$$\begin{array}{ll} f_{r+1} \colon \mathcal{E}^{r+1} \to \overline{\mathcal{E}}^{r+1} & defined by \quad f_{r+1}([z]) = [f_r(z)] \;, \forall [z] \in \mathcal{E}^{r+1} \; . \\ g_{0r+1} \colon \mathcal{C}^{r+1} \to \overline{\mathcal{C}}^{r+1} & defined by \quad g_{0r+1}(x) = g_{0r}(x) \;, \forall x \in \mathcal{C}^{r+1} \; . \\ g_{1r+1} \colon \mathcal{C}^{r+1} \to \overline{\mathcal{C}}^{r+1} & defined by \quad g_{1r+1}([x]) = [g_{1r}(x)] \;, \forall x \in \mathcal{C}^{r+1} \; . \end{array}$$

Now, let $\mathcal{F}_r: \mathfrak{Z}^r \to \overline{\mathfrak{Z}}^r$ and $\mathcal{F}_r^*: \overline{\mathfrak{Z}}^r \to \overline{\mathfrak{Z}}^r$ are two morphisms, we define the composition of morphisms as following;

 $\mathcal{F}_r^* \circ \mathcal{F}_r = (f_r^* \circ f_r, g_r^* \circ g_r): \mathfrak{Z}^r \longrightarrow \overline{\mathfrak{Z}}^r$ it is easy to show that $\mathcal{F}_r^* \circ \mathcal{F}_r$ is a homomorphism.

<u>Remark 1.5</u>

 \mathbf{V}

The homomorphisms f_{r+1}, g_{0r+1} and g_{1r+1} are well defined.

To prove
$$f_{r+1}$$
 is well defined ;
Let $[z] \in \mathcal{E}^{r+1} = \frac{\ker \cdot d^r}{\lim d^r}$, $z \in \ker \cdot d^r \subseteq \mathcal{E}^{r+1}$.
 $\overline{d}^r(f_r(z)) = \overline{j}^r \circ \overline{\partial}^r(f_r(z)) = \overline{j}^r(g_{0r} \circ \partial^r)(z)$
 $= \overline{j}^r(g_{0r}(\partial^r(z))) = \overline{j}^r(g_{1r}(\partial^r(z)))$
 $= (\overline{j}^r \circ g_{1r})(\partial^r(z)) = (f_r \circ \overline{j}^r)(\partial^r(z))$
 $= f_r(j^r \circ \partial^r(z)) = f_r(d^r(z)) = 0$
 $\Rightarrow f_r(z) \in \ker \cdot \overline{d}^r \Rightarrow [f_r(z)] \in \overline{\mathcal{E}}^{r+1} \cdot x$
Assume $[z_1] = [z_2]$
 $\Rightarrow z_1 - z_2 \in \operatorname{im.} d^r$ that is $d^r(y) = z_1 - z_2$ for some $y \in \mathcal{E}^r$
 $\Rightarrow f_r(z_1 - z_2) = f_r(d^r(y)) = f_r(j^r \circ \partial^r(y)) = (f_r \circ j^r)\partial^r(y)$
 $= (\overline{j}^r \circ g_{1r})\partial^r(y) = \overline{j}^r(g_{1r}(\partial^r(y))) = \overline{j}^r(g_{0r}(\partial^r(y)))$
 $= \overline{j}^r(\overline{\partial}^r \circ f_r(y)) = \overline{d}^r(f_r(y))$
but $f_r(y) \in \overline{\mathcal{E}}^r \Rightarrow f_r(z_1 - z_2) \in \operatorname{im.} \overline{d}^r$
and $\overline{\mathcal{E}}^{r+1} = \frac{\ker \cdot \overline{d}^r}{im.\overline{d}^r}$, that is $[f_r(z_1)] = [f_r(z_2)]$.

To prove
$$g_{0r+1}$$
 is well defined ;
Let $x \in C^{r+1} = \ker . j^r = im . i^{r+1} \subseteq C^r$
 $\overline{j}^r(g_{0r}(x)) = \overline{j}^r(g_{1r}(x)) = f_r \circ j^r(x) = f_r(0) = 0$
 $\Rightarrow g_{0r}(x) \in \ker . \overline{j}^r \Rightarrow g_{0r+1}(x) \in \overline{C}^{r+1}$
Assume $x_1 = x_2 \Rightarrow g_{0r}(x_1) = g_{0r}(x_2) \Rightarrow g_{0r+1}(x_1) = g_{1r+1}(x_2)$.

To prove g_{1r+1} is well defined ; Let $[x] \in \mathcal{C}^{r+1} = \frac{\mathcal{C}^r}{ker \cdot i^r}$, $x \in \mathcal{C}^r \implies g_{1r}(x) \in \overline{\mathcal{C}}^r$ $\Rightarrow [g_{1r}(x)] \in \overline{\mathcal{C}}^{r+1} = \overline{\mathcal{C}}^r / ker. \overline{\iota}^r$ Assume $[x_1] = [x_2] \implies x_1 - x_2 \in ker. i^r \subseteq \overline{C}^r$ $\overline{\iota}^r (g_{1r}(x_1 - x_2)) = \overline{\iota}^r (g_{0r}(x_1 - x_2)) = g_{1r} \circ i^r (x_1 - x_2) = 0$ $\implies g_{1r}(x_1 - x_2) \in ker. \overline{\iota}^r \implies [g_{1r}(x_1)] = [g_{1r}(x_2)]$

We shall describe $\mathcal{F}_r: \mathfrak{Z}^r \longrightarrow \overline{\mathfrak{Z}}^r$ is an isomorphism , if and only if ,

 $f_r, g_{0r} \& g_{1r}$ are an isomorphisms. We shall describe 3^r as isomorphic to $\overline{3}^r$ and write $3^r \cong \overline{3}^r$, if and only if, there is an isomorphism $\mathcal{F}_r: 3^r \to \overline{3}^r$.

Remark 1.6

The relation , \cong , is an equivalence relation .

<u>Section 2</u> (Results and Conclusion)

From <u>remark 1.3</u>, <u>definition 1.4</u> and (<u>theorem 3</u> in [D]), we have the following theorem

Theorem 2.1

The class of all exact couples and the homomorphisms between these couples forms a category $\mathfrak{T} = (\mathfrak{Z}^r, \mathcal{F}_r)$.

From $\underline{remark\ 1.3}\,$, $\underline{definition\ 1.4}\,$, ($\underline{theorem6}\,$ in $[D]\,$) and (see $[S]\,$) we have the following theorem

Theorem 2.2

There is a functor from the category of cw - complexes into \mathfrak{T} . Denote it by \mathfrak{F} , where $\mathfrak{F}(K) = \mathfrak{F}(K)$ and $\mathfrak{F}(f) = \mathcal{F}_r$.

Theorem 2.3

In the second exact couple $\mathfrak{Z}^1(=NES)$. If K is (n-1) - connected complex. Then $\mathfrak{K}_{n+1,q}(K)$ is an extension of $\mathcal{H}_{n+1,q}(K)$ by $\mathcal{L}_{n+1,q}(K)/\mathfrak{Y}_{n+2,q}(\mathcal{H}_{n+2,q}(K))$.

<u>Proof</u>

From our property of NES [D], we have $\aleph_{n,q}(K) \cong \mathcal{H}_{n,q}(K)$ and $\mu_{n+1,q}$ is onto, we extract from $NES(=3^1)$ the subsequence

$$\cdots \longrightarrow \mathcal{H}_{n+2,q}(K) \xrightarrow{\vartheta_{n+1,q}} \mathcal{L}_{n+1,q}(K) \xrightarrow{\vartheta_{n+1,q}} \aleph_{n+1,q}(K) \xrightarrow{\mu_{n+1,q}} \mathcal{H}_{n+1,q}(K) \longrightarrow 0$$

from exactness we have $\ker \mu_{n+1,q} = \theta_{n+1,q}(\mathcal{L}_{n+1,q}(K))$ but $\theta_{n+1,q}$ maps $\mathcal{L}_{n+1,q}(K)$ onto $\theta_{n+1,q}(\mathcal{L}_{n+1,q}(K))$ with $\ker \cdot \theta_{n+1,q} = \vartheta_{n+1,q}(\mathcal{H}_{n+2,q}(K))$ then from <u>fundamental homomorphism theorem</u>, we have

$$\begin{aligned} \boldsymbol{\theta}_{n+1,q} \left(\boldsymbol{\mathcal{L}}_{n+1,q}(K) \right) &\cong \frac{\boldsymbol{\mathcal{L}}_{n+1,q}(K)}{ker.\boldsymbol{\theta}_{n+1,q}} \\ &= \frac{\boldsymbol{\mathcal{L}}_{n+1,q}(K)}{\vartheta_{n+2,q}(\mathcal{H}_{n+2,q}(K))} \end{aligned}$$

but $\mu_{n+1,q}\left(\aleph_{n+1,q}(K)\right) = \mathcal{H}_{n+1,q}(K)$

Then

$$\mathcal{H}_{n+1,q}(K) \cong \frac{\aleph_{n+1,q}(K)}{ker} / \frac{1}{ker} = \frac{\aleph_{n+1,q}(K)}{\theta_{n+1,q}(\mathcal{L}_{n+1,q}(K))}$$

Therefore

$$\mathcal{H}_{n+1,q}(K) \cong \frac{\aleph_{n+1,q}(K)}{\mathcal{L}_{n+1,q}(K)/\vartheta_{n+2,q}\left(\mathcal{H}_{n+2,q}(K)\right)}$$

Corollary 2.4

If
$$q = 0$$
, then $\mathcal{H}_{n+1}(K) \cong \frac{\pi_{n+1}(K)}{\mathcal{L}_{n+1}(K)/\vartheta_{n+2}(\mathcal{H}_{n+2}(K))}$

<u>Proof</u>

From $NES(=3^1)$, we have $\aleph_{p,0} \cong \pi_p(K)$, and from above theorem (<u>Th. 2.3</u>) the corollary is hold

From $\underline{remark\ 1.3}$, $\underline{definition\ 1.4}$ and ($\underline{theorem\ 7}$ in [D]), we have the following lemma

Lemma 2.5

١.

))

Let $f, f^* : K \to L$ be homotopic $(f \approx f^*)$, then $\mathfrak{F}(f) = \mathfrak{F}(f^*) : \mathfrak{Z}^r(K) \to \mathfrak{Z}^r(L)$ (*i.e.* $\mathcal{F}_r = \mathcal{F}_r^*$).

Theorem 2.6

If $K \equiv L$, then $3^r(K) \cong 3^r(L) \quad \forall r, r = 0, 1, 2, \cdots$.

<u>proof</u>

From [D], we have $3^1(K) \cong 3^1(L)$, but 3^{r+1} derivative from 3^r , $\forall r, r = 0, 1, 2 \cdots$. Therefore $3^r(K) \cong 3^r(L) \quad \forall r, r = 0, 1, 2, \cdots$

Theorem 2.7

If
$$C_{p,q}^1 \cong \overline{C}_{p,q}^1$$
, $\forall p,q$ in 3^1 . Then $3^r \cong \overline{3}^r \quad \forall r,r=1,2,\cdots$.

<u>Proof</u>

From <u>five lemma theorem</u> (In a commutative diagram of abelian groups, $A \xrightarrow{i} B \xrightarrow{j} C \xrightarrow{k} D \xrightarrow{l} E$ $\downarrow \alpha \qquad \downarrow \beta \qquad \downarrow \gamma \qquad \downarrow \delta \qquad \downarrow \varepsilon$ $A^* \xrightarrow{i^*} B^* \xrightarrow{j^*} C^* \xrightarrow{k^*} D^* \xrightarrow{l^*} E^*$

if the two rows are exact and α, β, δ and ε are isomorphisms, then γ is an isomorphism also) see [H].

Theorem 2.8

If *K* is a cw - complex such that K^{n-1} consists of a single $0 - cell e^0$. Then

- (1) $\mathcal{C}_{p,q}^r = 0$, $\forall r, r = 0, 1, 2, \cdots, \forall p, p \leq n-1$,
- (2) $\mathcal{C}_{n,q}^r \cong \mathcal{E}_{n,q}^r$, $\forall r, r = 0, 1, 2, \cdots$.

<u>Proof</u>

17

Consider the second exact couple (NES) of K; $\dots \rightarrow \aleph_{n+1,q} \rightarrow \mathcal{H}_{n+1,q} \rightarrow \mathcal{L}_{n,q} \rightarrow \aleph_{n,q} \rightarrow \mathcal{H}_{n,q} \rightarrow \mathcal{L}_{n-1,q} \rightarrow \aleph_{n-1,q} \rightarrow \dots$ We have , (see [D]) $\mathcal{L}_{p,q} = \aleph_{p,q} = 0$ if $p \le n-1$, and $\mathcal{L}_{n,q} = 0$, $\aleph_{n,q} \cong \mathcal{H}_{n,q}$. Then we have the following exact sequence : $\dots \rightarrow \mathcal{L}_{n+1,q} \rightarrow \aleph_{n+1,q} \rightarrow \mathcal{H}_{n+1,q} \rightarrow 0 \xrightarrow{i^{1}} \aleph_{n,q} \xrightarrow{\cong} \mathcal{H}_{n,q} \rightarrow 0$ return to second exact couple , we have $\mathcal{C}_{p,q}^{1} = \mathcal{L}_{p,q} = 0$ if $p \le n$, $\mathcal{C}_{p,q}^{1} = \aleph_{n,q} \cong \mathcal{H}_{n,q} = \mathcal{E}_{n,q}^{1}$. In third exact couple , we have $\mathcal{E}_{p,q}^{2} = \frac{\ker \mathcal{A}_{p,q}^{1}}{/im \mathcal{A}_{p+1,q}^{1}}$, where $\mathcal{A}_{p,q}^{1} = j_{p,q}^{1} \circ \partial_{p,q}^{1}$ $\mathcal{C}_{p,q}^{2} = \frac{\ker \mathcal{J}_{p,q}^{1}}{\lim \mathcal{A}_{p+1,q}^{1}} = \frac{\mathcal{C}_{p,q}^{1}}{/ker \cdot i_{p,q}^{1}}$ Now $\mathcal{C}_{p,q}^{2} = \ker \mathcal{J}_{p,q}^{1} = 0$ if $p \le n-1$, $\mathcal{C}_{p,q}^{2} = \ker \mathcal{J}_{p,q}^{1} = 0$,

$$C_{n,q}^{2} = ker.J_{n,q}^{2} = 0 ,$$

$$C_{p,q}^{2} = \frac{C_{p,q}^{1}}{ker.i_{p,q}^{1}} = 0 \quad if \ p \le n-1 ,$$

 $\begin{aligned} &\mathcal{d}_{n,q}^1 = j_{n-1,q}^1 \circ \partial_{n,q}^1 = 0 & \implies \quad \ker. \, \mathcal{d}_{n,q}^1 = \mathcal{H}_{n,q} = \mathcal{E}_{n,q}^1 \,, \\ &\mathcal{d}_{n+1,q}^1 = j_{n,q}^1 \circ \partial_{n+1,q}^1 = 0 & \implies \quad im. \, \mathcal{d}_{n+1,q}^1 = 0 \,. \end{aligned}$

Then

$$\mathcal{E}_{n,q}^2 = \frac{ker.d_{n,q}^1}{im.d_{n+1,q}^1} = \frac{\mathcal{H}_{n,q}}{0} = \mathcal{E}_{n,q}^1 \cong \mathcal{C}_{n,q}^1$$

But

$$C_{n,q}^2 = \frac{C_{n,q}^1}{ker.i_{n,q}^1} = \frac{C_{n,q}^1}{0} = C_{n,q}^1$$

Then

$$\mathcal{E}^2_{n,q} \cong \mathcal{C}^2_{n,q}$$

Therefore the third exact couple is

$$\cdots \to C_{n+1,q}^2 \to C_{n+1,q}^2 \to \mathcal{E}_{n+1,q}^2 \to 0 \to C_{n,q}^2 \stackrel{\cong}{\to} \mathcal{E}_{n,q}^2 \to 0.$$
Continue in this way, we have for each $r = 0, 1, 2, \cdots$,

$$\cdots \to C_{n+1,q}^r \to C_{n+1,q}^r \to \mathcal{E}_{n+1,q}^r \to 0 \to C_{n,q}^r \to \mathcal{E}_{n,q}^r \to 0.$$
That is
$$C_{p,q}^r = 0 \qquad \forall r, r = 0, 1, 2, \cdots, \forall p, p \le n-1,$$
and
$$C_{n,q}^r \cong \mathcal{E}_{n,q}^r \qquad \forall r, r = 0, 1, 2, \cdots$$

From above theorems (<u>Th. 2.6</u> & <u>Th. 2.8</u>), and two lemmas in [D] (Le. 2.14 & Le.2.15), we have the following theorem

theorem 2.9

- If K be any (n-1) connected complex. Then
- (1) $C_{p,q}^r = 0$, $\forall r, r = 0, 1, 2, \cdots$, $\forall p, p \le n 1$, (2) $C_{n,q}^r \cong \mathcal{E}_{n,q}^r$, $\forall r, r = 0, 1, 2, \cdots$.

References

H.J. Baues . On Homotopy Classification Problems of **[B]** J.H.C. Whitehead, in Algebraic Topology Gottingen 1984. Edited by L. Smith, Springer-Verlag, Berlin Heidelberg 1985.

Dheia Al-Khafaji and Raymond Shekoury . A new exact [D] sequence (a generalization of J. H. C. Whiteheads "certain exact sequence"). Journal of Al-Qadisiyah for Computer Science and Mathematics , vol(2) , no(2) , 2010 .

A. Hatcher . Algebraic Topology .Cambridge University Press $[\mathbf{H}]$ 2002 .(Indian edition 2003).

R.M. Switzer .Algebraic Topology, Homotopy and homology, **[S]** Springer-Verlag, New York 1975.

J.H.C. Whitehead . A Certain Exact Sequence . Ann. Of Math. [W3]

52(1950),51-110.