On The Topological Projective Group $(Z(P^{\infty}), \oplus)$ $_{Z(P^{\infty})}$ الزمرة الإسقاطية التبولوجية

Hussein Abed Al-Hussein Abbas Department of Mathematic College of Education / Karbala University / Karbala, Iraq

Abstract

In this search obtain the following results on $(Z(P^{\infty}), \oplus)$ as a projective topological group ;

- 1. A necessary and sufficient condition for $(Z(P^{\infty}), \oplus)$) to be a topological group has been established. From Proposition (2-4).
- 2. A necessary and sufficient condition for $(Z(P^{\infty}), \oplus)$) to be a topological free group has been established. From Proposition (2-5).
- 3. A necessary and sufficient conditions for projectivity of $(Z(P^{\infty}), \oplus)$) has been established. From Proposition (2-6).

المستخلص
في بحثنا هذا حصلنا على النتائج الاتية في البر هنة على ان الزمرة
$$(\oplus, (^{\infty}Z(P^{\infty})))$$
 زمرة اسقاطية توبولوجية :
١. الشرط الكافي والضروري لكي تكون الزمرة $(\oplus, (^{\infty}Z(P^{\infty})))$ زمرة توبولوجية قد تحقق من مبر هنة (٤-٢).
٢. الشرط الكافي والضروري لكي تكون الزمرة $(\oplus, (^{\infty}Z(P^{\infty})))$ زمرة حرة توبولوجية قد تحقق من مبر هنة (٥-٢).
٣. الشرط الكافي والضروري لكي تكون الزمرة $(\oplus, (^{\infty}Z(P^{\infty})))$ زمرة اسقاطية توبولوجية قد تحقق من مبر هنة (٢-٢).

Introduction:

The study of a topological groups started in 1920, while the study of topological rings started in 1940 by Kaplanski. In this research a necessary and sufficient conditions for $(Z(P^{\infty}), \oplus)$ to be topological group has been established. The topology with $(Z(P^{\infty}), \oplus)$ is (p-adic) topology. This research contains two sections, section one contains some necessary definitions and section two contains the important propositions about $(Z(P^{\infty}), \oplus)$. references [3]and[4] are used to construct some definitions.

Section "ONE" Some Definitions:

In this section we introduce some necessary definitions .

Definition (1–1) [1]: A non empty set *E* is said to be a topological group if:

1. E is a group;

2. τ is a topology on E;

3. A mappings $\pi: E \times E \to E$ and $\mu: E \to E$ is continues, where μ defined as $\mu(x) \cong x^{-1}$, and $E \times E$ is the product of two topological spaces.

Journal of Kerbala University, Vol. 7 No.4 Scientific . 2009

Definition (1-2) [1]: Let E be a topological group .A subset M of E is said to be a topological subgroup of E if: 1. M is a subgroup of E;

2. M is a subspace of E.

Definition (1-3) [1]: A topological group *E* is said to be a topological finitely generated group if it is generated by a finite set. If it is generated by one element it is called a topological cyclic group.

Definition (1–4) [1]: Let E, E^* be two topological groups. a mapping $f: E \to E^*$ is said to be topological group morphism if : 1. *f* is a homomorphism;

2. f is continuous.

Definition (1–5) [1]: Let E, E' be two topological groups , $f : E \to E'$ is a topological morphism. A topological kernel of *f* is the set $Kerf \cong \{t \in E : f(t) \cong e'\}$, where *e'* the identity element of *E'*.

Definition (1–6) [1]: Let M be a topological subgroup of topological group E, the set E/M said to be topological quotient group if :

1. E_{M} is group;

2. E_{M} is topological group with quotient topology;

3. A mapping $\pi: E_M \to E_M$ is continuous.

Definition (1–7) [1]: A topological direct product group for a family of a topological groups $\{E_{\lambda}\}_{\lambda\in\Omega}$ is a topological group $E \cong \prod_{\lambda\in\Omega} E_{\lambda}$ with projection mappings π_i , and $E \cong \prod_{\lambda\in\Omega} E_{\lambda} \cong \bigoplus_{\lambda\in\Omega}$ where $\bigoplus_{\lambda\in\Omega} E_{\lambda}$ is a topological direct sum, and a mappings $\pi_i : \prod_{\lambda\in\Omega} E_{\lambda} \to E_i$ is continuous.

Definition (1–8) [2]: A topological group basis B^* for a topological group *F* is a family $\{F_n\}_{n \in N}$ of open topological cyclic subgroups of *F* satisfies:

1. $\bigcap_{n \in N} F_n \cong \{0\}$ (the identity element of F) . 2. $F \cong F_1 \supset F_2 \supset F_3 \supset \cdots$.

3.If $F \cong \bigoplus_{n \in N} F_n$ and $\pi_j : F \to F_j$ is continuous and open projection mappings, then $ker(\pi_j) \cong_{j \neq n} F_n$ and $F \cong ker \pi_j \oplus F_n$.

Definition (1–9) [2]: A topological group F is said to be a topological free group if it has a topological group basis.

Definition (1 –10) [2]: A topological group *P* is said to be a topological projective group if for each topological group morphism $f: P \to B$ and for each topological group epimorphism $g: A \to B$ there is a topological group morphism $f^*: P \to A$ for which $f \cong gof^*$.(or the following diagram commutes);

Definition (1–11): $Z(P^{\infty})$ defined as $Z(P^{\infty}) = \{\overline{a/b} \in \mathbb{Q}/Z \text{ and } b = p^i \text{ for some } i \ge 0\}$ and \oplus defined as $\forall x, y \in Z(P^{\infty})$ then $\overline{x} \oplus \overline{y} = \overline{x \oplus y} \in Z(P^{\infty})$.

Definition (1 –12) [*]: The (*P*-adic Topology) is a topology each of it's open set G_i is a class of the form $\Psi = \prod_{i \in N} \{D_p : D_p \in G_i\}$ where D_p is an open disc with center $p \in G_i$.

Proposition (1–13) [2]: Every topological free group is topological projective group.

Section "TWO" Some Propositions:

In this section introduce some propositions about $\frac{Q}{Z}$ and $Z(P^{\infty})$. **Proposition (2-1)** : $(\frac{Q}{Z}, \oplus)$ is a group .Where $\forall x, y \in \frac{Q}{Z}$ then $\overline{x} \oplus \overline{y} = \overline{x \oplus y} \in \frac{Q}{Z}$. **Proof :** Let $a, b, c, \in \frac{Q}{Z}$ then $\overline{a}, \overline{b}, \overline{c} \in \frac{Q}{Z}$ and (1) $\overline{a} \oplus \overline{b} = \overline{a \oplus b} \in \frac{Q}{Z}$ then \oplus is closed. (2) $\overline{a} \oplus (\overline{b} \oplus \overline{c}) = \overline{a} \oplus (\overline{b \oplus c})$ $= (\overline{a \oplus b \oplus c})$ $= (\overline{a \oplus b \oplus c})$ $= (\overline{a \oplus b \oplus c})$ then \oplus is associative . (3) $\overline{0} \oplus \overline{a} = \overline{0 \oplus a} = \overline{a}$ then $\overline{0}$ is the identity element.

(3) $0 \oplus a = 0 \oplus a = a$ then 0 is the identity element. (4) $\forall \overline{a} \in \frac{Q}{Z} \exists \overline{-a} \in \frac{Q}{Z}$ such that $\overline{a} \oplus \overline{-a} = \overline{a \oplus -a} = \overline{0}$, then $\overline{-a}$ is the inverse of \overline{a} . Then $(\frac{Q}{Z}, \oplus)$ is a group. **Proposition (2-2) :** $(Z(P^{\infty}), \oplus)$ is a group.

Proof :

Let
$$a, b, c, \in Z(P^{\infty})$$
 then $\overline{a}, \overline{b}, \overline{c} \in Z(P^{\infty})$ where $\overline{a} = \overline{x/p^{i}}, \overline{b} = \overline{y/p^{i}}, \overline{c} = \overline{z/p^{i}}$ and
(1) $\overline{a} \oplus \overline{b} = \overline{x/p^{i}} \oplus \overline{y/p^{i}} = \overline{x \oplus y/p^{i}} \in Z(P^{\infty})$
(2) $\overline{a} \oplus (\overline{b} \oplus \overline{c}) = \overline{a} \oplus (\overline{y/p^{i}} \oplus \overline{z/p^{i}})$
 $= \overline{x/p^{i}} \oplus (\overline{y/p^{i}} \oplus \overline{z/p^{i}})$
 $= \overline{x/p^{i}} \oplus (\overline{y/p^{i}} \oplus \overline{z/p^{i}})$
 $= (\overline{x \oplus y \oplus z/p^{i}})$

$$=(\overline{x \oplus y / p^{i}}) \oplus \overline{z / p^{i}}$$
$$=(\overline{x / p^{i}} \oplus \overline{y / p^{i}}) \oplus \overline{z / p^{i}}$$

 $\overline{a} \oplus (\overline{b} \oplus \overline{c}) = \overline{a} \oplus (\overline{b \oplus c})$

Then \oplus is associative .

(3) $\frac{0}{n^{i}}$ is the identity element of $Z(P^{\infty})$ since

$$\overline{\frac{x}{p^{i}} \oplus \overline{\frac{0}{p^{i}}}} = \overline{\frac{x \oplus 0}{p^{i}}} = \overline{\frac{x}{p^{i}}} \forall \overline{\frac{x}{p^{i}}} \in Z(P^{\infty})$$
(4) $\forall \overline{a} = \overline{\frac{x}{p^{i}}} = \overline{-\frac{x}{p^{i}}}$ such that $\overline{a} \oplus \overline{-a} = \overline{\frac{x}{p^{i}}} \oplus \overline{-\frac{x}{p^{i}}} = \overline{\frac{x \oplus -x}{p^{i}}} = \overline{\frac{0}{p^{i}}}$
Then $(Z(P^{\infty}), \oplus)$ is a group.

Proposition (2-3) : $(Z(P^{\infty}), \oplus)$ is a free group. **Proof :**

The only proper subgroups of $Z(P^{\infty})$ are the finite cyclic groups $C_n = \overline{\langle 1/P^n \rangle}$ (n=0,1,2,...)Furthermore, $\langle 0 \rangle = C_0 \subset C_1 \subset C_2 \subset C_3 \subset \cdots$.

A basis B^* for a group $Z(P^{\infty})$ is a family $\{C_n\}_{n \in N}$ of cyclic subgroups of $Z(P^{\infty})$ satisfies: $1. \bigcup_{n \in N} C_n = Z(p^{\infty})$ $2. \quad Z(P^{\infty}) = \bigoplus_{n \in N} C_n.$ Since $(Z(P^{\infty}), \oplus)$ has basis $\{C_n\}_{n \in N}$, then $(Z(P^{\infty}), \oplus)$ is a free group.

Proposition (2-4) : $(Z(P^{\infty}), \oplus)$ is a topological group. **Proof :**

(1) From Proposition (2-2) $(Z(P^{\infty}), \oplus)$ is a group.

(2) The topology on $(Z(P^{\infty}))$ is (*P*-adic topology).

Then $(Z(P^{\infty}), \oplus))$ with (*P*-adic topology) is a topological group.

Proposition (2-5) : $(Z(P^{\infty}), \oplus)$ is a topological free group. **Proof :**

The only proper subgroups of $Z(P^{\infty})$ are the finite cyclic groups $C_n \cong \overline{\langle 1/P^n \rangle}$ (n=0,1,2,...)Furthermore, $\langle 0 \rangle \cong C_0 \subset C_1 \subset C_2 \subset C_3 \subset \cdots$.

A topological group basis B^* for a topological group $Z(P^{\infty})$ with (*P*-adic) topology is a family $\{C_n\}_{n \in N}$ of open topological cyclic subgroups of $Z(P^{\infty})$ satisfies: $1. \bigcap_{n \in N} C_n \cong \{0\}$ (the identity element of $Z(P^{\infty})$).

Journal of Kerbala University, Vol. 7 No.4 Scientific . 2009

2. $\langle 0 \rangle \cong C_0 \subset C_1 \subset C_2 \subset C_3 \subset \cdots$ 3. If $Z(P^{\infty}) \cong \bigoplus_{n \in \mathbb{N}} C_n$ and $\pi_j : Z(P^{\infty}) \to C_j$ is continuous and open projection mappings, then $ker(\pi_j) \cong_{j \neq n} C_n$ and $ker Z(P^{\infty}) \cong \pi_j \oplus C_n$. Then $(Z(P^{\infty}), \oplus)$ is a topological free group.

Proposition (2-6) : $(Z(P^{\infty}), \oplus)$) is a topological projective group . **Proof :** Since $(Z(P^{\infty}), \oplus)$) is a topological free group (Proposition (2-5)). Then from Proposition (1-11) $(Z(P^{\infty}), \oplus)$) is a topological projective group .

References:

- [1].Higgins; *P,J*, (An Introduction to Topological Groups), London, mathematical society lecture note series 15, (1974).
- [2].Al Anbaki; Hussein, (Topological Projective Modules), thesis of master, Baghdad, (2005).
- [3].Long ; P, E, An Introduction to General Topology , Charles E Merrill publishing company,

(1986).

[4].Hungerford; T. W Algebra, Springer Overlarge, New York, Heidelberg, (1974).