ON THE CONJECTUR OF M.GOLDBEJG

By Maha Mohsen Mohamed
Technical Education Instruction / Baghdad

Abstract

: we present in this paper that to each tournament T_{n} with n nodes there corresponds the automorphism group $G\left(T_{n}\right)$ consisting of all dominance preserving permutations, of the set of nodes. الخلاصة : $\lim g(n)^{\frac{1}{n}}=\sqrt{3}$. M. Goldbejg and J. W Moon

Introduction:

In a recent paper [4]. M. Goldberg and J. W. Moon. consider the Maximum order g(n) which the group of a tournament with n nodes may have. Among other results they prove that:
(1) $g(n)^{\frac{1}{n}} \geq \sqrt{3}^{n-1}$ exists as $\mathrm{n} \rightarrow \infty$ and ≤ 2.5
(2) $\lim g(n)^{\frac{1}{n}} \quad$ for $\mathrm{n}=3^{\mathrm{k}} \quad(\mathrm{k}=0,1, \ldots \ldots \ldots)$

Moreover ,they conjecture that
(3) $\quad \lim g(n)^{\frac{1}{n}}=\sqrt{3}$

The object of the present paper is to prove.

Definitions:

Def 1
A Tournament T is a binary relation, When it is irreflexive, and that for all $\mathrm{x}, \mathrm{y} \in \mathrm{T}$.
$\mathrm{T}(\mathrm{x}, \mathrm{y}) \neq \mathrm{T}(\mathrm{y}, \mathrm{x})$, when $\mathrm{x} \neq \mathrm{y}$. [1]

Def 2

Let α denote a dominance - preserving permutation of the nodes of a given tournament Tn so that $\alpha(\mathrm{p}) \rightarrow \alpha(\mathrm{q})$ if and only if $\mathrm{p} \rightarrow \mathrm{q}$. The set of all such permutations forms a group, the auto morphism group $g(n)$ of Tn. [1]

THEOREM 1

For each positive integer $n, g(n) \leq \sqrt{3}^{n-1}$ taken together with (2) this implies the truth of the conjecture (3).

In contrast to the graph theoretic approach of[4]. M. Goldberg and J. W. Moon. Our approach is via group theory. It takes as its starting point the addendum to[4]. M. Goldberg and J. W. Moon. Where it is shown that $\mathrm{g}(\mathrm{n})$. can be interpreted as being the largest order of permutation group of odd order and degree n. By the celebrated theorem of Feit and Thompson[3]. W. Feit and J. G. Thompson. Any groey of odd order is solvable . Thus Theorem, is equivalent to.

THEOREM1

Every solvable permutation group G of odd order and degree n has $\quad|G| \leq \sqrt{3}^{n-1}$.
we shall prove the result in this latter from. It would be interesting to know if the result is as deep as the use of the Feit- Thompson theorem suggests.

Proof

The main step in the proof is already contained in a previous paper of the author (see[2]). J. D. Dixon. It is shown there that we can use induction on n to reduce the problem to the case where G is primitive permutation group. In the latter case it is show that $G=A G_{1}$ with $A \cap G_{1}=1$, where A is a normal elementary abelian p-subgroup of order $p^{k}=n$ and G_{1} is the stability subgroup of G fixing one symbol. Moreover. A equals its centralizer in G, and so G_{1} is isomorphic to a subgroup of the group. Aut A of all automorphisms of A. Finally, since the order of Aut A for an elementary abelian p-group is known, we obtain.

$$
\begin{equation*}
|\boldsymbol{G}|=|\boldsymbol{A}| \mid \boldsymbol{G}_{1} \operatorname{divides} \mathrm{p}^{\mathrm{k}}\left(\mathrm{p}^{\mathrm{k}}-1\right)\left(\mathrm{p}^{\mathrm{k}}-\mathrm{p}\right) \ldots \ldots\left(\mathrm{p}^{\mathrm{k}}-\mathrm{p}^{\mathrm{k}-1}\right) \tag{4}
\end{equation*}
$$

(see[2]). J. D. Dixon. Section 2 for details.)
The remaining step is to prove that (4) together with
the hypothesis that $|\boldsymbol{G}|$ is odd implies $|\boldsymbol{G}| \leq \sqrt{3}^{n-1}$ with $\mathrm{n}=\mathrm{p}^{\mathrm{k}}$. Direct calculation shows:

$$
|G| \leq p^{k}\left(p^{k}-1\right) \ldots \ldots \ldots\left(p^{k}-p^{k-1}\right)<p^{k+k^{2}} \leq \sqrt{3}^{p^{k}-1}
$$

unless $\mathrm{p}^{\mathrm{k}}=3,3^{2}, 5$ or 7 . However, since $\mid G_{i s}$ odd, we have in the exceptional cases :

$$
\begin{aligned}
& |G| \leq 3=\sqrt{3}^{3-1} \\
& \text { if } 3=3 \\
& |G| \leq 3^{3}=\sqrt{3}^{9-1} \\
& \text { if } \mathrm{n}=3^{2} \\
& |G| \leq 5=\sqrt{3}^{5-1} \\
& \text { if } \mathrm{n}=5 \\
& |G| \leq 21=\sqrt{3}^{7-1} \\
& \text { if } \mathrm{n}=7
\end{aligned}
$$

Thus the inequality holds in all cases. And the theorem is proved.

Remarks

The inequality[3] can be proved in a direct group-theoretic manner by constructing imprimitive permutation groups of suitable order[2]. J. D. Dixon.

Theorem 1 shows that we actually have equality in [3] and a simple cheek of the inequalities in the proof above shows that. We cannot have equality expect when $n=3^{k}$. Again a straight forward case- by- case analysis of the proof above gives an easy way of calculating the values of $g(n)$.

Journal of Kerbala University, Vol. 7 No. 4 Scientific . 2009

REFERENCES

[1] M. Aigner .Combinatorial Theory , springer 1 ,edition (2004).
[2] J.D Dixon.The fitting subgroup of a liner solvable group . J . Astral .Math .soc (1987).
[3] W. Feit and J.G . Thompson, solvability of groups of order. Pac . J.Math. 13 (1983), 775 1029.
[4] M.Goldberg and J.W .Moon. On the maximums order of the group at a tournament. canad. Math. Bull. g (1966), 563-569.

