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Abstract  

      In this paper ,we introduce  new definition for set of the block maps reciprocal via 

block maps linear homogeneous ,inhomogeneous ,odd and even . while The  classical 

definition is }    impactsunder    with commute  :{)( ofgFgf ∈=ℑ  

1-Preliminaries 

let ),,( πTX   be a topological transformation group,  

We adopt the set of symbols }1,0{=ζ  as the alphabet of our shift space ,   n-block  

means  the function  ζβ →q
pn I:  where  Z}qp,: :{ ∈≤≤∈= qipZiI q

p  ,  nB    

means the set all n-blocks,  the n-block map f  defined  by  ζ→nB: ƒ [2], I  identity 

block map defined by nnnn BaaaaaaaaaI ∈∀= ... ...)...( 212121   , 1,0 constants block map 

defined by nnnn Baaaaaaaaa ∈∀== ...1)...(1 ,0)...(0 212121 , nF a set of all n- block maps 

and F a set of all block maps[1],[3]. 

The alphabet we adopt is }1,0{=ζ ,and define translation operator )(Ψ as follows 

ζ∈=Ψ i21210 asuch     )()( nn aaafaaaaf KK  , }:min{)( nFfnf ∈=θ  and can 

written any block map it's say g  as form  g,  1−∈∋Ψ+Ψ⋅= nFrgqrgqgIg  such that 

)1()0()(),0()( 11111 nnnnn aagaagaargaagaaqg KKKKK +==  ζ∈∀ ia and have 

qggfqfqgfgq == )(,)( ooo  Fgf ∈∀ ,  [5]. We define set of block maps 

commuting }:{)( gffgFgf oo =∈=ℑ . In research our we define the linear block 



map as follows ∑
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map}block linear  :{ fFf ∈=γ  , and it is said for f  homogeneous if 00 =a  

and inhomogeneous if 10 =a , and it is said for f  even or odd according to value 

}1:1{ =≥ iaicard even or odd . let  Hγ be set of all homogeneous linear block map, 

and let Iγ  set all inhomogeneous linear block map. And say for f  non-trivial block 

map if  2}1:1{ ≥=≥ iaicard   .We have  .) ,],[(),,( 2 +≅+ xZH oγ  [4][2]. 

(2)A New set of the homogeneous linear reciprocal block maps  
  

Preliminaries 

In this section , we study  the relation between block maps linear homogeneous, 

inhomogeneous ,odd and even and the composition for block maps . 

Theorem (2.1): if  hgf ,,  block maps and Hf γ∈  then 

                                             hg,   )( ∀+=+ hfgfhgf ooo  

Proof:  Since Hf γ∈  , then there exists 1or  01 =naa K  such that 
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Theorem (2.2): if f  is block map and Hf γ∈  then )( fH ℑ⊆γ . 

   Proof :     Let g be homogeneous linear block map, and Since     

                               .) ,],[(),,( 2 +≅+ xZH oγ   

      then ),,( o+Hγ  is commuting ring ,and so then  Hg  allfor    γ∈= gffg oo    

Theorem (2.3) : let f be non-trivial block map and γ∈f   then γ⊆ℑ )( f . 

    Proof : we will prove by using  the induction  on value )( fθ  

             let  )( fg ℑ∈  ,    gffg oo = constant , and so qgfgq =)( o . 



                 Now we can written g as form  rgIbg Ψ+= .  such that     

                b constant. so 
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    we notice that rgffrg oo +  constant , and by using the induction   

                   then rg constant , this completes the proof . 

Theorem (2.4): let Hf γ∈  and Ig γ∈  then  

                        gffg oo = if and only if  f  odd.  

    Proof : we can written hgf ,,  as form    

              ∑∑
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                 such that    

                 m,1,j ,,1  10, KK ==∀= niorba ji  
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                by using theorem (2.1)   ∑∑∑
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1 if   and only if   f  odd . 

 Theorem (2.5) : let Ihg γ∈,  then     ghhg oo = if and only if  hg,    

                      either both odd or both even. 

Proof :    We can written h  as form ∑
=

−Ψ+=
n

i

i
i Ich

1

11  such  that    

                niorci K1 allfor   10 ==  and g  as in the theorem(2.4). 
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 if and only  if hg,  either both odd or both even. 

 Theorem(2.6): if gf ,  are block maps and Hf γ∈  and  f  is non trivial    

1. if f odd map then γ=ℑ )( f . 

2. if f  even map then Hf γ=ℑ )( . 

      Proof:(1) from theorem (2.2) then γ⊆ℑ )( f . 

                 Let γ∈g ,  if either  Ig γ∈  and by using theorem(2.5) then  

                  gffg oo = , or Hg γ∈ and by using theorem(2.2) then )( fg ℑ∈    

 this completes the proof . 

                      (2) from theorem(2.2) then )( fH ℑ⊆γ . 

                  Let  )( fg ℑ∈ i.e. gffg oo = ,and will proof by contradiction   

                    i.e. Hg γ∉  and By using theorem (2.3) then Ig γ∈  and by using  

                    theorem (2.4) then f  is odd ,and this contradiction . 

      Theorem(2.7) : if gf ,  are block maps and If γ∈  and  f  is non trivial    

1. if f odd map then odd} is :{)( ggf γ∈=ℑ . 

2. if f  even map then 

even} is :{g} odd is :{)( I gggf H U γγ ∈∈=ℑ . 

        proof : (1) let )( fg ℑ∈ and by using theorem (2.3) then γ∈g , 



                   and since γ∈g , either Hg γ∈  and by using theorem(2.4) 

  then g  is odd , or Ig γ∈ and f  is odd and by using theorem(2.5) then g  is odd ,  

this completes the proof . 

proof (2): let )( fg ℑ∈ and by using theorem (2.3) then γ∈g , either Hg γ∈   

               and we have  gffg oo =  and by using theorem (2.4) then g  is  

               odd .or Ig γ∈  and f  is even by using theorem(2.5) then  g  is  

                  even,   this completes the proof . 
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