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Abstract

The perturbed linear dynamical system of Sylvester type in infinite dimensional
space has been considered . The solvability of this class of equations by using the
perturbed composite semigroup of bounded linear operator is presented and developed .
The necessary dynamical properties have also been presented and proved.

11.. IInnttrroodduuccttiioonn
The theory of one parameter semigroup of linear operator on Banach spaces started

in 1948 with the Hill-Yoside generation theorem, and attained its first apex with the 1957
edition of semigroup and functional analysis by E. Hille and R. S. Phillips, in 1970's and
80's.The theory reached a certain state of perfection, which is well represented in the
monograph by [6], [3], [5] and others. Today, the situation is characterized by manifold
applications of this theory not only to the traditional areas, such as partial differential
equations or stochastic processes. Semigroup has become important tools for integro-
differential equations and functional differential equations in quantum mechanics or in
infinite-dimensional control theory.

This paper introduces to the concept of a composite semigroup and applications to
the analysis of the operator differential Sylvester equation. This equation arises in various
control problems on finite time horizon [0,t], for linear infinite-dimensional systems with
unbounded input / output operator.

The work of [4] introduced to the concept of a composite semigroup and its
application to the analysis of the operator differential Sylvester equation. This equation
arises in various control problems on finite time horizon [0, t], t [0, )  , for linear
infinite-dimensional systems with bounded input or operators.

The solvability of such system and the study of some of its dynamical properties,
up to our knowledge  are still a challenge for many researchers. So, the main aim of the
following work is to define such  dynamical properties ,as well as, the solvability using the
concept of composite semigroup generated by some unbounded linear generators. Some
preliminaries are then needed to understand the present approach.
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The following problem have been presented an disused in this paper.

Z(t)  ( +  )Z(t), t > 0

Z(0)  Z0

where +  : D( +  )  L( L(H)) is a linear unbounded  operator. The operator
is the infinitesimal generator of a Co- composite semigroup denoted by (t), t  0 and
D( ) L( L(H)). D(A1)  D(A1) and D(A2)  D(A2). For Z  D( +  ) and A1,
A2 L(H).

The operator +  is the infinitesimal generator of a C0-composite perturbation
semigroup (t), t  0 and D( +  )  L(L(H)).and h  D(A1 + A1), where the
generator is defined as :

(( +  )Z)h  (A1 + A1)Zh + Z(A2 + A2)h

22.. SSoommee MMaatthheemmaattiiccaall CCoonncceeppttss
In this sction, some necessary mathematical concepts for usual semigroup theory are
discussed .

DDeeffiinniittiioonn ((22..11)),,[[88]]::
Let T be an unbounded linear operator on a Hilbert space H, with domain  D(T) is

dense in H. The adjoint operator T* is defined by:

<Tx, y>  <x, T*y> for all x  D(T), y  D(T*), where:

D(T*)  {yH | <Tx,y>  <x,z>, for some zH and all xD(T)}.

DDeeffiinniittiioonn((22..22)),, [[11]] ::
A family {T(t)}t0 of bounded linear operators on a Banach space X is called a

(one-parameter) semigroup on X if it satisfies the following conditions:

T(t + s)  T(t)T(s),  t, s  0

T(0)  I, where I stand for identity operator.

DDeeffiinniittiioonn((22..33)),,[[55]]::
The linear operator A defined on the domain:

D(A)  {x  X :
t 0
lim


T(t)x x
t
 exists} and (1)

Ax 
t 0
lim


T(t)x x
t
 =

t 0

d T(t)
dt





for x D(A)

is the infinitesimal generator of the semigroup T(t), D(A) is the domain of A.

DDeeffiinniittiioonn((22..44)),, [[66]]::
A semigroup {T(t)}t0 on a Banach space X is called strongly continuous

semigroup of a bounded linear operators or ( 0C -semigroup) if the map  t  T(t)

L(X),t  satisfies the following conditions:
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1. T(t + s)  T(t)T(s),  t, s   .

2. T(0)  I.where I stands for identity operator.

3.
t 0
lim


||T(t)x  x||X 0, for every x  X.

RReemmaarrkk((22..55 )),, [[55]] ::
Let T(t) be Co-semigroup generated by infinitesimal generator A on a Banach space
X.Then

i-
h 0
lim


1
h

t h

t



 T(s)x ds  T(t)x, h(0,t) and for x  X

ii- For x  D(A), T(t)x D(A) and

d
dt

T(t)x  AT(t)x  T(t)Ax, for all t  0

iii- For x  D(A)

T(t)x  T(s)x 
t

s
 T(r)Ax dr 

t

s
 AT(r)x dr .

v- For every   , one can  define a linear bounded operators:

R(; A)x 
0



 etT(t)x dt, for all x  X,Re  > ow .

DDeeffiinniittiioonn((22..66)),, [[77]] ::
The weakest topology on L(X, Y), such that Ex : L(X, Y) Y given by: Ex(T)  Tx

are continuous for all x X is called the strong operator topology.

RReemmaarrkk((22..77)),,[[55]] ::
A semigroup {{T(t)}t0 is called a continuous in the uniform operator topology, if:

(1) ||T(t + )x  T(t)x|| X  0, as   0,  x  X.

(2) ||T(t)x  T(t )x|| X  0, as   0,  x  X

RReemmaarrkkss((22..88)),,[[66]]::
Suppose that x(0)  D(A) and the function f(t) with range in X is continuous
differentiable in the open interval (0,  ) with continuous derivative in the closed
interval [0, ], then the (non-homogeneous) initial value problem:

0

d x(t) Ax(t) f (t), 0 t
dt
x(0) x , given in the domain A

     

 

(2)

has a unique solution satisfying:
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i. x(t) is absolutely continuous in (0,  ).

ii. x(t)  D(A), t > 0.

iii.
Xx(t) x(0)  0 as t 0 .

DDeeffiinniittiioonn ((22..99)),, [[99]]::
Let x0  D(A) and f  C([0,  ] : H), then x(.) defined by

x(t)  T(t)x0 +
t

0
 T(t s)f(s) ds

is called a strong solution of (1.11) if:

x(.)  C([0,  ]; D(A))  1C ([0,  ]; H) and satisfying (2) for all t  [0,  ].

TThheeoorreemm((22..1100)),, [[66]]::
Let X be a Banach space and let A be the unbounded linear infinitesimal generator

of a Co-semigroup T(t) on X, satisfying:

||T(t)||L(X) Mewt.

If A is a bounded linear operator on X, then A+A with D(A+A)=D(A) is the
infinitesimal generator of a Co-perturbation semigroup S(t) on X, satisfying:

||S(t)||L(X) 
L(X)(w M|| A|| )tMe  

for any t  0, w  0 and M  1.

33.. PPrroobblleemm FFoorrmmuullaattiioonn
Consider the linear initial value problem in finite state space:

Z(t)  ( +  )Z(t), t > 0 (3)

Z(0)  Z0 ,

where +  : D( +  )  L(H) L(H) is a linear operator,  defined as follows:

1. The operator .=A1 . + . A2 is the infinitesimal generator of a C0-composite  semigroup
denoted by (t) T1(t)ZT2(t)=, t  0 and D( )  L(H) .

2. || (t))||L(H) M1M2
1 2(w w )te  where M1,M21, w1,w20.

3. The operator +  is the infinitesimal generator of a Co-composite  perturbation
semigroup (t), t  0 and D( +  )  L(H).

4. D(A1)  D(A1) and D(A2)  D(A2).

5. For Z  D( +  ) and h  D(A1 + A1) , we have

(( +  )Z)h  (A1 + A1)Zh + Z(A2 + A2)h

6. There exists positive constants k1 and k2, such that

||A1||L(H)  k1 and ||A2||L(H)  k2.
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7. || ||L(H)  ||A1.+.A2||L(H)

 ||A1.||L(H) + ||.A2||L(H) ||A1||L(H)||.||L(H) + ||.||L(H)||A2||L(H)

 (||A1||L(H) + ||A2||L(H)) ||.||L(H) .

DDeeffiinniittiioonn((33..11))::
Let L(H) be a Banach space, a one-parameter family { (t)}t0  L(L((H)), t[0,)

of bounded linear operators defined by:

(t)  S1(t)ZS2(t)  , (4)

for generator +  , for any ZL(H) and t [0,) is called composite perturbation
semigroup, where S1(t),S2(t) are two perturbation semigroups defined from H into H for
(A1+A1) and(A2 + A2) respectively.

DDeeffiinniittiioonn((33..22))::
The infinitesimal generator +  of (t) of problem formulation on a uniform

operator topology defined as the limit:

( +  )Zh  lim ↓ ( ) , Z  D( +  ), h  H

where D( +  )  L(H) is the domain of + defined as follows:

D( + ) Z ∈ L(H): lim ↓ ( ) exist in L(H) .
CCoonncclluuddiinngg RReemmaarrkkss((33..33))::

1-{L(H), } stands for L(H) equipped with the strong operator topology , i.e.,

topology induced by family of seminorms {h}hH, where seminorms h(Z)  ||Zh||H,

Z  L(H).

2. Let D(A1)  D(A1), D(A2)  D(A2) and D( )  D( ).Therefore the following

are concluded

a-The different between the usual strongly continuous semigroups of  problem
formulation and the composite perturbation semigroup (4)  follows from the fact
that in general for Z L(H), the function [0,)  t  (t)Z  L(H) is
continuous in {L(H), }, and which cannot be continuous in {L(H), ||.||} unless the
semigroups { 1(t)}t0, { 2(t)}t0  L(H) are uniformly continuous. However, this
takes place case only if their generators A1 + A1, A2 + A2 are bounded operators
on H.

b-The generator +  is densely defined only in {L(H), } and does  not in {L(H),
||.||}. This implies that D( A A  ) in L(H) is only a  proper set and not the whole
L(H).

c-The infinitesimal generator +  of problem formulation of the composite
perturbation semigroup { (t)}t0  L(L((H)) on a strong operator topology is
defined as the following limit:

( +  )Z   - lim ↓ ( ) , Z  D( +  ),
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where D( +  )  L(H)is the domain of +  and defined as follows:

D( +  ) 




ZL(H): - lim ↓ ( ) exist in {L(H),}




.

In the following lemma some generalized results on ( ), t  [0,) of [2], are
developed.

LLeemmmmaa((33..44)) ::
Consider the problem formulation, ( )= S1(t)ZS2(t), t  0 be a composite

perturbation semigroup defined on L(L(H)); S1(t) and S2(t) are, perturbation semigroups
defined on L(H) then

a- The family { (t)}t0  L(H), t  0 is a semigroup, i.e.,

1. (0)Z  Z,  Z  L(H)2. (t + s)Z  (t)( (s)z)

 (s)( (t))Z

Z  L(H), t, s  [0, ).

b- || (t)||L(H) M1M2
1 2 1 1 L(H) 2 2 L(H)t(w w ) M || A || M || A ||e     

, for t  [0, ).

c- (t)  L(L(H)) is a strong-operator and continuous at the origin, i.e.,

-
t 0
lim


||( (t)Z)h  ( (0)Z)h||H  0, h  H, Z  L(H).

Proof:
a- Let Z be an arbitrary element in L(H). By theorem(2.10) and

definition(2.2)in chapter one,we have:

(i) (0)Z  S1(0)ZS2(0)  IZI  Z.

From definition (2.2) we get:

(ii) (t + s)Z  S1(t + s)zS2(t + s)

 S1(t)S1(s)ZS2(t)S2(s) .

From (4),we have that

 S1(t) (s)ZS2(t),

since (s)ZL(H). Hence definition (3.1),implies that:

(t+s)Z (t) (s)Z  (s) (t)Z

b- From (4) ,we have that

|| (t)||L(L(H))  ||S1(t)ZS2(t)||L(H)

 ||S1(t)||L(H)||Z||L(H)||S2(t)||L(H), from {theorem (2.10)}

M1
1 1 1 L(H)(w M || A || )te  

||Z||L(H)M2
2 2 2 L(H)(w M || A || )te  
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M1M2
 1 2 1 1 2 2(w w ) M || A || M || A || te      ||Z||L(H) .

c-
t 0

 - lim


 ||( (t)Z)h( (0)Z)h||H 
t 0

 lim


||(S1(t)ZS2(t))hS1(0)ZS2(0)h||H


t 0

 lim






||(S1(t)ZS2(t))h  (S1(t)ZS2(0))h + (S1(t)ZS2(0))h 

(S1(0)ZS2(0))h||H





t 0

 lim






||(S1(t)Z)[S2(t)h S2(0)h] + [S1(t)ZS2(0)h  S1(0)ZS2(0)h||H ,




By using dfintion(2.2)

t 0
- lim


 ||( (t)Z)h( (0)Z)h||H 
t 0

 - lim







||S1(t)Z||L(H)||S2(t)h  h||H +||S1(t)ZhZh||H




,

and from theorem (2.10),we have got

t 0
 - lim


 ||( (t)Z)h( (0)Z)h||H M1

1 1 1 L(H)(w M || A || )te  
||Z||

t 0
 - lim


 ||S2(t)h

h||H +
t 0

 - lim


 ||S1(t)Zh  Zh||H

Now, since {S1(t)}t0 and {S2(t)}t0 are a C0-semigroup, thus:

t 0
 -lim


 ||S2(t)h  h||H  0 
t 0

 - lim


 ||S1(t)Zh  Zh||H ,for any hD(Z)

and ZL(H).

Which implies that { (t)}t0 is a strongly continuous perturbation semigroup. 

Based on the previous results and references, the following generalization have
been proposed.

LLeemmmmaa((33..55)) ::
The operator +  of problem formulation is infinitesimal generator for (t)

defined on its domain D( +  ) satisfying the following properties:

(a) D( +  ) is strong-operator dense in L(H).

(b) +  is uniform-operator closed on L(H).

(c) For Z  L(H) :
t

0
( (r)Z) dr S  D( +  ), and
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( +  ) ∫ (r)Z dr  (t)Z  Z.

(d) For Z  D( ) :

(t)Z  D( +  ), the function t:[0,∞)  (t)ZL(H)

is continuously differentiable in {L(H),} and
d
dt

( (t)Z)  ( +  ) ( (t)Z)

 (t)(( +  )Z)

(e) For Z  D( +  ) and h  D(A1 + A1)

(( +  )Z)h  (A1 + A1)Zh + Z(A2 + A2)h .

Proof:

(a) By lemma(3.4)(c), (t)Z is integrable, so Zt ≡ ∫ (s)Z ds
,

for a fixed Z  L(H), and fixed t > 0. Thus:

()Zt  Zt  ∫ [ (s + ∆)Z − (s)]ds , ∆ (0,t) . (5)

Hence, equation (5) becomes:∫ (s)Z ds∆  ∫ (s)Z ds∆  ∫ (s + t)Z ds∆  ∫ (s)Z ds∆
 ∫ (s) (t)Z ds∆  ∫ (s)Z ds∆ .

Then from Remark (2.5)(i), we have that:


t 0
lim


( ) Zt  (t)Z  Z  , (6)

that implies to Zt  D( +  ) and {Zt}t>0 generates a linear space contained in

D( + ),which implies that { tZ
t

: t >0}  D( + ) and
t 0
lim


tZ
t

=Z, for arbitrary Z

L(H) .Hence D( +  ) is dense in {L(H), }.

(b) Since D( +  ) is dense in {L(H), }, one can define n n 0{Z } to  be a ||.|| bounded
sequence in D( + )  L(H) and Zn  Z as n   in {L(H), },where Z is ||.||
bounded.

Now, let ( +  )Zn Y; by remark(2.5)(iii) we have that:

-
t 0
lim


( )
nZ  -

t 0
lim


1
t

t

0
 (s) ( +  ) nZ ds.

Now, as n, we get:

-
t 0
lim


( ) Z -
t 0
lim


1
t

t

0
 (s)Y ds .

Then by concluding remark (2.3)(c) and Remark(2.5)(i), we get
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( +  ) Z  Y.

Hence +  is a closed linear operator.

(c) Let Z  D( +  ).
On using simple calculation of semigroup, as follows, we get :

( +  )
t

0
(s)Z dsS -

t 0
lim


t t

0 0
( ) (s)Z ds (s)Z ds 



 S S S
 -

t 0
lim


t t

0 0
(s )Z ds (s)Z ds  



 S S

 -
t 0
lim


0

1 (t) (s)Z ds


  S S  -
t 0
lim


0

1 (s)Z ds


  S
 (t)Z  Z

From Concluding Remark (3.3)(c), we obtain:∫ (s)Z ds D( +  ).

(d) One can show that (t)Z  D( +  ).

Let Z  D( +  ),such that

( +  ) (t)Z  -
t 0
lim


( ) (t)Z (t)Z 


S S S  -
t 0
lim

S(t) ( )Z Z  
  
S  (t)( +  )Z ,

implies that (t)Z  D( +  ), and the right derivation exists in{L(H), }.Hence,

( +  ) (t)Z  (t)( +  )Z.

Now, one can show that the following left derivative for  > 0 exists.

-
t 0
lim


(t)Z (t )Z (t)( )Z      
S S

S A A (7)

By adding ( +  ) (t-) to (7),we obtain:= -
t 0
lim


(t  ) ( )Z Z ( )Z      
S

A A

+-
t 0
lim


[ (t  )( +  )Z  (t)( +  )Z]. (8)

Hence: -
t 0
lim


|| (t  ) ( )Z Z ( )Z      
S

A A + (t  )( +  )Z 

(t)( + )Z||L(H)  -
t 0
lim


||S(t  )||
t 0
lim
 L(H)

( )Z Z ( )Z 
  


S

A A

+-
t 0
lim


|| (t  )( +  )Z  (t)( +  )Z||L(H) .

Now, from Concluding Remark(3.3)(c) and the strongly continuous of { (t)}t0, we
get:

-
t 0
lim


(t)Z (t )Z  


S S  S(t  )( +  )Z ,

for any Z  D( +  ).
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(e) For Z  D( +  ), h  D(A1 + A1) and g  D((A1 + A1)*), we get:

<( +  )Zh, g>H  <-
t 0
lim


(t)Zh Zh
t
S , g>H  -

t 0
lim


1
t

< S(t)Zh  Zh, g>H .

By using (2.6),we have that:

-
t 0
lim


1
t

<S(t)Zh  Zh,g>H 
t 0
lim


1
t

<S1(t)ZS2(t)h  Zh, g>H (9)

Adding (S1(t)Zh + ZS2(t)h+Zh) to (9), we obtain ;


t 0
lim


1
t

<S1(t)ZS2(t)h  S1(t)Zh  ZS2(t)h + S1(t)Zh + ZS2(t)h  Zh + Zh  Zh,

g>H 
t 0
lim


1
t

<(S1(t)  I)Z(S2(t)  I)h, g>H +
t 0
lim


1
t

<ZS2(t)hZh, g>H

+
t 0
lim


<S1(t)ZhZh, g>H . (10)

Since {S1(t)}t0 is a family of bounded operators, the relation (10) becomes:


t 0
lim


1
t

<Z(S2(t)  I)h, (S1(t)  I)*g>H +
t 0
lim


1
t

<Z(S2(t)  I)h, g>H +
t 0
lim


1
t

<Zh,

(S1(t)  I)*g>H  <
t 0
lim


Z(S2(t)  I)h,
t 0
lim


1
t

(S*1(t) I)g>H + <
t 0
lim


1
t

Z(S2(t)

 I)h, g>H + <Zh,
t 0
lim


(S*1(t)  I),g>H . (11)

By using definition (2.3) of infinitesimal generator, (11) becomes:

<( +  )Zh, g>H = <0, (A1 + A1)*g>H + <Z(A2 + A2)h, g>H+<Zh, (A1 +
A1)*g>H . (12)

From definition(2.1) of unbounded adjoint operator of a Hilbert space, we have that

<( +  )Zh, g>H  <(A1 + A1)Zh + Z(A2 + A2)h, g>H

for all g  D(A1 + A1)*). Thus:( + )Zh  (A1+A1)Zh + Z(A2+A2)h and ( + )Zh H. 

The following theorem presents some properties of the unbounded perturbed
operator +  , of problem formulation.

TThheeoorreemm((33..66)) ::
Let { (t)}t0 be a family of a C0-composite perturbation semigroup generated by

unbounded linear operator +  satisfies:

|| (t)||L(L(H)) M1M2
 1 2 1 1 2 2(w w ) M || A || M || A || te      , for M1,M21,

w1,w20 and  A1, A2L(H).

Then the resolvent set ( +  ) contains the ray (w1+w2 +M1||A1|| + M2||A2||, )such
that the resolvent operator of + is estimated as:
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||ℝ(: +  )|| 
 

1 2

1 2 1 1 2 2

M M
Re (w w ) M || A || M || A ||      

,

for Re > 1 2 1 1 L(H ) 2 2 L(H )(w w ) M || A || M || A ||     .

Proof:
From remark(2.5)(v),

ℝ()Z 
0



 et (t)Z dt, for  > 0 , Z L(H)  and

||ℝ()Z||L(H) 
0



 etS(t)Z dt
L(H)


0



 et||S(t)Z||L(H) dt .

From lemma (3.4)(b), we obtain:

0



 et||S(t)Z||L(H)dt
0



 etM 1 2 1 1 2 2(w w ) M || A || M || A ||e      ||Z||L(H) dt


0



 M1M2
 1 1 L(H) 2 2 L(H) 1 2t M || A || M || A || (w w )

e
      

||Z||L(H) dt

 1 2 L(H)

1 1 L(H) 2 2 L(H) 1 2

M M || Z ||
.

M || A || M || A || (w w )        

for 1 1 L(H) 2 2 L(H) 1 2M || A || M || A || (w w )        
Hence

||ℝ()Z||L(H) 1 2 L(H)

1 1 L(H) 2 2 L(H) 1 2

M M || Z ||

Re M || A || M || A || (w w )        

(13)

Furthermore, for h (0,)

(h) I
h
S ℝ()Z  1

h 0



 et(S(t + h)Z  S(t)Z) dt

 1
h 0



 et(S(t + h)Z dt  1
h 0



 etS(t)Z dt  1
h 0




 e(th)S(t)Z dt 

0



 etS(t)Z dt




 1
h 0




 e(th)S(t)Z dt 

0



 e(th)S(t)Z dt 
0



 etS(t)Z dt



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
he 1
h

 

0



 etS(t)Z dt 
he

h



0



 etS(t)Z dt , (14)

as h  0, the right hand side of (14) converges to ℝ()Z  Z in {L(H),} . Hence:
( +  )ℝ()Z  ℝ()Z  Z .

Thus:
ℝ()Z  ( +  )ℝ()Z  Z

(I  ( +  ))ℝ()Z  Zℝ()  (  ( +  ))1, for ( +  ) , (15)

and from the fact that

||ℝ(: +  )|| =||(  ( +  ))1||(see the definition of H1) and hence
||ℝ(: +  )Z|| =||Z||

1H =||(  ( +  ))1||

From (13) and if  with ( +  ),we gets
||ℝ(: +  )|| 

 
1 2

1 2 1 1 2 2

M M
Re (w w ) M || A || M || A ||      

for Re > ( 1 2 1 1 L(H) 2 2 L(H)(w w ) M || A || M || A ||     ). 

CCoorroollllaarryy((33..77)) ::
Let the condition of theorem(3.6) be satisfied, then::

a-ℝ(: +  ) (t)  (t)ℝ(: +  ).

b-ℝ()( +  )Z  ( +  )ℝ()Z, for Z  D( +  ).

Proof:

a- By using the identity (I  ( +  ))ℝ(: +  ), we have that

(t)  (t)(I  ( +  ))ℝ(: +  ) .

 ( (t)  (t)( +  ))ℝ(: +  ) . (16)

By Lemma (3.5)(d), yields:

(t) = (I  ( +  )) ( )ℝ(: +  ) (17)

By multiplying both sides of (17) byℝ(: +  ), we get:ℝ(: +  ) (t)  (t)ℝ(: +  ).

b- Sinceℝ()( +  )Z 
0



 et (t)( +  )Z dt, for ( +  )


0



 et( +  ) (t)Z dt  ( +  ) t

0
e (t)Z dt

 

  
 
 S  ( +  )ℝ()Z ,

then (15) implies that:ℝ(: +  )( +  )Z  ( +  )ℝ(: +  )Z. 
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DDeeffiinniittiioonn ((33..88)) :
The continuous function Z(.) D( +  ) given by:

Z(t) = (t) Z0 for any Z0  L(H) and t  0
which is strong operator differentiable in L(H), is called a strong solution to the linear
perturbation initial value problem (3).

CCoonncclluuddiinngg RReemmaarrkk((33..99)) ::
The necessary and sufficient conditions for any Z  D( + ∆ ) is that restriction Z

to D(A2 + A2) belong to L(D(A2 + A2), D(A1 + A1)), i.e., D( + ∆ )  L(H)
L(D(A2 + A2), D(A1 + A1)) and an extension of ( + ∆ ) Z  L(D(A2 + A2), H) to H
belong to L(H).

We are now interested in the relation between the semigroup (t) generated by
and (t) generated by +  . By condition (a),(b), (t) and (t) are C0-semigroups
generated by the linear operators and +  respectively and let Z(.)  D( +  ).
Then by remark (2.5)(ii) , we have (t  s) (s)Z is differentiable, that implies the L(H)-
value function, let:

H(s)= (t  s) (s)Z for 0< s <t ;

and from lemma(2.2)(d),

d
ds

H(s)Z  (t  s)
d
ds

(s)Z +
d
ds

(t  s) (s)Z,

 (t  s)( +  ) (s)Z  (t  s) (s)Z

 (t  s) (s)Z .

Integrating dH(s)
ds

Z from 0 to t, yields:

t

0
 d H(s)

ds
Z ds 

t

0
 (t  s) (s)Z ds

(t)Z  (t)Z +
t

0
 (t  s) (t)Z ds, for Z D( + ). (18)

Since the operator on both sides of (18) are bounded,then (18) holds for every ZL(H).

TThheeoorreemm((33..1100))::
Let (t) be a Co-Composite semigroup of problem formulation satisfying:

|| (t)||L(H) M1M2
1 2(w w )te  .

Let  be a bounded linear operator on a Banach space L(H). Then there exist a unique
family (t), t  0 of bounded operators on L(H) such that (18) is continuous on [0, ), for
every Z L(H).
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Proof:
The main steps of the proof is as follows:

Set :

0(t)  (t) (19)

and define n(t) inductively by:

n+1(t)Z 
t

0
 (t  s) n(t)Z ds , (20)

for Z  L(H), and n  0.

We shall prove,  by induction,  that { n(t)}t0 is continuous family.

Now, for n  0, we have from condition(a) of problem formulation, that 0(t)Z  (t)Z is
continuous for t  0 and Z  L(H).
We assume that:

n
lim


|| n(t)Z  n(t)Z1||L(H)  0, (21)

for Z1  L(H) and for all Z L(H) .

Now:

|| n+1(t)Z  n+1(t)Z1|| 
t

0
 (t  s) ( n(t)Z  n(t)Z1) ds

L(H)


t

0
 || (ts)||L(H)|| ||L(H) || n(t)Z n(t)Z1||L(H) ds .

From (21), we get:

n
lim


|| n+1(t)Z  n+1(t)Z1||L(H)  0.

Thus t n+1(t)Z is continuous, for Z  L(H), t  0 and every n  0.

From above, we have :

|| (t)||L(H) 
1 2(w w )t

n n1 2
1 2

M M e M M
n!


|| ||ntn . (22)

For n  0, we have:

|| 0(t)||L(H)  ||(t)||L(H)M1M2
1 2(w w )te  .

Assume that (22) holds for any nN.Then by (20), we get:

|| n+1(t)Z||L(H) 
t

0
 (t  s) n(s)Z ds

L(H)
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
t

0
 || (t  s)||L(H)|| ||L(H)|| n(s)||L(H)||Z||L(H) ds

t

0
 M1M2

1 2(w w )(t s)e   || ||L(H)M1M2
1 2(w w )se 

n n n n
1 2 L(H)M M || || s || Z ||

ds
n!

A

M1M2
1 2(w w )te  n 1 n 1

L(H)|| || s || Z || A ds

for n  0 and Z  L(H) .
The integral equation (18) is a Volterra integral equation of the second kind with
continuous kernel of difference type k(s, t)  (t  s) .This equation has a solution may
often appear as integral of the form :

(t)  0(t) +
t

0
 (t, ; 1)S0() d , (23)

where (t, ; 1) is called the resolvent bounded kernel of integral equation (23) and  k(t, )
and 0(t) in (18) are both continuous.

It is easy to construct the resolvent (t, ; 1) for (23) as Numann series:

(t, ; 1) 
n 0




 kn+1(t, ) ,

where kn+1(t, ), the iterated kernel, such that:

(t, ; 1) 
n 0




 kn+1(t, ) ,

where k1(t, y)  k(t, y). Thus:

(t)  0(t) + 1(t) + 2(t) + … ,

where:

0(t)  (t)

.

.

n(t) 
t

0
 k(t, ) n1() d

So:

(t) 
n 0




 n(t) (24)

1 2(w w )sn 1 n 1
1 2M M e

(n 1)!

 


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By using (22), yields:

|| (t)||L(H)  n
n 0 L(H)

(t)



 S

M1M2
1 2(w w )te 

n 0






n n n n
1 2M M || || t

n!
A .

The right part of inequality is convergent, the series (24) is uniformly convergence in
the uniform operator topology on bounded interval, and t  (t)Z is continuous for
every Z  L(H).Therefore, S(t)Z C([0, t], L(H))

To prove the uniqueness, let U(t), t  0 be a uniformly bounded operator for which

t U(t)Z is continuous for Z  L(H) and:

U(t)Z  (t)Z +
t

0
 (t  s) U(t)Z ds , (25)

for Z  L(H).

By subtracting (24) from (18), yields:

|| (t)Z  U(t))Z||L(H) 
t

0
 M1M2

1 2(w w )te  ||A||L(H)||S(s)  U(s)||L(H)||Z||L(H) ds

Hence from Gronwall's inequality, we get:

|| (t)  U(t))Z||L(H)  0, for t  0 and thus S(t)  U(t). 

CCoorroollllaarryy((33..1111))::
Let be the infinitesimal generator of a C0-composite semigroup (t) satisfying

|| (t)||L(H)  M1M2
1 2(w w )te  . Let  be a bounded operator and let (t) be the

infinitesimal generator by +  . Then:

|| (t)  (t)||L(H) M1M2
1 2(w w )te   1 1 2 1(M || A || M || A ||)te 1   

Proof:
On using (18) and conditions (b), (d), one gets:

|| (t)Z  (t)Z||L(H)  || (t)Z +
t

0
 (t  s) (s)Z ds  (t)Z||L(H)


t

0
 || (t s)|| || ||L(H)|| (s)||L(H)||Z||L(H) ds .

By using conditions (b),(e) of problem formulation , we obtain:
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|| (t)Z  (t)Z||L(H) 
t

0
 M1M2

1 2(w w )te  || ||L(H)M1M2

 1 2 1 1 2 2s w w M || A || M || A ||e      ||Z||L(H) ds

 2
1M 2

2M 1 2(w w )te  || ||L(H)
 1 1 2 2M || A || M || A || t

1 1 2 2

e
M || A || M || A ||

  


  

1 1 2 2

1
M || A || M || A ||


   

||Z||L(H) . (26)

From condition (f) of problem formulation and the fact that M1,M21, we have that

|| .||L(L(H)) = ||A1. +.A2||L(H) ||A1.||L(H)+ ||.A2||L(H)

M1||A1.||L(H) + M2 ||.A2||L(H  (M1||A1||L(H) + M2 ||A2||L(H)) ||.||L(H) .

Hence (26), becomes:

|| (t) (t)||L(H) 
2
1M 2

2M 1 2(w w )te   1 1 2 1(M || A || M || A ||)te 1    ||Z||L(H)

For M1, M2  1, w1, w2  0 and  A1, A2 L(H).

CCoonncclluuddiinngg RReemmaarrkk((33..1122)) ::
The addition of a bounded linear operator  such that D( )  D( ), to an

infinitesimal generator of a C0-semigroup does not destroy the analytic and contraction
properties, [6].

TThheeoorreemm((33..1133)) ::
Let be the infinitesimal generator of a compact composite semigroup (t) and,

the resolvent operator for satisfies

||ℝ(: )||L(H)  1 2

1 2

M M
(w w )  

, for  > w1 + w2. (27)

Let  be a bounded operator, then +  is the infinitesimal generator of a compact
composite perturbation C0-semigroup (t).

Proof:

Assume that  > w1+w2+M1M2|| ||L(H), for M1,M21, w1, w2  0.

Thus

1 2

1 2

M M || ||
(w w )


  

A < 1 ,
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||  ℝ(; )||L(L(H))  || ||L(L(H))||R(; )||L(L(H))  L(L(H)) 1 2

1 2

|| || M M
(w w )



  

A < 1 (28)

Hence:

||  ℝ(; )||L(H) < 1 . (29)

From (29), we get (I   ℝ(; )) is invertible and bounded for
 > w1 + w2+ M1M2|| ||L(L(H)), set

R  ℝ(; )(I   ℝ(; ))1 [from (I   ℝ(; ))1=ℝ(; )  k
k 0

( : )



  AR A ) . (30)

We have to show that R is a resolvent operator of + and for
 > w1 + w2+ M1M2|| ||L(L(H)). Note that

(  ( +  ))R  (  ( +  ))ℝ(; )[(I   ℝ(; ))]1

 (I    )[ℝ(; )[(I   ℝ(; ))]1

 (I   ℝ(; )][I   ℝ(; ))]1  I .

Let Z  D( +  )  D( )), then:

R(  ( +  ))Z  ℝ(; )(I  ( +  ))Z +  k
k 1

( : ) ( : )



  R A AR A

(I  ( +  ))Z. (31)

 Z  ℝ(; ) Z +  k
k 1

( : )



  AR A Z   k

k 2
( : ) .




  R A A

Hence:

R(  ( +  ))=  k
k 0

( : ) ( : )



   R A AR A

(32)

Moreover

||(I    )1||L(L(H))   k
k 0 L(L(H))

( : ) ( : )



   R A AR A

  k
k 0 L(L(H))

( : ) ( : )



  R A AR A

 k
L(H) L(L(H))

k 0
( : ) ( : )




  R A AR A

Since||  ℝ(; )||LL(H)) < 1, we get:

k
L(L(H))

k 0
( : )




  AR A 

L(L(H))

1
1 ( : )  AR A

, L(L(H))1 ( : )  AR A

together with
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||ℝ(; )||L(L(H))  1 2

1 2

M M
(w w )  

, 1 2(w w )   .

We have:

||(I    )1||L(L(H))  1 2

1 2

M M
(w w )  

L(H)

1
1 ( : )  AR A


1 2 1 2

1
(w w ) ( (w w )) ( : )        AR A

. (33)

From (28), one gets

  (w1 + w2)|| ℝ(; )||L(L(H)) < ||| ||L(L(H))M1M2

  (w1 + w2)  (  (w1 + w2))|| ℝ(; )||L(L(H)) >

  (w1 + w2) || ||L(L(H))M1M2 .

Thus:

1 2 1 2

1
(w w ) ( (w w )) ( : )        AR A


1 2 1 2

1
(w w ) M M    A

.

(34)

from condition (g)of problem formulation, the inequality (34) becomes:

1 2 1 2

1
(w w ) ( (w w )) ( : )        AR A



1 2 1 2 1 L(L(H)) 1 2 2 L(L(H))

1
( (w w )) (M M || A || M M || A || )     

.

Now, for

 > 1 2 1 2 1 L(L(H)) 1 2 2 L(L(H))(w w )) (M M || A || M M || A ||     + 1,

we have:

1 2 1 2 1 L(L(H)) 1 2 2 L(L(H))

1
( (w w )) (M M || A || M M || A || )     

< 1 ,

where 1 2 1 2 1 L(L(H)) 1 2 2 L(L(H))( (w w )) (M M || A || M M || A || ) 0       

also  k
k 0 L(L(H))

( : ) ( : )



  R A AR A  1    .

Hence (32) is convergent in L({L(H), }).

Now, ℝ(: ) and  ℝ(: ) are compact   .

Hence ℝ(: +  ) is compact, for  > (w1 + w2)  (M1M2||A1|| + M1M2||A2||) + 1. 
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