On 3-Monotone Approximation by Piecewise Positive Functions

Eman Samir Bhaya
University of Babylon, College of Education, Department of Mathematics
Malik Saad Al-Muhja
University of Al-Muthana, College of Sciences, Department of Mathematics and Computer Application

Abstract

. In 2005 Halgwrd [3], introduced a paper for $f \in C[-1,1]$ with $1<p<\infty$, be a convex function, we are interested in estimating the degree of 3-monotone approximation for the function f, which are copositive on $[-1,1]$. We obtained that f and g are piecewise positive in $[-1,1]$ in terms of the Ditzian-Totik modulus of smoothness .

1. Introduction and auxiliary results.

Let $Y_{s}=\left\{a<y_{1}<y_{2}<\ldots<y_{s}<b\right\}, s \geq 0$. We denote by $\Delta^{0}\left(Y_{s}\right)$, the set of all functions f, such that $(-1)^{s-k} f(x) \geq 0$, for $x \in\left\lfloor y_{j}, y_{j+1}\right\rfloor, 0 \leq k \leq s$. Functions f and g, that belong to the same class $\Delta^{0}\left(Y_{s}\right)$ are said to be copositive on $[a, b]$. Copositive approximation is the approximation of a function f, from $\Delta^{0}\left(Y_{s}\right)$, class by polynomials that are copositive with f. Also, let $E_{n}^{0}(f, k)_{P}=\inf _{p_{n} \in \Pi_{n} \Pi \Lambda^{0}\left(Y_{s}\right)}\left\|f-p_{n}\right\|_{P}$ be the degree of copositive polynomial approximation of f.

We denote $J_{j}(n, \varepsilon)=\left[y_{j}-\Delta_{n}\left(y_{j}\right) n^{\varepsilon}, y_{j}+\Delta_{n}\left(y_{j}\right) n^{\varepsilon}\right] \cap[a, b], \quad 0 \leq j \leq s+1, \quad$ and denote $O_{n}\left(Y_{s}, \varepsilon\right)=\bigcup_{j=1}^{s} J_{j}(n, \varepsilon)$, and $O_{n}^{*}\left(Y_{s}, \varepsilon\right)=\bigcup_{j=0}^{s+1} J_{j}(n, \varepsilon)$.

Functions f and g are called weakly almost copositive on I, with respect to Y_{s} if they are copositive on $I \backslash O_{n}^{*}\left(Y_{s}, \varepsilon\right)$, where $\varepsilon>0$. We define a function class $(\varepsilon-\operatorname{alm} \Delta)_{n}^{0}\left(Y_{s}\right)=\left\{f:(-1)^{s-k} f(x) \geq 0\right.$, for $\left.x \in I \backslash O_{n}^{*}\left(Y_{s}, \varepsilon\right)\right\}$, the set of all weakly almost nonnegative functions on I, if $\varepsilon>0$.

The degree of weakly almost copositive polynomial approximation of f in $L_{P}[a, b] \cap \Delta^{0}\left(Y_{s}\right)$, by means $p \in \Pi_{n} \cap(\varepsilon-\operatorname{alm} \Delta)_{n}^{0}\left(Y_{s}\right)$ is $E_{n}^{0}\left(f, \varepsilon-\operatorname{alm} Y_{s}\right)_{P}$ $=\inf \left\{\mid f-p \|_{P}: p \in \Pi_{n} \cap(\varepsilon-\operatorname{alm} \Delta)_{n}^{0}\left(Y_{s}\right)\right\}$.

These results can be summarized in the following theorem (see [5] and [8]).

Theorem A.

There are functions f_{1} and f_{2} in $C^{1}[-1,1]$, with $r \geq 1$, sign changes such that

$$
\limsup _{n \rightarrow \infty} \frac{E_{n}^{0}\left(f_{1}, r\right)}{\omega_{4}\left(f_{1}, n^{-1},[-1,1]\right)}=\infty \text { and } \lim _{n \rightarrow \infty} \sup \frac{E_{n}^{0}\left(f_{2}, r\right)_{P}}{\omega_{2}\left(f_{2}, n^{-1},[-1,1]\right)_{P}}=\infty, 1<p<\infty \text {, }
$$

where $E_{n}^{0}(f, r)_{P}$ is the degree of the best copositive $L_{P}(C$ if $p=\infty)$, approximation to f, by polynomials from Π_{n}.

Recently, Y. Hu, D. Leviatan and X. M. Yu [6], showed that theorem A can be considerably improved, thus together with theorem A, revealing an interesting and unexpected difference between the cases $p=\infty$, and $1<p<\infty$, for copositive polynomial approximation. Their result is stated as follows .

Theorem B.

Let $f \in C[-1,1]$, change sign r, times at $-1<y_{1}<\ldots<y_{r}<1$, and let $\delta=\min _{0 \leq i \leq r}\left|y_{i+1}-y_{i}\right|$, where $y_{\circ}=-1$ and $y_{r+1}=1$. Then there exists a constant $C=C(r, \delta)$, but otherwise independent of f and n, such that for each $n \geq 4 \delta^{-1}$, there is a polynomial $p_{n} \in \Pi_{C_{n}}$, copositive with f,
satisfying

$$
\begin{equation*}
\left\|f-p_{n}\right\|_{L_{\infty}[-1,1]} \leq C \omega_{2}\left(f, n^{-1},[-1,1]\right) . \tag{1.1}
\end{equation*}
$$

In [2] Bhaya, E. and other, showed that in the second result ω_{2} in (1.1) can not replaced by $\omega_{3}(f, b-a,[a, b])_{P}$, for $0<p<1$, i.e., she proved .

Theorem C.

Given any $A>0, n \in \tilde{\mathrm{~N}}, a<0,0<b, 0<p<1$ and $0<\varepsilon<2$, there exists f in $L_{P}[a, b] \cap \Delta^{0}\left(Y_{s}\right)$, such that

$$
\begin{equation*}
E_{n}^{0}\left(f, \varepsilon-\operatorname{alm} Y_{s}\right)_{P}>\omega_{3}(f, b-a,[a, b])_{P} . \tag{1.2}
\end{equation*}
$$

The second result in [2], shows that τ-modulus of any order $k>0$ can be used for $0<p<1$.

Theorem D.

Let f in $L_{P}[a, b] \cap \Delta^{0}\left(Y_{s}\right), 0<p<1$, and k be a positive integer. Then there exists a polynomial p_{k-1} in $\Pi_{k-1} \cap(\varepsilon-a l n \Delta)_{n}^{0}\left(Y_{s}\right)$, satisfying $\left\|f-P_{n}\right\|_{P} \leq c(p) \tau_{k}(f, b-a,[a, b])_{P}$.

2. The main results

We will modify this polynomial near the points of sign change obtaining a smooth piecewise polynomial approximation f_{n}, with controlled first and third derivatives. We will consider σ_{i} that its convexity at $\left\{y_{i}, y_{i}^{\prime}, y_{i}^{\prime \prime}\right\}$ with f.

Theorem 2.1

Let f in $L_{P}[a, b] \cap \Delta^{0}\left(Y_{s}\right)$. Then for each $n \geq 4 \delta^{-1}$, there exists a function f_{n} in $\Delta^{3}[-1,1] \cap\left(S-\Delta^{0}\left(Y_{s}\right)\right)$, copositive with f in $\mathrm{Y}=\bigcup_{i=1}^{k} \rho_{i}$, such that

$$
\begin{align*}
\left\|f-f_{n}\right\|_{L_{P}[-1,1]} & \leq C(k) \omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P}, \tag{2.2}\\
\left\|\phi(x)^{3} f_{n}^{(3)}(x)\right\|_{L_{P}[-1,1]} & \leq C(k) n^{3} \omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P}, \tag{2.3}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|\Delta_{n}(x) f_{n}^{\prime}(x)\right\|_{L_{p}[-1,1]} \geq C \omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P}, \text { for } x \in \mathrm{Y} \tag{2.4}
\end{equation*}
$$

where $\left(S-\Delta^{0}\left(Y_{s}\right)\right)$ is the set of all piecewise positive .

Proof. Let $n \geq 4 \delta^{-1}$, and index $1 \leq i \leq k$, be fixed. For $x \in I_{i}^{*}$, we set σ_{i} to be the polynomial of degree ≤ 2, which vanishes at y_{i},

$$
\sigma_{i}(x)=\frac{x-y_{i}}{y_{i}^{\prime \prime}-y_{i}^{\prime}}\left\{\frac{x-y_{i}^{\prime}}{y_{i}^{\prime \prime}-y_{i}} \sigma_{i}\left(y_{i}^{\prime \prime}\right)+\frac{x-y_{i}^{\prime \prime}}{y_{i}-y_{i}^{\prime}} \sigma_{i}\left(y_{i}^{\prime}\right)\right\}[4],
$$

where $\sigma_{i}\left(y_{i}^{\prime}\right)$ and $\sigma_{i}\left(y_{i}^{\prime \prime}\right)$ are chosen so that

$$
\left|\sigma_{i}\left(y_{i}^{\prime}\right)\right|= \begin{cases}c \omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P} \operatorname{sgn}\left(f\left(y_{i}^{\prime}\right)\right) & ; \text { if }\left|f\left(y_{i}^{\prime}\right)\right| \leq c \omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P}, \\ f\left(y_{i}^{\prime}\right) ; & \text { o.w }\end{cases}
$$

and
$\left|\sigma_{i}\left(y_{i}^{\prime}\right)\right|= \begin{cases}c \omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P} \operatorname{sgn}\left(f\left(y_{i}^{\prime}\right)\right) & ; \text { if }\left|f\left(y_{i}^{\prime}\right)\right| \leq c \omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P}, \\ f\left(y_{i}^{\prime}\right) ; & \text { o.w. }\end{cases}$
If $f\left(y_{i}^{\prime}\right)=0$, then $\operatorname{sgn}\left(f\left(y_{i}^{\prime}\right)\right)$, equals the sign f on $\left(y_{i-1}, y_{i}\right)$. Since $\sigma_{i} \in \Pi_{2}$, and $\sigma_{i}\left(y_{i}^{\prime}\right)$ and $\sigma_{i}\left(y_{i}^{\prime \prime}\right)$, have opposite signs, then the only zero of σ_{i} in I_{i}^{*} is y_{i}.

Hence, σ_{i} is copositive with f in I_{i}^{*}. Also, the first derivative of σ_{i},

$$
\sigma_{i}^{\prime}(x)=\frac{2 x-y_{i}-y_{i}^{\prime}}{\left(y_{i}^{\prime \prime}-y_{i}^{\prime}\right)\left(y_{i}^{\prime \prime}-y_{i}\right)} \sigma_{i}\left(y_{i}^{\prime \prime}\right)+\frac{2 x-y_{i}-y_{i}^{\prime \prime}}{\left(y_{i}^{\prime \prime}-y_{i}^{\prime}\right)\left(y_{i}-y_{i}^{\prime}\right)} \sigma_{i}\left(y_{i}^{\prime}\right)
$$

is a linear function, and

$$
\sigma_{i}^{\prime}\left(\frac{y_{i}+y_{i}^{\prime}}{2}\right)=\frac{-\sigma_{i}\left(y_{i}^{\prime}\right)}{\left(y_{i}-y_{i}^{\prime}\right)} \text {, and } \sigma_{i}^{\prime}\left(\frac{y_{i}+y_{i}^{\prime \prime}}{2}\right)=\frac{\sigma_{i}\left(y_{i}^{\prime \prime}\right)}{\left(y_{i}^{\prime \prime}-y_{i}\right)}
$$

are of the same sign, which implies that σ_{i}^{\prime}, does not change sign in ρ_{i}, and for any $x \in \rho_{i}$.

$$
\begin{gather*}
\left\|\sigma_{i}^{\prime}(x)\right\|_{L_{P}[-1,1]} \geq 2^{\frac{1}{P}} \min \left\{\left|\sigma_{i}^{\prime}\left(\frac{y_{i}+y_{i}^{\prime}}{2}\right)\right|,\left|\sigma_{i}^{\prime}\left(\frac{y_{i}+y_{i}^{\prime \prime}}{2}\right)\right|\right\}=2^{\frac{1}{P}} \min \left\{\frac{\left|\sigma_{i}\left(y_{i}^{\prime}\right)\right|}{\left|y_{i}-y_{i}^{\prime}\right|}, \frac{\mid \sigma_{i}\left(y_{i}^{\prime \prime} \mid\right.}{\left|y_{i}^{\prime \prime}-y_{i}\right|}\right\} \\
\geq 2^{\frac{1}{P}} \frac{1}{c \Delta_{n}(x)} \min \left\{\left|\sigma_{i}\left(y_{i}^{\prime}\right)\right|, \mid \sigma_{i}\left(y_{i}^{\prime \prime}\right)\right\} \geq 2^{\frac{1}{P}} \frac{1}{\Delta_{n}(x)} \min \left\{\omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P}, \omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P}\right\} \\
\geq 2^{\frac{1}{P}} \frac{1}{\Delta_{n}(x)} \omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P} . \tag{2.5}
\end{gather*}
$$

From [3], we have

$$
\begin{equation*}
\left\|f-\sigma_{i}\right\|_{L_{P}[-1,1]} \leq C \omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P} \tag{2.6}
\end{equation*}
$$

It is well known (see proof of Lemma 8 in [7]), that there exists a polynomial $Q_{n}(x)$, of degree $\leq n$, which is a polynomial of best approximation to f in $[-1,1]$, and satisfying

$$
\begin{equation*}
\left\|f-Q_{n}\right\|_{L_{P}[-1,1]} \leq C \omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P}, \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\phi(x)^{3} Q_{n}^{(3)}(x)\right\|_{L_{P}[-1,1]} \leq \operatorname{Cn}^{3} \omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P} . \tag{2.8}
\end{equation*}
$$

Now, we define the piecewise polynomial function $S(x) \in C[-1,1]$, as follows

$$
S(x)= \begin{cases}1 & ; \text { if } x \notin \bigcup_{i=1}^{k} \mathrm{I}_{i}^{*}, \\ 0 & \text {;if } x \in \bigcup_{i=1}^{k} \rho_{i}, \\ c & \text {;if } x \in\left[y_{i}^{\prime}, \frac{y_{i}+y_{i}^{\prime}}{2}\right], 1 \leq i \leq k .\end{cases}
$$

Finally, the function

$$
f_{n}(x)=\left\{\begin{array}{lc}
\left|Q_{n}(x)-\sigma_{i}(x)\right| S(x)+\sigma_{i}(x) & \text {;if } x \in \mathrm{I}_{i}^{*} \\
Q_{n}(x) ; & \text { o.w }
\end{array}\right.
$$

is copositive with f in $\mathrm{Y}=\bigcup_{i=1}^{k} \rho_{i}$, and indeed f_{n}, coincides with σ_{i} in ρ_{i}, and, let C be an absolute constant such that
$\left\|f-f_{n}\right\|_{L_{P}[-1,1]} \leq C\left\|f-\sigma_{i}\right\|_{L_{P}[-1,1]} \leq C \omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P}$.
From (2.5), then
$\left\|\Delta_{n}(x) f_{n}^{\prime}(x)\right\|_{L_{p}[-1,1]} \geq C h_{j(i)}\left\|f_{n}^{\prime}(x)\right\|_{L_{P}[-1,1]} \geq C \Delta_{n}(x) \frac{1}{\Delta_{n}(x)} \omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P}=C \omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P}$.
Now , to prove the remaining (2.3), for $x \in\left[y_{i}^{\prime}, \frac{y_{i}+y_{i}^{\prime}}{2}\right], 1 \leq i \leq k \quad$ (for $x \notin \bigcup_{i=1}^{k} \mathrm{I}_{i}^{*}$, from (2.8), we have (2.3) is valid, and for $x \in \mathrm{Y}$ it is trivial), from [4], look at

$$
\left|\phi(x)^{3} f_{n}^{(3)}(x)\right| \leq C n^{3}\left|I_{i}^{*}\right|^{3} \sum_{v=0}^{3}\left|Q_{n}^{(v)}-\sigma_{i}^{(v)}\right|\left|S^{(3-v)}\right| \text {, such that }
$$

$\phi(x) \approx n \Delta_{n}(x) \approx n\left|\mathbf{I}_{i}^{*}\right|$, for $x \in \mathrm{I}_{i}^{*}$, then

$$
\begin{aligned}
\left\|\phi(x)^{3} f_{n}^{(3)}(x)\right\|_{L_{p}[-1,1]} & \leq\left\|\phi(x)^{3} f_{n}^{(3)}(x)\right\|_{L_{\infty}[-1,1]} \\
& \leq C n^{3}\left|I_{i}^{*}\right|^{3} \sum_{v=0}^{3}\left\|Q_{n}^{(v)}-\sigma_{i}^{(v)}\right\|_{L_{\infty}[-1,1]}\left\|S^{(3-v)}\right\|_{L_{\infty}[-1,1]} \\
& \leq C(p, v, n, 2) n^{3}\left|I_{i}^{*}\right|^{3-k-1} \sum_{v=0}^{3}\left\|Q_{n}-\sigma_{i}\right\|_{L_{p}[-1,1]}\|S\|_{L_{p}[-1,1]} \\
& \leq C(p, v, n, 2) n^{3}\left(\left\|Q_{n}-f\right\|_{L_{p}[-1,1]}+\left\|f-\sigma_{i}\right\|_{L_{p}[-1,1]}\right) .
\end{aligned}
$$

Now, from (2.6) and (2.7), we get

$$
\left\|\phi(x)^{3} f_{n}^{(3)}(x)\right\|_{L_{P}[-1,1]} \leq C(p, v, n, 2) n^{3} \omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P}
$$

Also , let us introduce the following auxiliary proposition .

Proposition 2.9

If $\hat{f} \quad$ in $C^{3}[-1,1] \cap L_{P}[-1,1]$ is such that $\left|\left(1-x^{2}\right)^{3 / 2} \hat{f}^{(3)}(x)\right| \leq M, \quad x \in[-1,1]$, $-1<y_{1}<\ldots<y_{k}<1$, and $\delta=\min _{1 \leq i \leq k+1}\left|y_{i+1}-y_{i}\right|$, then for every $n \geq C$, there exists a polynomial $p_{n} \in \Pi_{n}$, such that

$$
\begin{equation*}
\left\|\hat{f}-p_{n}\right\|_{L_{P}[-1,1]} \leq C \omega_{3}^{\phi}\left(\hat{f}, n^{-1},[-1,1]\right)_{P} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\Delta_{n}(x)\left(\hat{f}^{\prime}-p_{n}^{\prime}\right)\right\|_{L_{p}[-1,1]} \leq C \frac{2}{n} \omega_{2}^{\phi}\left(\hat{f}^{\prime}, n^{-1},[-1,1]\right)_{P} \tag{2.11}
\end{equation*}
$$

where the constant C, depends only on k and p.
Proof. Note that $(2,10)$ is trivial (see [1] theorem 3.2.1). In (2.11) is valid since $x \in[-1,1]$, then from [1], we get

$$
\begin{aligned}
\left\|\Delta_{n}(x)\left(\hat{f}^{\prime}-p_{n}^{\prime}\right)\right\|_{L_{P}[-1,1]} & \leq \frac{2}{n}\left\|\hat{f}^{\prime}-p_{n}^{\prime}\right\|_{L_{p}[-1,1]} \\
& \leq C \frac{2}{n} \omega_{2}^{\phi}\left(\hat{f}^{\prime}, n^{-1},[-1,1]\right)_{P} .
\end{aligned}
$$

Now, let us introduce the following theorem as a main result

Theorem 2.12

Let f in $L_{P}[a, b] \cap \Delta^{0}\left(Y_{s}\right)$, change sign $k \geq 1$, times at $-1<y_{1}<\ldots<y_{k}<1$, and let $\delta=\min _{0 \leq i \leq k}\left|y_{i+1}-y_{i}\right|$, where $y_{\circ}=-1$ and $y_{k+1}=1$. Then there exists a constant C, such that for each $n>C$, there is a function g in $L_{P}[a, b] \cap \Delta^{0}\left(Y_{s}\right)$, copositive with f, and satisfying

$$
\begin{equation*}
\|f-g\|_{L_{p}[-1,1]} \leq C \omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P} \tag{2.13}
\end{equation*}
$$

where the constant C, depends only on k.
Proof. If $n \geq 4 \delta^{-1}$, there exists $p_{N} \in \Pi_{N}$, let $g=p_{N}+2^{k}\left\|f-p_{N}\right\|_{L_{p}[-1,1]} \eta \prod_{i=1}^{k} T_{N}\left(y_{i}, x\right)$ in $L_{P}[a, b] \cap \Delta^{0}\left(Y_{s}\right)$, where N is sufficiently large $(N=((18 \sqrt{C})+1) n$ will do $)[4]$, and $\eta= \pm 1$ is such that $\operatorname{sgn}(f(x))=\eta \prod_{i=1}^{k} \operatorname{sgn}\left(x-y_{i}\right)$.
Also, let f_{n} in $\Delta^{3}[-1,1] \cap\left(S-\Delta^{0}\left(Y_{s}\right)\right)$ be a function which was described in theorem 2.1 . (3.9) can be written as

$$
\left\|\left(1-x^{2}\right)^{3 / 2} f_{n}^{(3)}(x)\right\|_{L_{P}[-1,1]} \leq C(k) n^{3} \omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P} .
$$

It follows from proposition 2.9 , that there exists a polynomial $p_{N} \in \Pi_{N}$, best approximation to f_{n} and satisfies (2.7), such that

$$
\begin{align*}
\left\|f_{n}-p_{N}\right\|_{L_{P}[-1,1]} & \leq\left\|f_{n}-f\right\|_{L_{p}[-1,1]}+\left\|f-p_{N}\right\|_{L_{p}[-1,1]} \\
& \leq C \omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P} \tag{2.14}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|\Delta_{n}(x)\left(f_{n}^{\prime}-p_{N}^{\prime}\right)\right\|_{L_{p}[-1,1]} \leq C \frac{2}{n} \omega_{2}^{\phi}\left(f_{n}^{\prime}, n^{-1},[-1,1]\right)_{P} \tag{2.15}
\end{equation*}
$$

Together with (2.4), this implies $\operatorname{sgn}\left(p_{N}(x)\right)=\operatorname{sgn}\left(f_{n}(x)\right), x \in \mathrm{Y}=\bigcup_{i=1}^{k} \rho_{i}$.
In turn, it follows that p_{N} is copositive with f in $\mathrm{Y}=\bigcup_{i=1}^{k} \rho_{i}$, and also by (2.2), (2.10) and (2.14), we get

$$
\begin{aligned}
\|f-g\|_{L_{P}[-1,1]} & =\left\|f-f_{n}+f_{n}-g\right\|_{L_{P}[-1,1]} \\
& \leq\left\|f-f_{n}\right\|_{L_{P}[-1,1]}+\left\|f_{n}-g\right\|_{L_{P}[-1,1]} \\
& \leq\left\|f-f_{n}\right\|_{L_{P}[-1,1]}+\left\|f_{n}-p_{N}-2^{k}\right\| f-p_{N}\left\|_{L_{P}[-1,1]} \eta \prod_{i=1}^{k} T_{N}\left(y_{i}, x\right)\right\|_{L_{P}[-1,1]} \\
& \leq\left\|f-f_{n}\right\|_{L_{P}[-1,1]}+\left\|f_{n}-p_{N}\right\|_{L_{P}[-1,1]}+C\left\|f-p_{N}\right\|_{L_{P}[-1,1]} \\
& \leq C \omega_{3}^{\phi}\left(f, n^{-1},[-1,1]\right)_{P}
\end{aligned}
$$

References

[1] Al-Muhja, Malik S. , On k^{k}-monotone approximation in ${ }^{L_{p}}$ spaces , M. Sc.
Thesis, University of Kufa, 2009 .
[2] Bhaya, E. and A. H., Weak Copositive Approximation and Whitney Theorem in $L_{P}, 0<p<1$, J. J. App., Sci., Vol8, No.2, 51-57, 2006.
[3] Halgwrd M., On the Shape Preserving Approximation, Mc. Sc. Thesis, Babylon University, 2005.
[4] Kopotun , Kirill A., On Copositive Approximation by Algebraic Polynomials, AMS , 1991.
[5] S. P. Zhou , A Counterexample in Copositive Approximation , Israel J. Math. , 78 ; 75-83, 1992 .
[6] Y. Hu , D. Leviatan and X. M. Yu , Copositive Polynomial Approximation in $C[0,1]$, J. Anal. , 1; 85-90, 1993.
[7] Yingkang Hu , On Equivalence of Moduli of Smoothness of Polynomial in L_{P}, $0<p \leq \infty$, J. Approx. Theory, 136 ; 182-197, 2005.
[8] Zhou, S. P. , On Copositive Approximation , Approx. Theory Appl., 104-110, 1993.

