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Abstract:   In the present paper, we have studied a class 𝒜(𝜆, 𝜇, 𝛼, 𝜏) of 

analytic and meromorphic univalent functions defined by differential operator 

in the punctured unit disk 𝑈∗ = {𝑧 ∈ ℂ: 0 <  𝑧 < 1} and obtain some sharp 

results including coefficient inequality, distortion theorem, radii of 

starlikeness and convexity, Hadamard product, closure theorems. We also 

obtain some results connected with  𝑛, 𝛿 − neighborhoods on 𝒜𝜎 𝜆, 𝜇, 𝛼, 𝜏  and 

integral operator. 
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1.Introduction: 

   Let ∑ denote the class of functions analytic and meromorphic univalent in 

the punctured unit disk 𝑈∗ =  𝑧 ∈ ℂ: 0 <  𝑧 < 1 = 𝑈 ∖ {0} and let 𝑆(𝑛) denote 

the subclass of ∑ consisting of functions of the form: 

𝑓 𝑧 = 𝑧−1 −  𝑎𝑛𝑧𝑛 ,   (

∞

𝑛=1

𝑎𝑛 ≥ 0,𝑛 ∈ ℕ = {1, 2, … }),                                          (1) 
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which are analytic and meromorphic univalent in the punctured unit disk 𝑈∗. 

A function 𝑓 ∈ 𝑆(𝑛) is said to be meromorphically starlike of order 𝛽 if 

𝑅𝑒  −
𝑧𝑓 ′ 𝑧 

𝑓 𝑧 
 > 𝛽,  𝑧 ∈ 𝑈 = 𝑈∗ ∪  0 , 𝑜 ≤ 𝛽 < 1 ,                             2  

and a function 𝑓 ∈ 𝑆(𝑛) is said to be meromorphically convex of order 𝛽 if 

𝑅𝑒  −  1 +
𝑧𝑓″ 𝑧 

𝑓 ′ 𝑧 
  > 𝛽,  𝑧 ∈ 𝑈 = 𝑈∗ ∪  0 , 𝑜 ≤ 𝛽 < 1 .                           (3) 

  We denote by 𝛿∗ 𝛽 ,𝛿 𝛽 , respectively, the classes of univalent meromorphic 

starlike functions of order 𝛽 and univalent meromorphic convex functions of 

order 𝛽. Similar classes have been extensively studied by Clunie [7] and 

Miller [9] and Atshan [2, 5]. 

   We shall use the differential operator (𝐷𝜆,𝜇1
) [11] defined as follows: 

𝐷𝜆,𝜇1
𝑓 𝑧 = 𝑧−1 −  𝑎𝑛  𝜆 𝑛 + 2  𝜇1 𝑛 + 1 + 1 − 𝜇1 𝑛 + 2 +  1 − 𝜆 + 𝜇1  

∞

𝑛 =1

𝑧𝑛 

                      = 𝑧−1 −  Ø 𝜆, 𝜇1,𝑛 𝑎𝑛𝑧𝑛 ,                                                                                  (4)

∞

𝑛 =1

 

where   

Ø 𝜆, 𝜇1,𝑛 =  𝜆 𝑛 + 2  𝜇1 𝑛 + 1 + 1 − 𝜇1 𝑛 + 2 +  1 − 𝜆 + 𝜇1  ,0 ≤ 𝜇1 ≤ 𝜆,                                   

 𝑛 ∈ ℕ =  1, 2, …  .     

Definition 1: A function 𝑓 ∈ 𝑆(𝑛) is in the class  𝒜(𝜆, 𝜇1, 𝛼, 𝜏) if it satisfies the 

condition  

 

 
𝑧2  𝐷𝜆,𝜇1

𝑓 𝑧  
″

 𝐷𝜆,𝜇1
𝑓 𝑧  

′ + 2𝑧

 2𝜏− 1 
𝑧2  𝐷𝜆,𝜇1

𝑓 𝑧  
″

 𝐷𝜆,𝜇1
𝑓 𝑧  

′ +  2𝜏 − 2 𝑧 

 

< 𝛼, 𝑧 ∈ 𝑈∗                         (5) 

for  0 < 𝛼 ≤ 1,
1

2
< 𝜏 ≤ 1.   
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2. Coefficient Inequality: 

   The following theorem gives a sufficient condition for a function to be in 

the class 𝒜 𝜆,𝜇1, 𝛼, 𝜏 . 

Theorem 1:  A function 𝑓 ∈ 𝑆(𝑛) is in the class 𝒜(𝜆, 𝜇1, 𝛼, 𝜏) if and only if 

 Ø 𝜆,𝜇1, 𝑛  𝑛  𝑛 + 1 + 𝛼[ 2𝜏− 1 𝑛 − 1] 

∞

𝑛=1

𝑎𝑛 ≤ 2𝛼𝜏,                             (6) 

where    0 < 𝛼 ≤ 1,
1

2
< 𝜏 ≤ 1.                                                                                                     

The result is sharp for the function  

𝑓 𝑧 = 𝑧−1 − 
2𝛼𝜏

Ø 𝜆, 𝜇1,𝑛  𝑛  𝑛 + 1 + 𝛼[ 2𝜏 − 1 𝑛 − 1] 
𝑧𝑛 , 𝑛 ∈ ℕ.                  7  

Proof: For  𝑧 = 1, we have  

     𝑧2  𝐷𝜆 ,𝜇1
𝑓 𝑧  

″

+ 2𝑧 𝐷𝜆 ,𝜇1
𝑓 𝑧  

′

 − 𝛼   2𝜏 − 1 𝑧2  𝐷𝜆 ,𝜇1
𝑓 𝑧  

″

+ (2𝜏 − 2)𝑧 𝐷𝜆 ,𝜇1
𝑓 𝑧  

′

  

=  − 𝑛(𝑛 + 1)Ø 𝜆, 𝜇
1
,𝑛 𝑎𝑛𝑧𝑛

∞

𝑛 =1

 − 𝛼  2𝜏𝑧−1 −  𝑛[ 2𝜏 − 1 𝑛 − 1]Ø 𝜆, 𝜇
1
,𝑛 𝑎𝑛𝑧𝑛

∞

𝑛=1

  

≤  𝑛 𝑛 + 1 Ø 𝜆, 𝜇
1
,𝑛 𝑎𝑛 − 2𝛼𝜏 +

∞

𝑛 =1

 𝑛𝛼  2𝜏− 1 𝑛 − 1 Ø 𝜆,𝜇
1
, 𝑛 𝑎𝑛                         

∞

𝑛=1

 

=  Ø 𝜆, 𝜇
1
,𝑛 𝑛  𝑛 + 1 + 𝛼[ 2𝜏 − 1 𝑛 − 1] 

∞

𝑛 =1

𝑎𝑛   ≤ 0 .                                               

By hypothesis. Thus by maximum modulus theorem 𝑓 ∈ 𝒜(𝜆, 𝜇
1
, 𝛼, 𝜏).                    

Conversely, assume that  

 

 
𝑧2  𝐷𝜆,𝜇1

𝑓 𝑧  
″

 𝐷𝜆 ,𝜇1
𝑓 𝑧  

′ + 2𝑧

 2𝜏 − 1 
𝑧2  𝐷𝜆 ,𝜇1

𝑓 𝑧  
″

 𝐷𝜆 ,𝜇1
𝑓 𝑧  

′ +  2𝜏 − 2 𝑧 

 

=  
𝑧2  𝐷𝜆 ,𝜇1

𝑓 𝑧  
″

+ 2𝑧  𝐷𝜆 ,𝜇1
𝑓 𝑧  

′

 2𝜏 − 1 𝑧2  𝐷𝜆 ,𝜇1
𝑓 𝑧  

″

+ (2𝜏 − 2)𝑧  𝐷𝜆 ,𝜇1
𝑓 𝑧  

′  
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=  
 

 
−

n 1





 𝑛 𝑛 + 1 Ø 𝜆, 𝜇
1
,𝑛 𝑎𝑛𝑧𝑛

2𝜏𝑧−1 −
n 1





 𝑛[ 2𝜏− 1 𝑛 − 1]Ø 𝜆, 𝜇
1
, 𝑛 𝑎𝑛𝑧𝑛

 

 
< 𝛼 .       

Since  𝑅𝑒(𝑧) ≤  𝑧  for all 𝑧, we have 

𝑅𝑒

 
 
 

 
 

n 1





 𝑛 𝑛 + 1 Ø 𝜆, 𝜇
1
, 𝑛 𝑎𝑛 𝑧𝑛

2𝜏𝑧−1 −
n 1





 𝑛[ 2𝜏 − 1 𝑛 − 1]Ø 𝜆, 𝜇
1
,𝑛 𝑎𝑛𝑧𝑛

 
 
 

 
 

< 𝛼.                        (8) 

Now, choosing values of 𝑧 on the real axis and allowing 𝑧 → 1 from the left 

through real values, the inequality (8) immediately yields the desired 

condition in (6). Finally, it is observed that the result is sharp for the function 

is given by (7). 

Theorem 1 immediately yields the following result.

Corollary 1: Let 𝑓 ∈ 𝒜 𝜆, 𝜇
1
,𝛼,𝜏 . Then  

      𝑎𝑛 ≤
2𝛼𝜏

Ø 𝜆, 𝜇
1
, 𝑛  𝑛  𝑛 + 1 + 𝛼[ 2𝜏 − 1 𝑛 − 1] 

, n = 1, 2, … .                     9 

The equality in (9) is attained for the function 𝑓 given by (7). 

3. Distortion Theorem:  

   We now state the following distortion inequality for the class 𝒜 𝜆, 𝜇
1
, 𝛼, 𝜏 .  

Theorem 2: Let the function 𝑓 ∈ 𝒜(𝜆, 𝜇
1
,𝛼, 𝜏). Then  

1

 𝑧 
−

 𝛼𝜏

Ø 𝜆, 𝜇1,1  1 + 𝛼 𝜏 − 1  
 𝑧 ≤  𝑓 𝑧  ≤

1

 𝑧 
+

 𝛼𝜏

Ø 𝜆,𝜇1, 1  1 + 𝛼 𝜏 − 1  
 𝑧  . 

(10) 

The result is sharp for the function 

𝑓 𝑧 = 𝑧−1 − 
 𝛼𝜏

Ø 𝜆, 𝜇1, 1  (1 + 𝛼 𝜏 − 1 )
𝑧 .             
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Proof: We have  

                  𝑓 𝑧 = 𝑧−1 −  𝑎𝑛𝑧𝑛          

∞

𝑛=1

 

 𝑓(𝑧) ≤
1

 𝑧 
+  𝑎𝑛  𝑧 𝑛 ≤

1

 𝑧 
+

 𝛼𝜏

Ø 𝜆, 𝜇1, 1 (1 + 𝛼 𝜏 − 1 )
 𝑧 .                      11  

∞

𝑛=1

 

Similarly  

 𝑓(𝑧) ≥
1

 𝑧 
−  𝑎𝑛  𝑧 𝑛  ≥

1

 𝑧 
−

2𝛼𝜏

Ø 𝜆, 𝜇1, 1 (1 + 𝛼 𝜏 − 1 )
 𝑧 .                       12 

∞

𝑛 =1

 

Combining (11) and (12), we get (10).□ 

4. Radii of starlikeness and convexity: 

Theorem 3: Let 𝑓 ∈ 𝒜(𝜆, 𝜇1, 𝛼, 𝜏). Then 𝑓 is starlike of order 𝛽,  0 ≤ 𝛽 < 1                                          

in   𝑧 < 𝑟 = 𝑟1(𝜆, 𝜇1,𝛼, 𝜏, 𝑛, 𝛽), where 

𝑟1 𝜆, 𝜇1,𝛼,𝜏, 𝑛,𝛽 = inf
𝑛

 
 1 − 𝛽 𝑛  𝑛 + 1 + 𝛼  2𝜏− 1 𝑛 − 1  Ø 𝜆,𝜇1, 𝑛 

2𝛼𝜏 𝑛 + 2 − 𝛽 
 

1
𝑛+1

,      13  

𝑛 = 1, 2, … .  

The bound for each  𝑧  is sharp for each 𝑛, with the extremal function being of 

the form (7).  

Proof: Let 𝑓 ∈ 𝒜(𝜆, 𝜇1, 𝛼, 𝜏) then by Theorem 1

     
𝑛  𝑛 + 1 + 𝛼  2𝜏− 1 𝑛 − 1  

2𝛼𝜏
Ø 𝜆, 𝜇1,𝑛 

∞

𝑛=1

𝑎𝑛 ≤ 1.                            (14) 

For  0 ≤ 𝛽 < 1, we need to show that

 
𝑧𝑓 ′ 𝑧 

𝑓 𝑧 
+ 1 ≤ 1 − 𝛽,

we have to show that

 
𝑧𝑓 ′ 𝑧 + 𝑓(𝑧)

𝑓 𝑧 
 ≤

 
 
−

n 1





 (𝑛 + 1)𝑎𝑛𝑧𝑛+1

 1 −
n 1





 𝑎𝑛𝑧𝑛+1
 
 
≤

n 1





  (𝑛 + 1)𝑎𝑛  𝑧 𝑛+1

1 −
n 1





 𝑎𝑛  𝑧 𝑛 +1

≤ 1 − 𝛽. 
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Hence  

  
𝑛 + 2 − 𝛽

1 − 𝛽
 

∞

𝑛 =1

𝑎𝑛  𝑧 𝑛+1 ≤ 1. 

This is enough to consider 

 𝑧 𝑛 +1 ≤
 1 − 𝛽 𝑛  𝑛 + 1 + 𝛼  2𝜏− 1 𝑛 − 1  Ø 𝜆,𝜇1, 𝑛 

2𝛼𝜏 𝑛 + 2 − 𝛽 
  .                                   

Therefore 

            𝑧 ≤  
 1 − 𝛽 𝑛  𝑛 + 1 + 𝛼  2𝜏− 1 𝑛 − 1  Ø 𝜆, 𝜇1,𝑛 

2𝛼𝜏 𝑛 + 2 − 𝛽 
 

1
𝑛+1

 .                   (15) 

Setting  𝑧 = 𝑟1(𝜆, 𝜇1, 𝛼, 𝜏, 𝑛, 𝛽) in (15), we get the radius of starlikeness, which 

completes the proof of Theorem 3. 

Theorem 4:   Let 𝑓 ∈ 𝒜(𝜆,𝜇1, 𝛼, 𝜏). Then  𝑓 is convex of order  𝛽,  0 ≤ 𝛽 < 1                                      

in  𝑧 < 𝑟 = 𝑟2 (𝜆, 𝜇1, 𝛼, 𝜏,𝑛, 𝛽), where                     

𝑟2  𝜆, 𝜇1,𝛼, 𝜏, 𝑛, 𝛽 = inf
𝑛

 
 1 − 𝛽   𝑛 + 1 + 𝛼  2𝜏 − 1 𝑛 − 1  Ø 𝜆,𝜇1, 𝑛 

2𝛼𝜏 𝑛 + 2 − 𝛽 
 

1
𝑛 +1

,       16  

𝑛 = 1, 2, … .  

The bound for each  𝑧  is sharp for each 𝑛, with the extremal function being of 

the form (7).  

Proof: Let 𝑓 ∈ 𝒜(𝜆, 𝜇1, 𝛼, 𝜏) then by Theorem 1

              
𝑛  𝑛 + 1 + 𝛼  2𝜏− 1 𝑛 − 1  

2𝛼𝜏
Ø 𝜆, 𝜇1,𝑛 

∞

𝑛=1

𝑎𝑛 ≤ 1.                                (17)

For  0 ≤ 𝛽 < 1, we need to show that

 
𝑧𝑓″ 𝑧 

𝑓′ 𝑧 
+ 2 ≤ 1 − 𝛽, 

we have to show that 



W. G. Atshan and A. H. Abada                                                                                                                7 
 

 
𝑧𝑓″ 𝑧 + 2𝑓′(𝑧)

𝑓′ 𝑧 
 ≤

 

 
−

n 1





 𝑛(𝑛 + 1)𝑎𝑛𝑧𝑛+1

−1 −
n 1





 𝑛𝑎𝑛𝑧𝑛+1
 

 
≤

n 1





 𝑛(𝑛 + 1)𝑎𝑛  𝑧 𝑛 +1

1 −
n 1





 𝑛𝑎𝑛  𝑧 𝑛+1

≤ 1 − 𝛽.

Hence 

 
𝑛(𝑛 + 2 − 𝛽)

1 − 𝛽

∞

𝑛=1

𝑎𝑛  𝑧 𝑛 +1 ≤ 1.

This is enough to consider 

     𝑧 𝑛+1 ≤
 1 − 𝛽   𝑛 + 1 + 𝛼  2𝜏− 1 𝑛 − 1  Ø 𝜆,𝜇1, 𝑛 

2𝛼𝜏 𝑛 + 2 − 𝛽 
  .                                   

Therefore

   𝑧 ≤  
 1 − 𝛽   𝑛 + 1 + 𝛼  2𝜏− 1 𝑛 − 1  Ø 𝜆, 𝜇1,𝑛 

2𝛼𝜏 𝑛 + 2 − 𝛽 
 

1
𝑛 +1

 .                   (18)

Setting  𝑧 = 𝑟2 (𝜆, 𝜇1,𝛼, 𝜏, 𝑛, 𝛽) in (18), we get the radius of convexity, which 

completes the proof of Theorem 4. 

5. Hadamard product: 

Theorem 5:  If       

𝑓 𝑧 = 𝑧−1 −  𝑎𝑛𝑧𝑛    𝑎𝑛𝑑   𝑔 𝑧 = 𝑧−1 −  𝑏𝑛𝑧𝑛  

∞

𝑛=1

∞

𝑛=1

 

be in the class 𝒜 𝜆, 𝜇1, 𝛼, 𝜏 , then  

 𝑓 ∗ 𝑔  𝑧 = 𝑧−1 −  𝑎𝑛𝑏𝑛𝑧𝑛  

∞

𝑛=1

 is in the class 𝒜 𝜆, 𝜇1, 𝜂, 𝜏 , where 

𝜂 =
2𝛼2𝜏(𝑛 + 1)

Ø 𝜆,𝜇1, 𝑛 𝑛  𝑛 + 1 + 𝛼  2𝜏 − 1 𝑛 − 1  
2
− 2𝛼2𝜏  2𝜏 − 1 𝑛 − 1 

 .
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Proof: Suppose that 𝑓, 𝑔 ∈ 𝒜 𝜆, 𝜇1, 𝛼, 𝜏 .

By Theorem 1, we have 

 
𝑛  𝑛 + 1 + 𝛼  2𝜏− 1 𝑛 − 1  

2𝛼𝜏
Ø 𝜆, 𝜇1,𝑛 

∞

𝑛 =1

𝑎𝑛 ≤ 1                                              (19)

and

 
𝑛  𝑛 + 1 + 𝛼  2𝜏− 1 𝑛 − 1  

2𝛼𝜏
Ø 𝜆, 𝜇1, 𝑛 

∞

𝑛=1

𝑏𝑛 ≤ 1 .                                             (20) 

We have to find the largest value 𝜂, such that 

 
𝑛   𝑛 + 1 +𝜂  2𝜏 − 1 𝑛 − 1  

2𝜂𝜏
Ø 𝜆, 𝜇1, 𝑛 

∞

𝑛 =1

𝑎𝑛𝑏𝑛 ≤ 1 .                                         (21) 

By Cauchy-Schwarz inequality, we have 

 
𝑛  𝑛 + 1 + 𝛼  2𝜏− 1 𝑛 − 1  

2𝛼𝜏
Ø 𝜆, 𝜇1,𝑛 

∞

𝑛 =1

 𝑎𝑛𝑏𝑛 ≤ 1 .                                      (22)

Thus it is enough to show that    

𝑛   𝑛 + 1 + 𝜂  2𝜏 − 1 𝑛 − 1  

2𝜂𝜏
Ø 𝜆, 𝜇1,𝑛 𝑎𝑛 𝑏𝑛                                                  

≤  
𝑛  𝑛 + 1 + 𝛼  2𝜏 − 1 𝑛 − 1  

2𝛼𝜏
Ø 𝜆,𝜇1, 𝑛  𝑎𝑛𝑏𝑛   , 

that is 

          𝑎𝑛𝑏𝑛 ≤
  𝑛 + 1 + 𝛼  2𝜏 − 1 𝑛 − 1  𝜂

  𝑛 + 1 + 𝜂  2𝜏− 1 𝑛 − 1  𝛼
 .                                                      (23) 

From (22), we get 

          𝑎𝑛𝑏𝑛 ≤
2𝛼𝜏

Ø 𝜆, 𝜇1,𝑛 𝑛  𝑛 + 1 + 𝛼  2𝜏− 1 𝑛 − 1  
 .                                      (24) 
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Therefore, in view of (23) and (24) it is enough to show that 

2𝛼𝜏

Ø 𝜆,𝜇1, 𝑛 𝑛  𝑛 + 1 + 𝛼  2𝜏 − 1 𝑛 − 1  
≤

  𝑛 + 1 + 𝛼  2𝜏− 1 𝑛 − 1  𝜂

  𝑛 + 1 + 𝜂  2𝜏− 1 𝑛 − 1  𝛼
  ,                 

which simplifies to 

𝜂 ≤
2𝛼2𝜏(𝑛 + 1)

Ø 𝜆,𝜇1, 𝑛 𝑛  𝑛 + 1 + 𝛼  2𝜏 − 1 𝑛 − 1  
2
− 2𝛼2𝜏  2𝜏 − 1 𝑛 − 1 

 .  □ 

6. Closure theorems: 

   In the following theorems, we will show the class 𝒜 𝜆, 𝜇1, 𝛼, 𝜏  is closed 

under linear combination . 

Theorem 6:  Let  𝑓𝑖 ∈ 𝒜 𝜆, 𝜇1, 𝛼, 𝜏 ,where 

𝑓𝑖 𝑧 = 𝑧−1 −  𝑎𝑛 ,𝑖𝑧
𝑛  

∞

𝑛 =1

,  𝑎𝑛 ,𝑖 ≥ 0, 𝑖 = 1,2  . 

Then 

𝑤 𝑧 = 𝑡𝑓1 𝑧 +  1 − 𝑡 𝑓2 𝑧 , (0 ≤ 𝑡 ≤ 1) 

is also in the class 𝒜 𝜆, 𝜇1, 𝛼, 𝜏 . 

Proof:  Since for  0 ≤ 𝑡 ≤ 1, we get  

𝑤 𝑧 = 𝑧−1 −  (𝑡 𝑎𝑛,1 +  1 − 𝑡  𝑎𝑛,2)𝑧𝑛  

∞

𝑛 =1

, 

 we observe that  

 Ø 𝜆, 𝜇1,𝑛 𝑛  𝑛 + 1 + 𝛼  2𝜏− 1 𝑛 − 1  

∞

𝑛=1

(𝑡 𝑎𝑛,1 +  1 − 𝑡  𝑎𝑛,2) 

           = 𝑡  Ø 𝜆,𝜇1, 𝑛 𝑛  𝑛 + 1 + 𝛼  2𝜏 − 1 𝑛 − 1  𝑎𝑛,1

∞

𝑛=1

 

              +(1− 𝑡)  Ø 𝜆, 𝜇1,𝑛 𝑛  𝑛 + 1 + 𝛼  2𝜏− 1 𝑛 − 1  𝑎𝑛,2  ≤ 2𝛼𝜏.

∞

𝑛=1

 

By Theorem 1, 𝑤 ∈ 𝒜 𝜆, 𝜇1, 𝛼, 𝜏 . □ 



W. G. Atshan and A. H. Abada                                                                                                                

10 
 

Theorem 7: Let   

𝑓𝑗  𝑧 = 𝑧−1 −  𝑎𝑛,𝑗 𝑧
𝑛 ∈ 𝒜 𝜆,𝜇1, 𝛼, 𝜏  ,   𝑗 ∈ {1, 2,… , 𝑡}

∞

𝑛=1

 𝑎𝑛𝑑  0 < 𝑘𝑗 < 1 

such that 

 𝑘𝑗 = 1

𝑡

𝑗 =1

 .                                                                         

Then the function 𝐻 defined  

𝐻 𝑧 =  𝑘𝑗

𝑡

𝑗 =1

𝑓𝑗  𝑧                                                          

is also in the class  𝒜 𝜆, 𝜇1, 𝛼, 𝜏 . 

Proof:  For every  𝑗 ∈ {1, 2, … , 𝑡}, we obtain  

 
𝑛  𝑛 + 1 + 𝛼  2𝜏 − 1 𝑛 − 1  

2𝛼𝜏
Ø 𝜆, 𝜇1, 𝑛 

∞

𝑛=1

𝑎𝑛 ,𝑗 ≤ 1 . 

Since  

𝐻 𝑧 =  𝑘𝑗

𝑡

𝑗 =1

𝑓𝑗  𝑧 =  𝑘𝑗

𝑡

𝑗 =1

 𝑧−1 −  𝑎𝑛 ,𝑗𝑧
𝑛

∞

𝑛 =1

 = 𝑧−1 −    𝑘𝑗

𝑡

𝑗 =1

𝑎𝑛,𝑗 𝑧𝑛 .

∞

𝑛=1

 

Therefore,  

 
𝑛  𝑛 + 1 + 𝛼  2𝜏 − 1 𝑛 − 1  

2𝛼𝜏
Ø 𝜆, 𝜇1, 𝑛 

∞

𝑛=1

  𝑘𝑗

𝑡

𝑗 =1

𝑎𝑛,𝑗          

  =  𝑘𝑗

𝑡

𝑗 =1

  
𝑛  𝑛 + 1 + 𝛼  2𝜏− 1 𝑛 − 1  

2𝛼𝜏
Ø 𝜆, 𝜇1,𝑛 𝑎𝑛 ,𝑗

∞

𝑛=1

                 

≤  𝑘𝑗

𝑡

𝑗 =1

= 1.                                                                                                            

Hence 𝐻 ∈ 𝒜 𝜆, 𝜇1, 𝛼, 𝜏  and the proof is complete. 
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7. Integral operator: 

Theorem 8:  Let  𝑓 ∈ 𝒜 𝜆,𝜇1, 𝛼, 𝜏 . Then the integral operator  

𝐹 𝑧 = 𝑐  𝑢𝑐  𝑓 𝑢𝑧  𝑑𝑢 ,  0 < 𝑢 ≤ 1,0 < 𝑐 < ∞ 
1

0

 

Is also in the class 𝒜 𝜆, 𝜇1,𝛾, 𝜏 , where 

𝛾 =
𝑐𝛼(𝑛 + 1)

 𝑛 + 𝑐 + 1   𝑛 + 1 + 𝛼  2𝜏 − 1 𝑛 − 1  − 𝑐𝛼  2𝜏 − 1 𝑛 − 1 
.              (25) 

Proof: Let  𝑓 ∈ 𝒜 𝜆, 𝜇1,𝛼, 𝜏 , we have 

𝐹 𝑧 = 𝑐  𝑢𝑐  𝑓 𝑢𝑧  𝑑𝑢 = 𝑐   𝑢𝑐−1𝑧−1 −  𝑢𝑛 +𝑐𝑎𝑛𝑧𝑛

∞

𝑛=1

 
1

0

1

0

𝑑𝑢 

                              = 𝑧−1 −  
𝑐

𝑛 + 𝑐 + 1

∞

𝑛=1

𝑎𝑛𝑧𝑛 . 

It is sufficient to show that 

          
𝑐 𝑛  𝑛 + 1 + 𝛾  2𝜏 − 1 𝑛 − 1  

2𝛾𝜏(𝑛 + 𝑐 + 1)
Ø 𝜆,𝜇1, 𝑛 

∞

𝑛=1

𝑎𝑛 ≤ 1,                                  (26) 

since  𝑓 ∈ 𝒜 𝜆, 𝜇
1
, 𝛼, 𝜏 , we have 

 
𝑛  𝑛 + 1 + 𝛼  2𝜏− 1 𝑛 − 1  

2𝛼𝜏
Ø 𝜆,𝜇1, 𝑛 

∞

𝑛 =1

𝑎𝑛 ≤ 1 .                                    

Note that (26) it satisfied if  

       
𝑐 𝑛  𝑛 + 1 + 𝛾  2𝜏 − 1 𝑛 − 1  

2𝛾𝜏(𝑛 + 𝑐 + 1)
Ø 𝜆, 𝜇1, 𝑛  

≤
𝑛  𝑛 + 1 + 𝛼  2𝜏− 1 𝑛 − 1  

2𝛼𝜏
Ø 𝜆, 𝜇1,𝑛  . 

Rewriting the inequality, we have 

          𝑐𝛼  𝑛 + 1 + 𝛾  2𝜏 − 1 𝑛 − 1  ≤  𝑛 + 𝑐 + 1 𝛾  𝑛 + 1 + 𝛼  2𝜏 − 1 𝑛 − 1   
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solving for  𝛾, we have 

𝛾 ≤
𝑐𝛼(𝑛 + 1)

 𝑛 + 𝑐 + 1   𝑛 + 1 + 𝛼  2𝜏− 1 𝑛 − 1  − 𝑐𝛼  2𝜏− 1 𝑛 − 1 
 .                       (27) 

Since the right hand side of (27) is an increasing function of  𝑛 . □ 

8. Neighborhood property: 

   The concept of neighborhood of analytic function was first introduced by 

Goodman [8] and Ruscheweyh [12] investigated this concept for the elements 

of several famous subclasses of analytic functions and Altintas and Owa [1] 

considered for a certain family of analytic functions with negative 

coefficients, also Liu and Srivastava [10], Atshan [2], Atshan and Buti [3], 

Atshan and Sulman [6] and Atshan and Joudah [4] extended this concept for a 

certain subclass of meromorphically multivalent or univalent functions.   

We define the  𝑛, 𝛿 −neighborhood of a function 𝑓 ∈ 𝑆(𝑛) by  

𝑁𝑛,𝛿  𝑓 =  𝑔 ∈ 𝑆 𝑛 :𝑔 𝑧 = 𝑧−1 −  𝑏𝑛𝑧𝑛  𝑎𝑛𝑑  𝑛 𝑎𝑛 − 𝑏𝑛  ≤

∞

𝑛 =1

∞

𝑛=1

𝛿, 0 ≤ 𝛿 < 1  . (28) 

For the identity function  𝑒 𝑧 = 𝑧, we have  

𝑁𝑛,𝛿  𝑒 =  𝑔 ∈ 𝑆 𝑛 :𝑔 𝑧 = 𝑧−1 −  𝑏𝑛𝑧𝑛   𝑎𝑛𝑑   𝑛 𝑏𝑛  ≤

∞

𝑛 =1

∞

𝑛=1

𝛿 .                              

Definition 2: A function 𝑓 ∈ 𝑆(𝑛) defined by (1) is said to be in the 

class 𝒜𝜎 𝜆, 𝜇1, 𝛼, 𝜏  if there exists a function  𝑔 ∈ 𝒜 𝜆, 𝜇1, 𝛼, 𝜏  such that 

           
𝑓(𝑧)

𝑔(𝑧)
− 1 < 1 − 𝜎,    𝑧 ∈ 𝑈, 0 ≤ 𝜎 < 1 .                                                    (29) 

Theorem 9:  Let 𝑔 ∈ 𝒜𝜎 𝜆, 𝜇1,𝛼, 𝜏  and  

    𝜎 = 1 −
𝛿Ø 𝜆, 𝜇1, 1  1 + 𝛼 𝜏 − 1  

Ø 𝜆, 𝜇1,1  1 + 𝛼 𝜏 − 1  − 𝛼𝜏
 .                                                (30) 

Then   𝑁𝑛,𝛿  𝑔 ⊂ 𝒜𝜎  𝜆, 𝜇1,𝛼, 𝜏 . 
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Proof:  Assume that 𝑓 ∈ 𝑁𝑛,𝛿  𝑔 , then we get from (28) that  

 𝑛 𝑎𝑛 − 𝑏𝑛  ≤

∞

𝑛 =1

𝛿,                    

which implies the coefficient inequality 

   𝑎𝑛 − 𝑏𝑛  ≤

∞

𝑛=1

𝛿,  𝑛 ∈ ℕ .                                                      (31) 

since 𝑔 ∈ 𝒜 𝜆,𝜇
1
, 𝛼, 𝜏 , we have from Theorem 1  

       𝑏𝑛 ≤
𝛼𝜏

Ø 𝜆, 𝜇1,1  1 + 𝛼 𝜏 − 1  
   ,       

∞

𝑛=1

 

so that 

 
𝑓(𝑧)

𝑔(𝑧)
− 1 ≤   

n 1





  𝑎𝑛 − 𝑏𝑛  

1 −
n 1





 𝑏𝑛

  ≤
𝛿Ø 𝜆, 𝜇1, 1  1 + 𝛼 𝜏 − 1  

Ø 𝜆, 𝜇1,1  1 + 𝛼 𝜏 − 1  − 𝛼𝜏
= 1 − 𝜎. 

Thus, by Definition 2,  𝑓 ∈ 𝒜𝜎 𝜆, 𝜇1, 𝛼, 𝜏  for 𝜎 given by (30). □ 
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