An Equation Related To Jordan *-Centralizers

A.H.Majeed
Department of mathematics, college of science, University of Baghdad

Mail: ahmajeed6@yahoo.com

A.A.ALTAY
Department of mathematics, college of science, University of Baghdad Mail: ali_abd335@yahoo.com

كلية (لعلوم - جامعة بغذاد - العراق

Abstract

Let R be a ${ }^{*}$-ring, an additive mapping $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ is called A left (right) Jordan ${ }^{*}$ centralizer of a *-ring R if satisfies $\mathrm{T}\left(x^{2}\right)=\mathrm{T}(x) x^{*}\left(\mathrm{~T}\left(x^{2}\right)=x * \mathrm{~T}(x)\right)$ for all $x \in \mathrm{R}$. A Jordan *-centralizer of R is an additive mapping which is both left and right Jordan *-centralizer. The purpose of this paper is to prove the result concerning Jordan *-centralizer. The result which we refer state as follows: Let R be a 2-torsion free semiprime *-ring and let $\mathrm{T}: \mathrm{R}$ $\rightarrow \mathrm{R}$ be an additive mapping such that $2 \mathrm{~T}\left(x^{2}\right)=\mathrm{T}(x) x^{*}+x^{*} \mathrm{~T}(x)$ holds for all $x \in \mathrm{R}$. In this case, T is a Jordan *-centralizer : *جوردان اليسرى واليمنى, في هذا البحث سنبر هن الاتي: لتكن R حلة_* شبه أوليه طلبقة الالتواء من النمط تمركزات-* جوردان .

1. Introduction

Throughout, R will represent an associative ring with center $\mathrm{Z}(\mathrm{R})$. A ring R is n torsion free, if $n x=0, x \in \mathrm{R}$ implies $x=0$, where n is a positive integer. Recall that R is prime if $a \mathrm{R} b=(0)$ implies $a=0$ or $b=0$, and semiprime if $a \mathrm{R} a=(0)$ implies $a=0$. An additive mapping $x \rightarrow x^{*}$ on a ring R is called an involution if $(x y)^{*}=y^{*} x^{*}$ and $(x)^{* *}=x$ for all $x, y \in \mathrm{R}$. A ring equipped with an involution is called ${ }^{*}$-ring (see [1]). As usual the commutator $x y-y x$ will be denoted by $[x, y]$. We shall use basic commutator identities
$[x y, z]=[x, z] y+x[y, z]$ and $[x, y z]=[x, y] z+y[x, z]$ for all $x, y, z \in \mathrm{R}$, (see [1, P.2]). Also we write $x \mathrm{o} y=x y+y x$ for all $x, y \in \mathrm{R}$ (see [1]). An additive mapping $\mathrm{d}: \mathrm{R} \rightarrow \mathrm{R}$ is called a derivation if $\mathrm{d}(x y)=\mathrm{d}(x) y+x \mathrm{~d}(y)$ holds for all pairs $x, y \in \mathrm{R}$, and is called a Jordan derivation in case $\mathrm{d}\left(x^{2}\right)=\mathrm{d}(x) x+x \mathrm{~d}(x)$ is fulfilled for all $x \in \mathrm{R}$ (see [2]). Every derivation is a Jordan derivation, but the converse is in general not true. A classical result of Herstein [3] asserts that every Jordan derivation on a prime ring of characteristic different from 2 is a derivation. Cusack [4] generalized Herstein's theorem to 2-torsion free semiprime ring. A left (right) centralizer of R is an additive mapping $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ which satisfies $\mathrm{T}(x y)=\mathrm{T}(x) y(\mathrm{~T}(x y)=x \mathrm{~T}(y))$ for all $x, y \in \mathrm{R}$. A centralizer of R is an additive mapping which is both left and right centralizer. A left (right) Jordan centralizer of R is an additive mapping $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ which satisfies $\mathrm{T}\left(x^{2}\right)=\mathrm{T}(x) x\left(\mathrm{~T}\left(x^{2}\right)=x \mathrm{~T}(x)\right)$ for all $x \in \mathrm{R}$. A Jordan centralizer of R is an additive mapping which is both left and right Jordan centralizer (see [5,6,7, and 8]). Every centralizer is a Jordan centralizer. B. Zalar [8] proved the converse when R is 2 - torsion free semiprime ring. Inspired by the above definition we define. A left (right) reverse *-centralizer of a *-ring R is an additive mapping $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ which satisfies $\mathrm{T}(y x)=\mathrm{T}(x) y^{*}(\mathrm{~T}(y x)=x * \mathrm{~T}(y))$ for all $x, y \in \mathrm{R}$. A reverse *-centralizer of R is an additive mapping which is both left and right reverse *- $^{\text {- }}$ centralizer. A left (right) Jordan *-centralizer of R is an additive mapping $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ which satisfies $\mathrm{T}\left(x^{2}\right)=\mathrm{T}(x) x^{*}\left(\mathrm{~T}\left(x^{2}\right)=x^{*} \mathrm{~T}(x)\right)$ for all $x \in \mathrm{R}$. A Jordan *-centralizer of R is an additive mapping which is both left and right Jordan *-centralizer. Every reverse ${ }^{*}$ centralizer is a Jordan *-centralizer. In this work we will study an Identity on a Jordan *centralizers of semiprime *-rings. We will prove in case $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ be an additive mapping, satisfies $2 \mathrm{~T}\left(x^{2}\right)=\mathrm{T}(x) x^{*}+x^{*} \mathrm{~T}(x)$ holds for all $x \in \mathrm{R}$, where R be a 2-torsion free semiprime *-ring, then T is a Jordan *-centralizers.

2. The Main Results

If $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ is a Jordan *-centralizer, where R is an arbitrary *-ring, then T satisfies the relation $2 \mathrm{~T}\left(x^{2}\right)=\mathrm{T}(x) x^{*}+x^{*} \mathrm{~T}(x)$ for all $x \in \mathrm{R}$. It seems natural to ask whether the converse is true. More precisely, we are asking whether an additive mapping T on a *ring R satisfying $2 \mathrm{~T}\left(x^{2}\right)=\mathrm{T}(x) x^{*}+x^{*} \mathrm{~T}(x)$ for all $x \in \mathrm{R}$, is a Jordan *-centralizer. It is our aim in this paper to prove that the answer is affirmative in case R is a 2-torsion free semiprime ${ }^{*}$-ring.

Theorem 2.1. Let R be a 2-torsion free semiprime *-ring and let $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ be an additive mapping such that $2 \mathrm{~T}\left(x^{2}\right)=\mathrm{T}(x) x^{*}+x^{*} \mathrm{~T}(x)$ holds for all $x \in \mathrm{R}$. In this case T is a Jordan *-centralizer.

For the proof of the above theorem we shall need the following.

Lemma 2.2. [6]. Let R be a semiprime ring. Suppose that the relation $a x b+b x c=0$ holds for all $x \in \mathrm{R}$ and some $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$. In this case $(a+c) x b=0$ is satisfied for all $x \in \mathrm{R}$.

Proof of Theorem 2.1: We have

$$
\begin{equation*}
2 \mathrm{~T}\left(x^{2}\right)=\mathrm{T}(x) x^{*}+x^{*} \mathrm{~T}(x) \quad \text { for all } x \in \mathrm{R}, \tag{1}
\end{equation*}
$$

We intend to prove the relation

$$
\begin{equation*}
\left[\mathrm{T}(x), x^{*}\right]=0 \text { for all } x \in \mathrm{R} \tag{2}
\end{equation*}
$$

In order to achieve this goal we shall first prove a weaker result that T satisfies the relation

$$
\begin{equation*}
\left[\mathrm{T}(x), x^{*^{2}}\right]=0 \quad \text { for all } x \in \mathrm{R} \tag{3}
\end{equation*}
$$

Since the above relation can be written in the form $\left[\mathrm{T}(x), x^{*}\right] x^{*}+x^{*}\left[\mathrm{~T}(x), x^{*}\right]=0$, it is obvious that T satisfies the relation (3) if T is satisfies (2).

Putting in the relation (1) $x^{*}+y^{*}$ for x one obtains

$$
\begin{equation*}
2 \mathrm{~T}\left((x y+y x)^{*}\right)=\mathrm{T}\left(x^{*}\right) y+x \mathrm{~T}\left(y^{*}\right)+\mathrm{T}\left(y^{*}\right) x+y \mathrm{~T}\left(x^{*}\right) \quad \text { for all } x, y \in \mathrm{R} . \tag{4}
\end{equation*}
$$

Our next step is to prove the relation

$$
\begin{array}{r}
8 \mathrm{~T}(x y x)=\mathrm{T}(x)\left((y x)^{*}+3(x y)^{*}\right)+\left((x y)^{*}+3(y x)^{*}\right) \mathrm{T}(x)+2 x^{*} \mathrm{~T}(y) x^{*} \\
-x^{* 2} \mathrm{~T}(y)-\mathrm{T}(y) x^{*^{2}} \quad \text { for all } x, y \in \mathrm{R} \tag{5}
\end{array}
$$

For this purpose, we put in the relation (4) $2(x y+y x)$ for y, then using (4) we obtain

$$
\begin{gathered}
4 \mathrm{~T}\left((x(x y+y x)+(x y+y x) x)^{*}\right)=2 \mathrm{~T}\left(x^{*}\right)(x y+y x)+2 x \mathrm{~T}\left((x y+y x)^{*}\right)+2 \mathrm{~T}\left((x y+y x)^{*}\right) x+2(x y+ \\
y x) \mathrm{T}\left(x^{*}\right)=2 \mathrm{~T}\left(x^{*}\right)(x y+y x)+x \mathrm{~T}\left(x^{*}\right) y+x^{2} \mathrm{~T}\left(y^{*}\right)+x \mathrm{~T}\left(y^{*}\right) x+(x y) \mathrm{T}\left(x^{*}\right)+\mathrm{T}\left(x^{*}\right)(y x)+ \\
x \mathrm{~T}\left(y^{*}\right) x+\mathrm{T}\left(y^{*}\right) x^{2}+y \mathrm{~T}\left(x^{*}\right) x+2(x y+y x) \mathrm{T}\left(x^{*}\right)
\end{gathered}
$$

Thus, we have

$$
\begin{gather*}
4 \mathrm{~T}\left((x(x y+y x)+(x y+y x) x)^{*}\right)=\mathrm{T}\left(x^{*}\right)(2 x y+3 y x)+(3 x y+2 y x) \mathrm{T}\left(x^{*}\right)+ \\
x \mathrm{~T}\left(x^{*}\right) y+y \mathrm{~T}\left(x^{*}\right) x+2 x \mathrm{~T}\left(y^{*}\right) x+x^{2} \mathrm{~T}\left(y^{*}\right) \\
+\mathrm{T}\left(y^{*}\right) x^{2} \quad \text { for all } x, y \in \mathrm{R}, \tag{6}
\end{gather*}
$$

On the other hand, using (4) and (1), we obtain

$$
\begin{gathered}
4 \mathrm{~T}\left((x(x y+y x)+(x y+y x) x)^{*}\right)=4 \mathrm{~T}\left(\left(x^{2} y+y x^{2}\right)^{*}\right)+8 \mathrm{~T}\left((x y x)^{*}\right)=2 \mathrm{~T}\left(x^{* 2}\right) y+2 x^{2} \mathrm{~T}\left(y^{*}\right)+2 \mathrm{~T}\left(y^{*}\right) x^{2}+2 y \\
\mathrm{~T}\left(x^{*} *^{2}\right)+8 \mathrm{~T}\left((x y x)^{*}\right)=\mathrm{T}\left(x^{*}\right)(x y)+x \mathrm{~T}\left(x^{*}\right) y+2 x^{2} \mathrm{~T}\left(y^{*}\right)+2 \mathrm{~T}\left(y^{*}\right) x^{2}+ \\
y \mathrm{~T}\left(x^{*}\right) x+(y x) \mathrm{T}\left(x^{*}\right)+8 \mathrm{~T}\left((x y x)^{*}\right)
\end{gathered}
$$

By comparing (6) with (7) we arrive at (5). Let us prove the relation

$$
\begin{gather*}
\mathrm{T}(x)\left(x y x-2 y x^{2}-2 x^{2} y\right)^{*}+\left(x y x-2 x^{2} y-2 y x^{2}\right) * \mathrm{~T}(x)+x^{*} \mathrm{~T}(x)(x y+y x)^{*}+(x y+y x)^{*} \\
\mathrm{~T}(x) x^{*}+x^{*^{2}} \mathrm{~T}(x) y^{*}+y^{*} \mathrm{~T}(x) x^{* 2}=0 \quad \text { for all } x, y \in \mathrm{R} . \tag{8}
\end{gather*}
$$

Putting in (4) $8(x y x)^{*}$ for y^{*} and x^{*} for x using (5), we obtain

$$
\begin{gathered}
16 \mathrm{~T}\left(x^{2} y x+x y x^{2}\right)=8 \mathrm{~T}(x)(x y x)^{*}+8 x * \mathrm{~T}(x y x)+8 \mathrm{~T}(x y x) x^{*}+8(x y x) * \mathrm{~T}(x)= \\
8 \mathrm{~T}(x)(x y x) *+x * \mathrm{~T}(x)(y x+3 x y) *+\left(x y x+3 y x^{2}\right) * \mathrm{~T}(x)+2 x^{* 2} \mathrm{~T}(y) x^{*}-x *^{3} \mathrm{~T}(y)-x * \mathrm{~T}(y) x^{*^{2}+} \\
\mathrm{T}(x)\left(x y x+3 x^{2} y\right) *+(x y+3 y x) * \mathrm{~T}(x) x *+2 x * \mathrm{~T}(y) x^{*}-x^{*} *^{2} \mathrm{~T}(y) x^{*}-\mathrm{T}(y) x *^{* 3}+8(x y x) * \mathrm{~T}(x)
\end{gathered}
$$

We have, therefore

$$
\begin{gather*}
16 \mathrm{~T}\left(x^{2} y x+x y x^{2}\right)=\mathrm{T}(x)\left(9 x y x+3 x^{2} y\right) *+\left(9 x y x+3 \mathrm{y} x^{2}\right) * \mathrm{~T}(x)+x * \mathrm{~T}(x) \\
(y x+3 x y)^{*}+(x y+3 y x) * \mathrm{~T}(x) x^{*}+x^{*^{2}} \mathrm{~T}(y) x^{*}+x^{*} \mathrm{~T}(y) x^{*^{2}}-\mathrm{T}(y) x^{*^{3}} \\
-x^{* 3} \mathrm{~T}(y) \quad \text { for all } x, y \in \mathrm{R} . \tag{9}
\end{gather*}
$$

On the other hand, we obtain first using (5) and then after collecting some terms using (4)

We have, therefore

$$
\begin{array}{r}
16 \mathrm{~T}\left(x^{2} y x+x y x^{2}\right)=\mathrm{T}(x)\left(5 x^{2} y+2 y x^{2}+8 x y x\right)^{*}+\left(5 y x^{2}+2 x^{2} y+8 x y x\right)^{*} \\
\mathrm{~T}(x)+2 x * \mathrm{~T}(x)(x y) *+2(y x) * \mathrm{~T}(x) x^{*}+x^{*^{2}} \mathrm{~T}(y) x *+x * \mathrm{~T}(y) x^{*^{2}-x *^{2}} \mathrm{~T}(x) y^{*}-y * \mathrm{~T}(x) x *^{*^{2}-x *^{*} \mathrm{~T}(y)-} \\
\mathrm{T}(y) x^{*^{3}} \tag{10}
\end{array}
$$

By comparing (9) with (10), we obtain (8). Replacing in (8) y by $x y$, we obtain

$$
\mathrm{T}(x)\left(x^{2} y x-2 x y x^{2}-2 x^{3} y\right) *+\left(x^{2} y x-2 x^{3} y-2 x y x^{2}\right) * \mathrm{~T}(x)+x^{*} \mathrm{~T}(x)\left(x y x+x^{2} y\right)^{*}+\quad\left(x y x+x^{2} y\right) * \mathrm{~T}(x)
$$

$$
\begin{equation*}
x^{*}+x^{*^{2}} \mathrm{~T}(x)(x y)^{*}+(x y)^{*} \mathrm{~T}(x) x^{*^{2}}=0 \quad \text { for all } x, y \in \mathrm{R} \tag{11}
\end{equation*}
$$

Right multiplication of (8) by $x *$ gives

$$
\begin{array}{r}
\mathrm{T}(x)\left(x^{2} y x-2 x y x^{2}-2 x^{3} y\right)^{*}+\left(x y x-2 x^{2} y-2 y x^{2}\right) * \mathrm{~T}(x) x^{*}+x^{*} \mathrm{~T}(x) \\
\left(x y x+x^{2} y\right)^{*}+(x y+y x)^{*} \mathrm{~T}(x) x^{*^{2}+x^{* 2} \mathrm{~T}(x)(x y) *+y^{*} \mathrm{~T}(x) x^{*^{3}}} \\
=0 \text { for all } x, y \in \mathrm{R} \tag{12}
\end{array}
$$

$$
\begin{aligned}
& 16 \mathrm{~T}\left(x^{2} y x+x y x^{2}\right)=16 \mathrm{~T}(x(x y) x)+16 \mathrm{~T}(x(y x) x)=2 \mathrm{~T}(x)\left(3 x^{2} y+x y x\right)^{*}+2\left(3 x y x+x^{2} y\right) * \\
& \mathrm{~T}(x)+4 x * \mathrm{~T}(x y) x^{*}-2 x^{* 2} \mathrm{~T}(x y)-2 \mathrm{~T}(x y) x^{* 2}+2 \mathrm{~T}(x)\left(3 x y x+y x^{2}\right) *+ \\
& 2\left(3 y x^{2}+x y x\right) * \mathrm{~T}(x)+4 x * \mathrm{~T}(y x) x^{*}-2 x^{*^{2}} \mathrm{~T}(y x)-2 \mathrm{~T}(y x) x^{*^{2}}= \\
& \mathrm{T}(x)\left(6 x^{2} y+2 y x^{2}+8 x y x\right) *+\left(8 x y x+6 y x^{2}+2 x^{2} y\right) * \mathrm{~T}(x)+4 x * \mathrm{~T}(x y+y x) x^{*}-2 x *^{2} \mathrm{~T}(x y+y x)- \\
& 2 \mathrm{~T}(x y+y x) x^{*^{2}}=\mathrm{T}(x)\left(6 x^{2} y+2 y x^{2}+8 x y x\right) *+\left(8 x y x+6 y x^{2}+2 x^{2} y\right) * \mathrm{~T}(x)+2 x^{*} \mathrm{~T}(x)(x y)^{*}+2 x^{* 2} \\
& \mathrm{~T}(y) x^{*}+2 x^{*} \mathrm{~T}(y) x^{*^{2}}+2(y x) * \mathrm{~T}(x) x^{*}-x^{*^{2}} \mathrm{~T}(x) y^{*}-x^{* 3} \mathrm{~T}(y)-x^{*^{2}} \mathrm{~T}(y) x^{*}-\left(y x^{2}\right) * \mathrm{~T}(x)- \\
& \mathrm{T}(x)\left(x^{2} y\right) *-x * \mathrm{~T}(y) x^{* 2} \\
& -\mathrm{T}(y) x^{*^{3}}-y * \mathrm{~T}(x) x *^{2} \quad \text { for all } x, y \in \mathrm{R} \text {, }
\end{aligned}
$$

Subtracting (12) from (11), we obtain

$$
\begin{gathered}
(x y x) *\left[x^{*}, \mathrm{~T}(x)\right]+2\left(x^{2} y\right) *\left[\mathrm{~T}(x), x^{*}\right]+2\left(y x^{2}\right) *\left[\mathrm{~T}(x), x^{*}\right]+(x y) *\left[x^{*}, \mathrm{~T}(x)\right] x^{*}+ \\
(y x) *\left[x^{*}, \mathrm{~T}(x)\right] x^{*}+y^{*}\left[x^{*}, \mathrm{~T}(x)\right] x^{* 2}=0, \text { for all } x, y \in \mathrm{R} .
\end{gathered}
$$

This reduces after collecting the first and the five terms together to

$$
\begin{gather*}
(y x)^{*}\left[x^{*}, \mathrm{~T}(x)\right]+2\left(x^{2} y\right) *\left[\mathrm{~T}(x), x^{*}\right]+2\left(y x^{2}\right) *\left[\mathrm{~T}(x), x^{*}\right]+(x y) *\left[x^{*}, \mathrm{~T}(x)\right] x^{*}+ \\
y^{*}\left[x^{*}, \mathrm{~T}(x)\right] x^{*^{2}}=0 \quad \text { for all } x, y \in \mathrm{R} . \tag{13}
\end{gather*}
$$

Substituting $y(\mathrm{~T}(x)) *$ for y in the above relation gives

$$
\begin{array}{r}
x * \mathrm{~T}(x) y *\left[x *^{2}, \mathrm{~T}(x)\right]+2 \mathrm{~T}(x)\left(x^{2} y\right) *[\mathrm{~T}(x), x *]+2 x^{* 2} \mathrm{~T}(x) y *\left[\mathrm{~T}(x), x^{*}\right]+\mathrm{T}(x) \\
(x y) *[x *, \mathrm{~T}(x)] x^{*}+\mathrm{T}(x) y *[x *, \mathrm{~T}(x)] x^{*^{2}}=0 \quad \text { for all } x, y \in \mathrm{R} . \tag{14}
\end{array}
$$

Left multiplication of (13) by $\mathrm{T}(x)$ leads to

$$
\begin{array}{r}
\mathrm{T}(x)(y x) *\left[x^{* 2}, \mathrm{~T}(x)\right]+2 \mathrm{~T}(x)\left(x^{2} y\right) *\left[\mathrm{~T}(x), x^{*}\right]+2 \mathrm{~T}(x)\left(y x^{2}\right) *\left[\mathrm{~T}(x), x^{*}\right]+\mathrm{T}(x) \\
(x y) *\left[x^{*}, \mathrm{~T}(x)\right] x^{*}+\mathrm{T}(x) y^{*}\left[x^{*}, \mathrm{~T}(x)\right] x^{* 2}=0, \text { for all } x, y \in \mathrm{R} \tag{15}
\end{array}
$$

Subtracting (15) from (14), we arrive at

$$
\left[\mathrm{T}(x), x^{*}\right] y *\left[\mathrm{~T}(x), x^{*}{ }^{2}\right]-2\left[\mathrm{~T}(x), x^{* 2}\right] y *\left[\mathrm{~T}(x), x^{*}\right]=0 \quad \text { for all } x, y \in \mathrm{R} .
$$

From the above relation and Lemma 1.2.3 it follows that

$$
\begin{equation*}
\left[\mathrm{T}(x), x^{*}\right] y *\left[\mathrm{~T}(x), x^{* 2}\right]=0 \quad \text { for all } x, y \in \mathrm{R} . \tag{16}
\end{equation*}
$$

From the above relation one obtains easily

$$
\left(\left[\mathrm{T}(x), x^{*}\right] x^{*}+x^{*}\left[\mathrm{~T}(x), x^{*}\right]\right) y^{*}\left[\mathrm{~T}(x), x^{* 2}\right]=0 \quad \text { for all } x, y \in \mathrm{R} .
$$

Replace y by y^{*}, we get

$$
\left[\mathrm{T}(x), x^{*^{2}}\right] y\left[\mathrm{~T}(x), x^{*^{2}}\right]=0, \quad \text { for all } x, y \in \mathrm{R} .
$$

This implies (3). Substitution $x+y$ for x in (3) gives

$$
\begin{equation*}
\left.\left[\mathrm{T}(x), y^{* 2}\right)\right]+\left[\mathrm{T}(y), x^{*^{2}}\right]+[\mathrm{T}(x),(x y+y x) *]+\left[\mathrm{T}(y),(x y+y x)^{*}\right]=0 \tag{17}
\end{equation*}
$$

Putting in the above relation $-x$ for x and comparing the relation so obtained with the above relation, we obtain

$$
\begin{equation*}
\left[\mathrm{T}(x),(x y+y x)^{*}\right]+\left[\mathrm{T}(y), x^{* 2}\right]=0 \quad \text { for all } x, y \in \mathrm{R} . \tag{18}
\end{equation*}
$$

Putting in the above relation $2(x y+y x)$ for y we obtain according to (4) and (3)

$$
\begin{array}{r}
0=2\left[\mathrm{~T}(x),\left(x^{2} y+y x^{2}+2 x y x\right)^{*}\right]+\left[\mathrm{T}(x) y^{*}+x^{*} \mathrm{~T}(y)+\mathrm{T}(y) x^{*}+y^{*} \mathrm{~T}(x), x^{* 2}\right]=2 x^{*^{2}}[\mathrm{~T}(x), \\
\left.y^{*}\right]+2\left[\mathrm{~T}(x), y^{*}\right] x^{* 2}+4\left[\mathrm{~T}(x),(x y x)^{*}\right]+\mathrm{T}(x)\left[y^{*}, x^{*^{2}}\right]+x^{*}\left[\mathrm{~T}(y), x^{* 2}\right]+ \\
{\left[\mathrm{T}(y), x^{* 2}\right] x^{*}+\left[y^{*}, x^{*}\right] \mathrm{T}(x)}
\end{array}
$$

Thus, we have

$$
\begin{align*}
& 2 x^{*^{2}}\left[\mathrm{~T}(x), y^{*}\right]+2\left[\mathrm{~T}(x), y^{*}\right] x^{*^{2}}+4\left[\mathrm{~T}(x),(x y x)^{*}\right]+\mathrm{T}(x)\left[y^{*}, x^{*^{2}}\right] \\
& \quad+\left[y^{*}, x^{*^{2}}\right] \mathrm{T}(x)+x^{*}\left[\mathrm{~T}(y), x^{*^{2}}\right]+\left[\mathrm{T}(y), x^{*^{2}}\right] x *=0 \quad \text { for all } x, y \in \mathrm{R} . \tag{19}
\end{align*}
$$

For $y=x$ the above relation reduces to

$$
x^{*^{2}}\left[\mathrm{~T}(x), x^{*}\right]+\left[\mathrm{T}(x), x^{*}\right] x *^{*^{2}}+2\left[\mathrm{~T}(x),\left(x^{2} x\right)^{*}\right]=0
$$

This gives

$$
x^{*^{2}}\left[\mathrm{~T}(x), x^{*}\right]+3\left[\mathrm{~T}(x), x^{*}\right] x *^{2}=0, \text { for all } x \in \mathrm{R} .
$$

According to the relation $\left[\mathrm{T}(x), x^{*}\right] x^{*}+x^{*}\left[\mathrm{~T}(x), x^{*}\right]=0$ (see (3)) one can replace in the above relation $x^{*^{2}}\left[\mathrm{~T}(x), x^{*}\right]$ by $\left[\mathrm{T}(x), x^{*}\right] x^{*^{2}}$, which gives

$$
\begin{equation*}
\left[\mathrm{T}(x), x^{*}\right] x^{*^{2}}=0, \text { for all } x \in \mathrm{R} \tag{20}
\end{equation*}
$$

And

$$
\begin{equation*}
x^{*^{2}}[\mathrm{~T}(x), x *]=0, \text { for all } x \in \mathrm{R} \tag{21}
\end{equation*}
$$

We have also,

$$
\begin{equation*}
x^{*}\left[\mathrm{~T}(x), x^{*}\right] x^{*}=0 \quad \text { for all } x \in \mathrm{R} \tag{22}
\end{equation*}
$$

Because of (18) one can replace in (19) [T $\left.(y), x^{* 2}\right]$ by $-\left[\mathrm{T}(x),(x y+y x)^{*}\right]$, which gives

$$
\begin{gathered}
0=2 x^{*^{2}}\left[\mathrm{~T}(x), y^{*}\right]+2\left[\mathrm{~T}(x), y^{*}\right] x^{*^{2}}+4\left[\mathrm{~T}(x),(x y x)^{*}\right]+\mathrm{T}(x)\left[y^{*}, x^{*^{2}}\right]+ \\
{\left[y^{*}, x^{*^{2}}\right] \mathrm{T}(x)-x^{*}\left[\mathrm{~T}(x),(x y+y x)^{*}\right]-\left[\mathrm{T}(x),(x y+y x)^{*}\right] x^{*}=2 x^{*^{2}}\left[\mathrm{~T}(x), y^{*}\right]} \\
2\left[\mathrm{~T}(x), y^{*}\right] x^{*^{2}}+4\left[\mathrm{~T}(x), x^{*}\right](x y) *+4 x^{*}\left[\mathrm{~T}(x), y^{*}\right] x^{*}+4(y x)^{*}\left[\mathrm{~T}(x), x^{*}\right] \\
+\mathrm{T}(x)\left[y^{*}, x^{*^{2}}\right]+\left[y^{*}, x^{* 2}\right] \mathrm{T}(x)-x^{*}\left[\mathrm{~T}(x), x^{*}\right] y^{*}-x^{*^{2}}\left[\mathrm{~T}(x), y^{*}\right]-x^{*} \\
{\left[\mathrm{~T}(x), y^{*}\right] x^{*}-(y x)^{*}\left[\mathrm{~T}(x), x^{*}\right]-\left[\mathrm{T}(x), x^{*}\right](x y)^{*}-x^{*}\left[\mathrm{~T}(x), y^{*}\right] x^{*}} \\
-\left[\mathrm{T}(x), y^{*}\right] x^{*^{2}}-y^{*}\left[\mathrm{~T}(x), x^{*}\right] x^{*}=0 \text { for all } x, y x \in \mathrm{R} .
\end{gathered}
$$

We have, therefore

$$
\begin{gather*}
x^{*^{2}}\left[\mathrm{~T}(x), y^{*}\right]+\left[\mathrm{T}(x), y^{*}\right] x^{* 2}+3\left[\mathrm{~T}(x), x^{*}\right](x y) *+3(y x) *\left[\mathrm{~T}(x), x^{*}\right] \\
+2 x^{*}\left[\mathrm{~T}(x), y^{*}\right] x^{*}+\mathrm{T}(x)\left[y^{*}, x^{*^{2}}\right]+\left[y^{*}, x^{* 2}\right] \mathrm{T}(x)-x^{*}\left[\mathrm{~T}(x), x^{*}\right] y^{*}- \\
y^{*}\left[\mathrm{~T}(x), x^{*}\right] x^{*}=0, \quad \text { for all } x, y \in \mathrm{R}, \tag{23}
\end{gather*}
$$

The substitution $x y$ for y in (23) gives

$$
\begin{gathered}
0=x^{* 2}[\mathrm{~T}(x),(x y) *]+[\mathrm{T}(x),(x y) *] x^{*^{2}}+3\left[\mathrm{~T}(x), x^{*}\right]\left(x^{2} y\right) *+3(x y x)^{*}\left[\mathrm{~T}(x), x^{*}\right]+ \\
2 x^{*}[\mathrm{~T}(x),(x y) *] x^{*}+\mathrm{T}(x)\left[(x y) *, x^{* 2}\right]+\left[(x y)^{*}, x^{* 2}\right] \mathrm{T}(x)-x^{*}\left[\mathrm{~T}(x), x^{*}\right](x y) *- \\
(x y) *\left[\mathrm{~T}(x), x^{*}\right] x^{*}=x^{* 2}\left[\mathrm{~T}(x), y^{*}\right] x^{*}+\left(y x^{2}\right) *\left[\mathrm{~T}(x), x^{*}\right]+y *\left[\mathrm{~T}(x), x^{*}\right] x^{* 2} \\
+\left[\mathrm{T}(x), y^{*}\right] x^{* 3}+3(x y x) *\left[\mathrm{~T}(x), x^{*}\right]+3\left[\mathrm{~T}(x), x^{*}\right]\left(x^{2} y\right) *+2 x^{*}\left[\mathrm{~T}(x), y^{*}\right] x^{* 2}+2(y x) *\left[\mathrm{~T}(x), x^{*}\right] x^{*}+ \\
\mathrm{T}(x)\left[y^{*}, x^{* 2}\right] x^{*}+\left[y^{*}, x^{* 2}\right] x * \mathrm{~T}(x)-x^{*}\left[\mathrm{~T}(x), x^{*}\right](x y)^{*}-\quad(x y) *\left[\mathrm{~T}(x), x^{*}\right] x^{*} \\
\text { for all } x, y \in \mathrm{R},
\end{gathered}
$$

Which reduces because of (20) and (21) to

$$
\begin{gathered}
x^{*^{2}}\left[\mathrm{~T}(x), y^{*}\right] x^{*}+\left(y x^{2}\right) *\left[\mathrm{~T}(x), x^{*}\right]+\left[\mathrm{T}(x), y^{*}\right] x^{* 3}+3(x y x)^{*}\left[\mathrm{~T}(x), x^{*}\right]+ \\
3\left[\mathrm{~T}(x), x^{*}\right]\left(x^{2} y\right) *+2 x^{*}\left[\mathrm{~T}(x), y^{*}\right] x^{* 2}+2(y x) *\left[\mathrm{~T}(x), x^{*}\right] x^{*}+\mathrm{T}(x)\left[y^{*}, x^{* 2}\right] x^{*}+
\end{gathered}
$$

$$
\begin{equation*}
\left[y^{*}, x^{* 2}\right] x * \mathrm{~T}(x)-x^{*}\left[\mathrm{~T}(x), x^{*}\right](x y)^{*}=0 \text { for all } x, y \in \mathrm{R} . \tag{24}
\end{equation*}
$$

Right multiplication of (23) by $x *$ gives

$$
\begin{gather*}
x^{*^{2}}\left[\mathrm{~T}(x), y^{*}\right] x^{*}+\left[\mathrm{T}(x), y^{*}\right] x^{* 3}+3\left[\mathrm{~T}(x), x^{*}\right]\left(x^{2} y\right) *+3(y x) *\left[\mathrm{~T}(x), x^{*}\right] x^{*}+2 x^{*} \\
{\left[\mathrm{~T}(x), y^{*}\right] x^{* 2}+\mathrm{T}(x)\left[y^{*}, x^{*^{2}}\right] x^{*}+\left[y^{*}, x^{* 2}\right] \mathrm{T}(x) x^{*}-x^{*}\left[\mathrm{~T}(x), x^{*}\right](x y)^{*}-} \\
y^{*}\left[\mathrm{~T}(x), x^{*}\right] x^{* 2}=0 \quad \text { for all } x, y \in \mathrm{R}, \tag{25}
\end{gather*}
$$

Subtracting (25) from (24), we obtain

$$
\begin{gathered}
{\left[y^{*}, x^{* 2}\right]\left[x^{*}, \mathrm{~T}(x)\right]+3(y x)\left[x^{*},\left[\mathrm{~T}(x), x^{*}\right]+2(y x)^{*}\left[\mathrm{~T}(x), x^{*}\right] x^{*}+y^{*}\left[\mathrm{~T}(x), x^{*}\right]\right.} \\
x^{*^{2}}+\left(y x^{2}\right) *\left[\mathrm{~T}(x), x^{*}\right]=0 \quad \text { for all } x, y \in \mathrm{R},
\end{gathered}
$$

Which reduces because of (21), (20) to

$$
2\left(y x^{2}\right) *\left[\mathrm{~T}(x), x^{*}\right]+3(y x)^{*}\left[x^{*},\left[\mathrm{~T}(x), x^{*}\right]+2(y x)^{*}\left[\mathrm{~T}(x), x^{*}\right] x^{*}=0 \quad \text { for all } x, y \in \mathrm{R} .\right.
$$

Replacing in the above relation $-\left[\mathrm{T}(x), x^{*}\right] x *$ by $x *\left[\mathrm{~T}(x), x^{*}\right]$, we obtain

$$
\left(y x^{2}\right) *\left[\mathrm{~T}(x), x^{*}\right]+2(y x)^{*}\left[\mathrm{~T}(x), x^{*}\right] x^{*}=0 \text { for all } x, y \in \mathrm{R} .
$$

Because of (3), (20), (21) and (22) the relation (13) reduces to $\left(y x^{2}\right) *\left[\mathrm{~T}(x), x^{*}\right]=0$ for all $x, y \in \mathrm{R}$, which gives together with the relation above $(x y x) *\left[\mathrm{~T}(x), x^{*}\right]=0$ for all $x, y \in \mathrm{R}$, whence it follows

$$
x *\left[\mathrm{~T}(x), x^{*}\right] y * x *\left[\mathrm{~T}(x), x^{*}\right]=0 \text { for all } x, y \in \mathrm{R}
$$

Thus, we have

$$
\begin{equation*}
x^{*}\left[\mathrm{~T}(x), x^{*}\right]=0, \text { for all } x \in \mathrm{R} \tag{26}
\end{equation*}
$$

Of course, we have also

$$
\begin{equation*}
\left[\mathrm{T}(x), x^{*}\right] x^{*}=0 \quad \text { for all } x \in \mathrm{R} \tag{27}
\end{equation*}
$$

From (26) one obtains (see the proof of (18))

$$
y^{*}\left[\mathrm{~T}(x), x^{*}\right]+x^{*}\left[\mathrm{~T}(x), y^{*}\right]+x^{*}\left[\mathrm{~T}(y), x^{*}\right]=0 \quad \text { for all } x, y \in \mathrm{R} .
$$

Left multiplication of the above relation by $\left[\mathrm{T}(x), x^{*}\right]$ gives because of (27)

$$
\left[\mathrm{T}(x), x^{*}\right] y^{*}\left[\mathrm{~T}(x), x^{*}\right]=0 \quad \text { for all } x, y \in \mathrm{R},
$$

Whence it follows

$$
\begin{equation*}
\left[\mathrm{T}(x), x^{*}\right]=0 \quad \text { for all } x \in \mathrm{R} \tag{28}
\end{equation*}
$$

Combining (28) with (1), we obtain

$$
\mathrm{T}\left(x^{2}\right)=\mathrm{T}(x) x^{*} \quad \text { for all } x \in \mathrm{R}
$$

And also

$$
\mathrm{T}\left(x^{2}\right)=x * \mathrm{~T}(x) \quad \text { for all } x \in \mathrm{R}
$$

Which means that T is a Jordan ${ }^{*}$-centralizer. The proof of the Theorem is complete.

If R is prime ring, we get the following corollary
Corollary 2.3. Let R be a 2 -torsion free prime *-ring and let $T: R \rightarrow R$ be an additive mapping such that $2 \mathrm{~T}\left(x^{2}\right)=\mathrm{T}(x) x^{*}+x^{*} \mathrm{~T}(x)$ holds for all $x \in \mathrm{R}$. In this case, T is a Jordan *-centralizer.

References

[1] I. N. Herstein: Topics in ring theory, University of Chicago Press, 1969.
[2] E.C .Posner : Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957) 10931100.
[3] I. N. Herstein: Jordan derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
[4] J. Cusack: Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324.
[5] J. Vukman: An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolinae 40 (1999), 447-456.
[6] J. Vukman: Centralizers on semiprime rings, Comment. Math. Univ. Carolinae 42 (2001), 237-245.
[7] J. Vukman and I. Kosi-Ulbl: On centralizers of semiprime rings, Aequationes Math. 66, 3 (2003) 277-283.
[8] B. Zalar: On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32 (1991), 609-614.

