Approximation of Functions by Means of the Modulus $\tau(f, \Delta)_{p,\mu}$

By

Sahib K. AL- Saidy, Zainab Esa Abdul Naby Al – Mustansiriya University / College of Science / Department of Mathematics E-mail: alsaidy_1951@yahoo.co.uk E-mail:esazainab@yahoo.com

 $au(f,\Delta)_{p,\mu}$. تقريب الدوال بواسطة معدل القياس

و. صاحب كحيط الساعدي و زينب عيسى عبد النبي الجامعة المستنصرية / كلية العلوم / فسم الرياضيات

الخلاص

في بحثنا استخدمنا بر هنتي وتني و رايز - تورن لإيجاد أفضل درجة تقريب للدوال بواسطة النماذج التكاملية في فضاء (X) .

ABSTRACT

In this paper, we are used Whitney's and Riesz–Torin Theorems to find the degree of best approximation of functions by means of the averaged modulus of smoothness in space $L_{p,\mu}(X)$.

INTRODUCTION

Let X = [a,b]; $a,b \in R$ (the set of all real numbers). Then we define the space of all bounded measurable functions f on X, by norm a.e.:

$$||f||_{p} = \left(\int_{a}^{b} |f(x)|^{p} d(x)\right)^{1/p} < \infty$$
, (1.1)

and denoted by $L_p(X)$, $(1 \le p < \infty)$, [1]. Also we denote by $L_{p,\mu}[a,b]$

 $(1 \le p < \infty)$, of the space of all bounded μ -measurable functions f on [a,b], and defined by:

$$\|f\|_{p,\mu} = \left(\int_{a}^{b} |f(x)|^{p} d\mu(x)\right)^{1/p} < \infty$$
(1.2)

where μ is the non-negative measure function on a countable set, [2]. For every function f we define the k- difference with step (h) at a point x as follows [3]:

$$\Delta_{h}^{k} f(x) = \sum_{m=0}^{k} \left(-1\right)^{m+k} {k \choose m} f(x+mh), \quad x, x+mh \in [a,b]$$
(1.3)

And the *kth* locally of smoothness for $f \in L_{\infty}[a,b]$, (the set of all essentially bounded functions on [a,b]) is defined by [4]:

$$w_{k}\left(f,\delta\right) = \sup_{|h| < \delta} \left\{ \left| \Delta_{h}^{k} f(x) \right| : \left|h\right| \le \delta, x, x + kh \in [a,b] \right\}$$
(1.4)

Also, for every bounded function f the following trivial estimate

holds: $w_k(f, [a, b]) \le 2^k ||f||_{C_{[a, b]}}$ (1.5)

where $C[a,b] = \max_{x \in [a,b]} |f(x)|$, [5].

$$\left| \Delta_{h}^{k} f(x) \right| = \left| \sum_{i=0}^{k} (-1)^{i+k} {k \choose i} f(x+ih) \right|$$
$$\leq \sum_{i=0}^{k} {k \choose i} \left\| f \right\|_{C_{[a,b]}} = 2^{k} \left\| f \right\|_{C_{[a,b]}}$$

Since

In [5] the anther proved if f is a measurable bounded function on [a,b], then: $w_k(f,\delta)_p \le \tau_k(f,\delta)_p \le w_k(f,\delta)(b-a)^{\frac{1}{p}}, \ (1 \le p < \infty)$ where

$$\tau_{k}(f,\delta)_{p} = \left\|w(f,\delta)\right\|_{p} = \left\|\sup_{|h|<\delta}\left\{\left|\Delta_{h}^{k}f(x)\right|:|h|\leq\delta, x, x+kh\in[a,b]\right\}\right\|_{p}$$

Also proved the following theorem which is now classical in approximation theory and numerical analysis. This theorem gives additional conditions which allow us to invert the above inequality. *Theorem 1*, [5]:

For each integer $n \ge 1$ there is a number W_n with the following property, for any interval Δ and for any continuous function f on Δ there is a polynomial P of degree at most n-1 such that

$$\left| f(x) - P(x) \right| \le W_n w_n(f, \Delta) , \ x \in \Delta$$
(1.6)

where W_n is called Whitney's constant, $\Delta = [a, b]$.

Definition (Riesz – Torin Theorem), [5]:

Let T be a linear operator from the spaces $L_p[a,b]$ in to the spaces $L_q[a,b]$, if there exists a constant k, for which

$$\|Tf(x)\|_{q[a,b]} \le k \|f(x)\|_{p[a,b]}$$
, $1 \le p < q < \infty$ (1.7)

For every function f in $L_p[a,b]$, we say that the operator T is of the type (p,q). The smallest number k with this property is called the (p,q)-norm of the operator T.

Theorem 2, [5]:

For each $n \in Z^+$, there is a number W_n and there is a polynomial p_n for each Lebesgue integral function f on [a,b], such that

$$\left| f - p_n \right| < W_n w_n (f, \Delta), \tag{1.8}$$

where W_n Whitney's constant, $\Delta = [a, b]$.

Lemma 1, [5]:

Let
$$L_n$$
 be a linear operator and $\sum_n = \{x_i : a = x_0 < \dots < x_{n+1} = b\}$. If
 $f \in M[a,b]$. Then $L_n(f) \in L_p[a,b]$, $(1 \le p \le \infty)$
and $||L_n f||_p \le K ||f||_{p\sum_n}$, (1.9)

where K is an absolute constant and M[a,b] the space of all measurable functions bounded on interval [a,b].

Lemma 2, [2]:

Let μ be a non – decreasing function on P, satisfying:

$$\mu(y) - \mu(x) = \text{Constant and} \quad 1
$$w_{\mu}(\delta) = \sup_{0 < y - x \le \delta} \left(\mu(y) - \mu(x) \right), \delta > 0 \text{ , and}$$
$$\left(\frac{1}{n} \sum_{k=0}^{n-1} \max_{x \in I_{k}} \left| P_{n} \right|^{p} \right)^{1/p} \le C(p) \left\| P_{n} \right\|_{p},$$$$

where P_n is an algebraic polynomial of degree at most n and

$$I_{k} = \left[\frac{k}{n}, \frac{k+1}{n}\right] \text{ Then } \|P_{n}\|_{p,\mu} \leq C(p) \left(nw_{\mu}\left(\frac{1}{n}\right)\right)^{1/p} \|P_{n}\|_{p}$$
(1.10)

Lemma 3, [2]:

Let f be a bounded μ -measurable function and $1 \le p < \infty$. Then

$$||f||_{p} \le C(p) ||f||_{p,\mu}$$
, (1.11)

where C(p) is a constant depends only on p.

2-Main Results

Now we are using the interpolation results of the Whitney's theorem and the Riesz- Torin theorem [4], [5] to obtain interpolation theorems which are using of the averaged modulus of smoothness.

Lemma 4:

Let f be a 2π -periodic bounded μ -measurable function then:

$$\tau_k(f,n\delta)_{p,\mu} \leq (2n)^{k+1} \tau_k(f,\delta)_{p,\mu} \quad , \ 1 \leq p < \infty$$

Proof:

We use the identity
$$\Delta_{nh}^{k} f(t) = \sum_{i=0}^{(n-1)} A_{i}^{n,k} \Delta_{h}^{k} f(t+ih)$$
 (2.1)

where $A_i^{n,k}$ are defined by

$$\left(1+t+\ldots+t^{n-1}\right)^{k} = \sum_{i=0}^{(n-1)k} A_{i}^{n,k} t^{i} = n^{k}$$
(2.2)

since $\tau_k (f, n\delta)_{p,\mu} = \|w_k (f, x, n\delta)\|_{p,\mu}$ we get $\tau_k (f, n\delta)_{p,\mu} \le \tau_k (f, [n]\delta)_{p,\mu}$

$$= \left\| \sup_{\|h\| \le \delta} \left[\left| \Delta_{[n]\delta}^{k} f(t) \right| : t, t + k[n]h \in \left[x - \frac{k[n]\delta}{2}, x + \frac{k[n]\delta}{2} \right] \cap [a,b] \right] \right\|_{p,\mu}$$

$$= \left\| \sup_{\|h\| \le \delta} \left[\left| \sum_{i=0}^{[n-1]k} A_{i}^{[n],k} \Delta_{[n]\delta}^{k} f(t+ih) \right| :$$

$$t + ih, t + ih + nh \in \left[x - \frac{k[n]\delta}{2}, x + \frac{k[n]\delta}{2} \right] \cap [a,b] \right] \right\|_{p,\mu}$$

$$w_{k}(f, x, n\delta) \le \sum_{i=0}^{(2n-1)k} A_{i}^{2n,k} \sum_{j=1}^{2n-1} w_{k}\left(f, x - (n-j)\frac{k\delta}{2}, \delta \right)$$
(2.3)

since,

$$t + ih, t + ih + nh \in \bigcup_{j=1}^{2(n)-1} \left[x - \frac{k[n]\delta}{2} + (j-1)\frac{k\delta}{2}, x + \frac{k[n]\delta}{2} + (j+1)\frac{k\delta}{2} \right]$$

So that by using definition of local modulus of smoothness and (2.2),(1.5) we obtain

$$\begin{split} \tau_{k}(f,n\delta)_{p,\mu} &\leq \left\| \sum_{i=0}^{(n-1)k} A_{i}^{[2n],k} \sum_{j=1}^{2n-1} w_{k} \left(f, x - (n-j) \frac{k\delta}{2}, \delta \right) \right\|_{p,\mu} \\ &\leq 2n^{k} \left[\int_{a}^{b} \left| \sum_{j=1}^{2n-1} w_{k} \left(f, x - (n-j) \frac{k\delta}{2}, \delta \right) \right|^{p} d_{\mu}(x) \right]^{1/p} \\ &\leq 2n^{k} \sum_{j=1}^{2n-1} \left[\int_{a}^{b} \left| w_{k} \left(f, x - (n-j) \frac{k\delta}{2}, \delta \right) \right|^{p} d_{\mu}(x) \right]^{1/p} \\ &\leq 2n^{k} \left(2n-1 \right) \left[\int_{a-(n-j)\frac{k\delta}{2}}^{b-(n-j)\frac{k\delta}{2}} \left| w_{k} \left(f, x, \delta \right) \right|^{p} d_{\mu}(x) \right]^{1/p} \\ &= 2n^{k} \left(2n-1 \right) \cdot \tau_{k} \left(f, \delta \right)_{p,\mu} \\ &= \left(2n^{k} \cdot 2n - 2n^{k} \right) \tau_{k} \left(f, \delta \right)_{p,\mu} \\ &= \left(2n^{k+1} - 2n^{k} \right) \tau_{k} \left(f, \delta \right)_{p,\mu} \\ &\leq 2n^{k+1} \tau_{k} \left(f, \delta \right)_{p,\mu} \end{split}$$

Lemma 5:

Let $\sum_{n=1}^{n} \{x_{i}, a = x_{0} < \ldots < x_{n+1} = b\}$ be a partition of the interval [a,b] into n+1 subintervals and let $k \ge 1$ be an integer .Using the notation $\Delta_{i} = |x_{i+1} - x_{i-1}|$, $i = 1, 2, \ldots, n$, $d_{n} = \max{\{\Delta_{i}, 1 \le i \le n\}}$

Then
$$\|w_k(f, x_i, 2h)\|_{p,\mu\sum} \le 2^{1/p+2(k+1)} \tau_k(f, h + \frac{d_n}{k})_{p,\mu}$$
 (2.4)

Proof:

From(1.9) and (1.10),(1.5) we have

$$\|w_{k}(f,x_{i},2h)\|_{p,\mu\sum} = \left\{\sum_{i=1}^{n} |w_{k}(f,x_{i},2h)|^{p} \Delta_{i}\right\}^{1/p}$$
$$= \left\{\sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i+1}} |w_{k}(f,x_{i},2h)|^{p} d_{\mu}(x_{i})\right\}^{1/p}$$

$$\leq 2^{1/p} c_1(p) \left\{ \sum_{i=1}^n \int_{x_{i-1}}^{x_{i+1}} \left| w_k(f, x, 2(h + \frac{d_n}{k})) \right|^p d(x) \right\}^{1/p} \\ \leq 2^{1/p} c_2(p) \tau_k(f, 2(h + \frac{d_n}{k}))_p \\ \leq 2^{1/p} c_3(p) \tau_k(f, 2(h + \frac{d_n}{k}))_{p,\mu} \\ \leq 2^{1/p+2(k+1)} c_3(p) \tau_k(f, \frac{d_n}{k})_{p,\mu} \qquad \Box$$

Now, the Whitney's theorem for $f \in L_{p,\mu}(\Delta)$ spaces, have been proved.

Theorem 2.1:

For each $n \in \mathbb{Z}^+$ there is a number W_n and there is a polynomial p_n for each Lebesgue Integral function f on [a,b] such that,

$$\|f - p_n\|_{p,\mu} \le W_n \tau_k (f, [a, b])_{p,\mu}$$
(2.5)

where W_n is Whitney's constant.

Proof:

Let $g = f d_{\mu}(x)$

From (1.8), (1.6), (1.11) and (1.4) there is a polynomial p_n of degree n-1 such that

$$|g - p_n| \leq W_n w_k (g, [a, b])$$

= $W_n \cdot \sup \left\{ \left| \Delta_h^k g(t) \right| : \left| h \right| \leq \delta, t, t + kh \in [a, b] \right\}, h > 0$

$$\|g - p_n\|_p \le W_n \|f - p_n\|_{p,\mu} = W_n \left(\int_{\Delta} |\sup \Delta_h^k f(t)|^p d_{\mu}(t) : t, t + kh \in [a, b] \right)^{1/p}$$

= $C(p) \tau_k (f, [a, b])_{p,\mu}$

We shall call the polynomial $p = p_n(f)$ for which theorem 2 is valid Whitney's polynomial for the function $f \in L_{p,\mu}$ of degree (n-1).

Theorem 2.2:

Let *L* be a bounded linear operator on $L_{p,\mu}[a,b]$ and let L(P) = P, for every polynomial $P \in H_{n-1}$, where H_{n-1} is the set of all algebraic polynomials of degree n-1. Then for every function $f \in L_{p,\mu}[a,b]$,

we have
$$||f - L(f)||_{p,\mu} \le C(p) W_n \tau_k \left(f, \frac{b-a}{n}\right)_{p,\mu}$$
 (2.6)

where W_n is Whitney's constant.

Proof:

Let $P_n(f)$ be polynomial for f of degree n-1. Then using (1.8), (1.10) and (1.11) we obtain $\|f - L(f)\|_{p,\mu} \le \|f - P_n(f)\|_{p,\mu} + \|P_n(f) - L(P_n(f)))\|_{p,\mu}$ $+ \|L(P_n(f)) - L(f)\|_{p,\mu}$ $\le \|f - P_n(f)\|_{p,\mu} + \|P_n(f) - L(P_n(f))\|_{p,\mu}$ $+ \|L\|_{p,\mu} \cdot \|f - P_n(f)\|_{p,\mu}$ $\le (1 + \|L\|_{p,\mu}) \|f - P_n(f)\|_{p,\mu} + \|P_n(f) - L(P_n(f))\|_{p,\mu}$ $\le C_1(p)(1 + \|L\|_p) \cdot \|f - P_n(f)\|_p$ $\le C_1(p)W_n(1 + \|L\|_p) w_k(f, [a, b])_p$ $\le C_2(p)W_n(1 + \|L\|_p) \tau_k(f, \frac{b-a}{n})_p$ $\le C_3(p)W_n(1 + \|L\|_{p,\mu}) \tau_k(f, \frac{b-a}{n})_{p,\mu}$

where $C_4(p) = C_3(p) (1 + ||L||_{p,\mu})$

Theorem 2.3:

Let *F* be a bounded linear functional on $L_{p,\mu}[a,b]$, let F(P) = 0for every $P \in H_{n-1}$. Then for every $f \in L_{p,\mu}[a,b]$,

$$\|F(f)\|_{p,\mu} \le M W_n \tau_k (f, b-a)_{p,\mu}$$
(2.7)

where M is a constant.

Proof:

By using (1.8), we have

$$\begin{split} F(f) \Big\|_{p,\mu} &\leq \| F(f-p) \|_{p,\mu} + \| F(p) \|_{p,\mu} \\ &= \| F(f-p) \|_{p,\mu} \\ &\leq \| F \|_{p,\mu} \cdot \| f-p \|_{p,\mu} \\ &\leq M W_n \ \tau_k \left(f \ [a,b] \right)_{p,\mu} & \sqcup \end{split}$$

Now, we shows Riesz – Torin Theorem in the spaces of all functions belongs to $L_{p,\mu}[a,b]$.

Theorem 2.4:

Let T be a linear operator from the spaces $L_{p,\mu}[a,b]$ into the spaces $L_{p,\mu}[a,b]$, if there exists a constant K, for which

$$\|Tf(x)\|_{q,\mu} \le K \|f(x)\|_{p,\mu}$$
 (2.8)

For every $f \in L_{p,\mu}[a,b]$, then the operator T is of type(p,q).

Proof:

By using (1.10), (1.7) and (1.11) we get

$$\begin{aligned} \|T_n f\|_{q,\mu} &\leq C_1(q) \|T_n f\|_q \leq K C_1(q) \|f\|_p \\ &= C_2(p) \|f\|_p \quad , \quad C_2(p) = K C_1(q) \\ &\leq K C_3(p) \|f\|_{p,\mu} \quad \sqcup \end{aligned}$$

Theorem 2.5:

Let L_n be a linear operator, If $f \in L_{p,\mu}[a,b]$, then $L_n(f) \in L_{p,\mu}[a,b], 1 \le p < \infty$ and $||L_n(f)||_{p,\mu} \le k ||f||_{p,\mu\sum_n}$ (2.9) where k is an absolute constant.

Proof:

By (1.9) and (1.11) we have

$$\begin{split} \left\| L_n f \right\|_{p,\mu} &\leq C_1(p) \left\| L_n f \right\|_p \\ &\leq C_2(p) \left\| f \right\|_p \\ &\leq C_3(p) \left\| f \right\|_{p,\mu\sum_n} \end{split}$$

CONCLUSIONS

- 1- The best approximation of bounded μ measurable function in $L_{p,\mu}$ spaces by using Whitney's constant have been found.
- 2- The best approximation of bounded μ measurable function in $L_{p,\mu}$ spaces by using Riesz Torin Theorem, have also been found.

References

- [1] Z. Ditzian (2007), "Polynomial Approximation and w^r_φ(f,t) Twenty Years Later, "Surveys in Approximation Thorey Volum 3, 2007, pp, 106-151.
- [2] A. H. Al Abdulla (2005), "On Equiapproximation of Bounded μ-Measurable Function in L_p(μ)-Spaces", Ph.D. Thesis, Baghdad University, Mathematical Department, College of Education (Ibn Al Haitham).
- [3] Radu Paltanea(2004), "Approximation Theory Using Positive Linear Oper ators ", Birkhauser Boston.Basel.Berlin. B. Sendov, V. A.
- [4] T.TUNC (2007), "On Whithney Constants for Differentiable Functions ", Methods Functional Analysis and Topology Vol.13, no. 1, pp.95-100.
- [5] Popov (1983), "The Averaged Moduli of moothness", Sofia.