Approximation of Functions by
 Means of the Modulus $\tau(f, \Delta)_{p, \mu}$

$B y$
Sahib K. AL-Saidy, Zainab Esa Abdul Naby Al-Mustansiriya University / College of Science
/ Department of Mathematics
E-mail: alsaidy_1951@yahoo.co.uk
E-mail:esazainab@yahoo.com
\[\begin{aligned} \& (نقريب الدوال بواسطة معدل (القياس
\& ه. هاحب كحيط الساعدي و زينب عيسى عبل النبي
\& (لجامعة المستنصرية // كلية العلوم // فسم الرياضيات \end{aligned} \]

في بحثنا استخدمنا بر هنتي وتني و رايز - تورن لإيجاد أفضل درجة تقريب .للاو ال بواسطة النماذج النكاملية في فضاء

ABSTRACT

In this paper, we are used Whitney's and Riesz-Torin Theorems to find the degree of best approximation of functions by means of the averaged modulus of smoothness in space $L_{p, \mu}(X)$.

INTRODUCTION

Let $X=[a, b] ; a, b \in R$ (the set of all real numbers). Then we define the space of all bounded measurable functions f on X, by norm a.e :

$$
\begin{equation*}
\|f\|_{p}=\left(\int_{a}^{b}|f(x)|^{p} d(x)\right)^{1 / p}<\infty \tag{1.1}
\end{equation*}
$$

and denoted by $L_{p}(X),(1 \leq p<\infty),[1]$. Also we denote by $L_{p, \mu}[a, b]$ $(1 \leq p<\infty)$, of the space of all bounded μ-measurable functions f on $[a, b]$, and defined by:

$$
\begin{equation*}
\|f\|_{p, \mu}=\left(\int_{a}^{b}|f(x)|^{p} d \mu(x)\right)^{1 / p}<\infty \tag{1.2}
\end{equation*}
$$

where μ is the non-negative measure function on a countable set, [2] . For every function f we define the k - difference with step (h) at a point x as follows [3]:
$\Delta_{h}^{k} f(x)=\sum_{m=0}^{k}(-1)^{m+k}\binom{k}{m} f(x+m h), \quad x, x+m h \in[a, b]$
And the $k t h$ locally of smoothness for $f \in L_{\infty}[a, b]$, (the set of all essentially bounded functions on $[a, b]$) is defined by [4]:

$$
\begin{equation*}
w_{k}(f, \delta)=\sup _{|h|<\delta}\left\{\left|\Delta_{h}^{k} f(x)\right|:|h| \leq \delta, x, x+k h \in[a, b]\right\} \tag{1.4}
\end{equation*}
$$

Also, for every bounded function f the following trivial estimate
holds:

$$
\begin{equation*}
w_{k}(f,[a, b]) \leq 2^{k}\|f\|_{C_{[a, b]}} \tag{1.5}
\end{equation*}
$$

where $C[a, b]=\max _{x \in[a, b]}|f(x)|$,[5].

Since

$$
\left|\Delta_{h}^{k} f(x)\right|=\left\lvert\, \sum_{i=0}^{k}(-1)^{i+k}\binom{k}{i} f(x+i h)\right.
$$

$$
\leq \sum_{i=0}^{k}\binom{k}{i}\|f\|_{c_{[a, b]}}=2^{k}\|f\|_{c_{[a, b]}}
$$

In [5] the anther proved if f is a measurable bounded function on $[a, b]$, then: $\quad w_{k}(f, \delta)_{p} \leq \tau_{k}(f, \delta)_{p} \leq w_{k}(f, \delta)(b-a)^{1 / p},(1 \leq p<\infty)$
where

$$
\tau_{k}(f, \delta)_{p}=\|w(f, \delta)\|_{p}=\left\|\sup _{|h|<\delta}\left\{\left|\Delta_{h}^{k} f(x)\right|:|h| \leq \delta, x, x+k h \in[a, b]\right\}\right\|_{p}
$$

Also proved the following theorem which is now classical in approximation theory and numerical analysis .This theorem gives additional conditions which allow us to invert the above inequality.
Theorem 1, [5]:
For each integer $n \geq 1$ there is a number W_{n} with the following property, for any interval Δ and for any continuous function f on Δ there is a polynomial P of degree at most $n-1$ such that

$$
\begin{equation*}
|f(x)-P(x)| \leq W_{n} w_{n}(f, \Delta), x \in \Delta \tag{1.6}
\end{equation*}
$$

where W_{n} is called Whitney's constant, $\Delta=[a, b]$.
Definition (Riesz - Torin Theorem), [5]:
Let T be a linear operator from the spaces $L_{p}[a, b]$ in to the spaces $L_{q}[a, b]$, if there exists a constant k, for which

$$
\begin{equation*}
\|T f(x)\|_{q[a, b]} \leq k\|f(x)\|_{p[a, b]} \quad, 1 \leq p<q<\infty \tag{1.7}
\end{equation*}
$$

For every function f in $L_{p}[a, b]$, we say that the operator T is of the type (p, q). The smallest number k with this property is called the (p, q) - norm of the operator T.

Theorem 2, [5]:

For each $n \in Z^{+}$, there is a number W_{n} and there is a polynomial p_{n} for each Lebesgue integral function f on $[a, b]$, such that

$$
\begin{equation*}
\left|f-p_{n}\right|<W_{n} w_{n}(f, \Delta), \tag{1.8}
\end{equation*}
$$

where W_{n} Whitney's constant, $\Delta=[a, b]$.
Lemma 1, [5]:
Let L_{n} be a linear operator and $\sum_{n}=\left\{x_{i}: a=x_{0}<\ldots<x_{n+1}=b\right\}$. If
$f \in M[a, b] . \quad$ Then $\quad L_{n}(f) \in L_{p}[a, b],(1 \leq p \leq \infty)$
and

$$
\begin{equation*}
\left\|L_{n} f\right\|_{p} \leq K\|f\|_{p \sum_{n}} \tag{1.9}
\end{equation*}
$$

where K is an absolute constant and $M[a, b]$ the space of all measurable functions bounded on interval $[a, b]$.

Lemma 2, [2]:
Let μ be a non - decreasing function on P , satisfying:

$$
\begin{aligned}
& \mu(y)-\mu(x)=\text { Constant and } 1<p<\infty, \text { we put } \\
& w_{\mu}(\delta)=\sup _{0<y-x \leq \delta}(\mu(y)-\mu(x)), \delta>0, \text { and } \\
& \left(\frac{1}{n} \sum_{k=o}^{n-1} \max _{x \in I_{k}}\left|P_{n}\right|^{p}\right)^{1 / p} \leq C(p)\left\|P_{n}\right\|_{p},
\end{aligned}
$$

where P_{n} is an algebraic polynomial of degree at most n and

$$
\begin{equation*}
I_{k}=\left[\frac{k}{n}, \frac{k+1}{n}\right] . \text { Then }\left\|P_{n}\right\|_{p, \mu} \leq C(p)\left(n w_{\mu}\left(\frac{1}{n}\right)\right)^{1 / p}\left\|P_{n}\right\|_{p} \tag{1.10}
\end{equation*}
$$

Lemma 3, [2]:

Let f be a bounded μ-measurable function and $1 \leq p<\infty$. Then

$$
\begin{equation*}
\|f\|_{p} \leq C(p)\|f\|_{p, \mu} \tag{1.11}
\end{equation*}
$$

where $C(p)$ is a constant depends only on p.

2-Main Results

Now we are using the interpolation results of the Whitney's theorem and the Riesz- Torin theorem [4], [5] to obtain interpolation theorems which are using of the averaged modulus of smoothness.

Lemma 4:

Let f be a 2π-periodic bounded μ-measurable function then:

$$
\tau_{k}(f, n \delta)_{p, \mu} \leq(2 n)^{k+1} \tau_{k}(f, \delta)_{p, \mu}, \quad 1 \leq p<\infty
$$

Proof:

We use the identity $\quad \Delta_{n h}^{k} f(t)=\sum_{i=0}^{(n-1)} A_{i}^{n, k} \Delta_{h}^{k} f(t+i h)$
where $A_{i}^{n, k}$ are defined by

$$
\begin{equation*}
\left(1+t+\ldots+t^{n-1}\right)^{k}=\sum_{i=0}^{(n-1) k} A_{i}^{n \cdot k} t^{i}=n^{k} \tag{2.2}
\end{equation*}
$$

since $\tau_{k}(f, n \delta)_{p, \mu}=\left\|w_{k}(f, x, n \delta)\right\|_{p, \mu}$
we get $\quad \tau_{k}(f, n \delta)_{p, \mu} \leq \tau_{k}(f,[n] \delta)_{p, \mu}$

$$
\begin{align*}
= & \left\|\sup _{|h| \leq \delta}\left[\left|\Delta_{[n] \delta}^{k} f(t)\right|: t, t+k[n] h \in\left[x-\frac{k[n] \delta}{2}, x+\frac{k[n] \delta}{2}\right] \cap[a, b]\right]\right\|_{p, \mu} \\
= & \| \sup _{|h| \leq \delta}\left[\left\lvert\, \sum_{i=0}^{[n-1] k} A_{i}^{[n], k}{\frac{D^{k}}{k} f(t+i h)}\right.\right. \\
& \left.t+i h, t+i h+n h \in\left[x-\frac{k[n] \delta}{2}, x+\frac{k[n] \delta}{2}\right] \cap[a, b]\right] \|_{p, \mu} \\
& w_{k}(f, x, n \delta) \leq \sum_{i=0}^{(2 n-1) k} A_{i}^{2 n, k} \sum_{j=1}^{2 n-1} w_{k}\left(f, x-(n-j) \frac{k \delta}{2}, \delta\right) \tag{2.3}
\end{align*}
$$

since,
$t+i h, t+i h+n h \in \bigcup_{j=1}^{2(n)-1}\left[x-\frac{k[n] \delta}{2}+(j-1) \frac{k \delta}{2}, x+\frac{k[n] \delta}{2}+(j+1) \frac{k \delta}{2}\right]$
So that by using definition of local modulus of smoothness and
(2.2),(1.5) we obtain

$$
\begin{aligned}
\tau_{k}(f, n \delta)_{p, \mu} & \leq\left\|\sum_{i=0}^{(n-1) k} A_{i}^{[2 n], k} \sum_{j=1}^{2 n-1} w_{k}\left(f, x-(n-j) \frac{k \delta}{2}, \delta\right)\right\|_{p, \mu} \\
& \leq 2 n^{k}\left[\int_{a}^{b}\left[\left.\sum_{j=1}^{2 n-1} w_{k}\left(f, x-(n-j) \frac{k \delta}{2}, \delta\right)\right|^{p} d_{\mu}(x)\right]^{1 / p}\right. \\
& \leq 2 n^{k} \sum_{j=1}^{2 n-1}\left[\int_{a}^{b}\left|w_{k}\left(f, x-(n-j) \frac{k \delta}{2}, \delta\right)\right|^{p} d_{\mu}(x)\right]^{1 / p} \\
& \leq 2 n^{k}(2 n-1)\left[\int_{a-(n-j) \frac{k \delta}{2}}^{b-(n-j) \frac{k \delta}{2}}\left|w_{k}(f, x, \delta)\right|^{p} d_{\mu}(x)\right]^{1 / p} \\
& =2 n^{k}(2 n-1) \cdot \tau_{k}(f, \delta)_{p, \mu} \\
& =\left(2 n^{k} \cdot 2 n-2 n^{k}\right) \tau_{k}(f, \delta)_{p, \mu} \\
& =\left(2 n^{k+1}-2 n^{k}\right) \tau_{k}(f, \delta)_{p, \mu} \\
& \leq 2 n^{k+1} \tau_{k}(f, \delta)_{p, \mu}
\end{aligned}
$$

Lemma 5:

Let $\sum_{n}=\left\{x_{i}, a=x_{0}<\ldots<x_{n+1}=b\right\} \quad$ be a partition of the interval $[a, b]$ into $n+1$ subintervals and let $k \geq 1$ be an integer .Using the notation $\Delta_{i}=\left|x_{i+1}-x_{i-1}\right|, i=1,2, \ldots, n, d_{n}=\max \left\{\Delta_{i}, 1 \leq i \leq n\right\}$

Then $\quad\left\|w_{k}\left(f, x_{i}, 2 h\right)\right\|_{p, \mu} \sum \leq 2^{1 / p+2(k+1)} \tau_{k}\left(f, h+\frac{d_{n}}{k}\right)_{p, \mu}$

Proof:

From(1.9) and (1.10),(1.5) we have

$$
\begin{aligned}
\left\|w_{k}\left(f, x_{i}, 2 h\right)\right\|_{p, \mu} \sum & =\left\{\sum_{i=1}^{n}\left|w_{k}\left(f, x_{i}, 2 h\right)\right|^{p} \Delta_{i}\right\}^{1 / p} \\
& =\left\{\sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i+1}}\left|w_{k}\left(f, x_{i}, 2 h\right)\right|^{p} d_{\mu}\left(x_{i}\right)\right\}^{1 / p}
\end{aligned}
$$

$$
\begin{aligned}
& \leq 2^{1 / p} c_{1}(p)\left\{\sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i+1}} \left\lvert\, w_{k}\left(f, x,\left.2\left(h+\frac{d_{n}}{k}\right)\right|^{p} d(x)\right\}^{1 / p}\right.\right. \\
& \leq 2^{1 / p} c_{2}(p) \tau_{k}\left(f, 2\left(h+\frac{d_{n}}{k}\right)\right)_{p} \\
& \leq 2^{1 / p} c_{3}(p) \tau_{k}\left(f, 2\left(h+\frac{d_{n}}{k}\right)\right)_{p, \mu} \\
& \leq 2^{1 / p+2(k+1)} c_{3}(p) \tau_{k}\left(f, \frac{d_{n}}{k}\right)_{p, \mu}
\end{aligned}
$$

Now, the Whitney's theorem for $f \in L_{p, \mu}(\Delta)$ spaces, have been proved.

Theorem 2.1:

For each $n \in \mathrm{Z}^{+}$there is a number W_{n} and there is a polynomial p_{n} for each Lebesgue Integral function f on $[a, b]$ such that,

$$
\begin{equation*}
\left\|f-p_{n}\right\|_{p, \mu} \leq W_{n} \tau_{k}(f,[a, b])_{p, \mu} \tag{2.5}
\end{equation*}
$$

where W_{n} is Whitney's constant.

Proof:

Let $g=f d_{\mu}(x)$
From (1.8), (1.6), (1.11) and (1.4) there is a polynomial p_{n} of degree $n-1$ such that

$$
\begin{gathered}
\left|g-p_{n}\right| \leq W_{n} w_{k}(g,[a, b]) \\
=W_{n} \cdot \sup \left\{\left|\Delta_{h}^{k} g(t)\right|:|h| \leq \delta, t, t+k h \in[a, b]\right\}, h>0 \\
\left\|g-p_{n}\right\|_{p} \leq W_{n}\left\|f-p_{n}\right\|_{p, \mu}=W_{n}\left(\int_{\Delta}\left|\sup \Delta_{h}^{k} f(t)\right|^{p} d_{\mu}(t): t, t+k h \in[a, b]\right)^{1 / p} \\
=C(p) \tau_{k}(f,[a, b])_{p, \mu}
\end{gathered}
$$

We shall call the polynomial $\quad p=p_{n}(f)$ for which theorem 2 is valid Whitney's polynomial for the function $f \in L_{p, \mu}$ of degree $(n-1)$.

Theorem 2.2:

Let L be a bounded linear operator on $L_{p, \mu}[a, b]$ and $\operatorname{let} L(P)=P$, for every polynomial $P \in H_{n-1}$, where H_{n-1} is the set of all algebraic polynomials of degree $n-1$. Then for every function $f \in L_{p, \mu}[a, b]$, we have $\|f-L(f)\|_{p, \mu} \leq C(p) W_{n} \tau_{k}\left(f, \frac{b-a}{n}\right)_{p, \mu}$
where W_{n} is Whitney's constant.

Proof:

Let $P_{n}(f)$ be polynomial for f of degree $n-1$. Then using (1.8),
(1.10) and (1.11) we obtain

$$
\begin{aligned}
\|f-L(f)\|_{p, \mu} & \leq\left\|f-P_{n}(f)\right\|_{p, \mu}+\left\|P_{n}(f)-L\left(P_{n}(f)\right)\right\|_{p, \mu} \\
& +\left\|L\left(P_{n}(f)\right)-L(f)\right\|_{p, \mu} \\
\leq & \left\|f-P_{n}(f)\right\|_{p, \mu}+\left\|P_{n}(f)-L\left(P_{n}(f)\right)\right\|_{p, \mu} \\
& +\|L\|_{p, \mu} \cdot\left\|f-P_{n}(f)\right\|_{p, \mu} \\
& \leq\left(1+\|L\|_{p, \mu}\right)\left\|f-P_{n}(f)\right\|_{p, \mu}+\left\|P_{n}(f)-L\left(P_{n}(f)\right)\right\|_{p, \mu} \\
& \leq C_{1}(p)\left(1+\|L\|_{p}\right) \cdot\left\|f-P_{n}(f)\right\|_{p} \\
& \leq C_{1}(p) W_{n}\left(1+\|L\|_{p}\right) w_{k}(f,[a, b])_{p} \\
& \leq C_{2}(p) W_{n}\left(1+\|L\|_{p}\right) \tau_{k}\left(f, \frac{b-a}{n}\right)_{p} \\
& \leq C_{3}(p) W_{n}\left(1+\|L\|_{p, \mu}\right) \tau_{k}\left(f, \frac{b-a}{n}\right)_{p, \mu} \\
& =C_{4}(p) W_{n} \tau_{k}\left(f, \frac{b-a}{n}\right)_{p, \mu}
\end{aligned}
$$

where $\quad C_{4}(p)=C_{3}(p)\left(1+\|L\|_{p, \mu}\right)$

Theorem 2.3:

Let F be a bounded linear functional on $L_{p, \mu}[a, b]$, let $F(P)=0$ for every $P \in H_{n-1}$. Then for every $f \in L_{p, \mu}[a, b]$,

$$
\begin{equation*}
\|F(f)\|_{p, \mu} \leq M W_{n} \tau_{k}(f, b-a)_{p, \mu} \tag{2.7}
\end{equation*}
$$

where M is a constant.

Proof:

By using (1.8), we have

$$
\begin{aligned}
\|F(f)\|_{p, \mu} & \leq\|F(f-p)\|_{p, \mu}+\|F(p)\|_{p, \mu} \\
& =\|F(f-p)\|_{p, \mu} \\
& \leq\|F\|_{p, \mu} \cdot\|f-p\|_{p, \mu} \\
& \leq M W_{n} \tau_{k}(f,[a, b])_{p, \mu}
\end{aligned}
$$

Now, we shows Riesz - Torin Theorem in the spaces of all functions belongs to $L_{p, \mu}[a, b]$.

Theorem 2.4:

Let T be a linear operator from the spaces $L_{p, \mu}[a, b]$ into the spaces $L_{p, \mu}[a, b]$, if there exists a constant K, for which

$$
\begin{equation*}
\|T f(x)\|_{q, \mu} \leq K\|f(x)\|_{p, \mu} \tag{2.8}
\end{equation*}
$$

For every $f \in L_{p, \mu}[a, b]$, then the operator T is of type (p, q).

Proof:

By using (1.10), (1.7) and (1.11) we get

$$
\left.\begin{array}{rl}
\left\|T_{n} f\right\|_{q, \mu} \leq C_{1}(q) \| T_{n} f & \|_{q}
\end{array}\right)=K C_{1}(q)\|f\|_{p} \quad \text {. } \quad C_{2}(p)=K C_{1}(q)
$$

Theorem 2.5:

Let L_{n} be a linear operator, If $f \in L_{p, \mu}[a, b]$,
then $L_{n}(f) \in L_{p, \mu}[a, b], 1 \leq p<\infty$ and $\left\|L_{n}(f)\right\|_{p, \mu} \leq k\|f\|_{p, \mu} \sum_{n}$
where k is an absolute constant .

Proof:

By (1.9) and (1.11) we have

$$
\begin{aligned}
\left\|L_{n} f\right\|_{p, \mu} & \leq C_{1}(p)\left\|L_{n} f\right\|_{p} \\
& \leq C_{2}(p)\|f\|_{p} \\
& \leq C_{3}(p)\|f\|_{p, \mu} \sum_{n}
\end{aligned}
$$

CONCLUSIONS

1- The best approximation of bounded μ-measurable function in $L_{p, \mu}$ spaces by using Whitney's constant have been found.

2- The best approximation of bounded μ-measurable function in $L_{p, \mu}$ spaces by using Riesz - Torin Theorem, have also been found.

References

[1] Z. Ditzian (2007), " Polynomial Approximation and $w_{\varphi}^{r}(f, t)$ Twenty Years Later, "Surveys in Approximation Thorey Volum 3, 2007, pp, 106-151.
[2] A. H. Al - Abdulla (2005), "On Equiapproximation of Bounded μ-Measurable Function in $L_{p}(\mu)$-Spaces", Ph.D. Thesis, Baghdad University, Mathematical Department, College of Education (Ibn Al - Haitham).
[3] Radu Paltanea(2004), "Approximation Theory Using Positive Linear Oper ators ", Birkhauser Boston.Basel.Berlin. B. Sendov, V. A.
[4] T.TUNC (2007), "On Whithney Constants for Differentiable Functions ", Methods Functional Analysis and Topology

Vol.13, no. 1, pp.95-100.
[5] Popov (1983), "The Averaged Moduli of moothness" , Sofia.

