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Abstract: A harvested prey-predator model with infectious disease in prey is

investigated. It is assumed that the predator feeds on the infected prey only according to

Holling type-II functional response. The existence, uniqueness and boundedness of the

solution of the model are investigated. The local stability analysis of the harvested prey-

predator model is carried out. The necessary and sufficient conditions for the persistence

of the model are also obtained. Finally, the global dynamics of this model is investigated

analytically as well as numerically. It is observed that, the model have different types of

dynamical behaviors including chaos.

1. Introduction:

There has been growing interest in the study of diseases in prey-predator models. It

is well know that, in nature species does not exist alone. In fact, any given habitat may

contain dozens or hundreds of species, sometimes thousands. Since any species has at

least the potential to interact with any other species in its habitat, the possibility of

spreading of the disease in a community rapidly becomes astronomical as the number of

infected species in the habitat increases. Therefore, it is more of biological significance to

study the effect of disease on the dynamical behavior of interacting species. In the last

two decades, some prey-predator models with infections diseases have been considered
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[1-5] and the references their in. All these studies, reached at the conclusion that disease

may cause vital changes in the dynamics of an ecosystem.

On the other hand, harvesting has generally a strong impact on the population

dynamics of a harvested species. The severity of this impact depends on the nature of the

implemented harvesting strategy, which in turn may range from the rapid depletion to the

complete preservation of a population. The study of population dynamics with harvesting

is a subject of mathematical bio economics, and it is related to the optimal management

of renewable resources [6]. The effect of constant rate of harvesting on the dynamical

behavior of interacting species has been considered by many researchers [7-8] and the

references their in. The conclusions of these studies can be summarized as follows:

Harvesting may be used as a biological control for the coexistence of the species, but

unregulated harvesting might lead to extinction in one or more species.

Keeping the above in view, the effect of disease on the dynamical behavior of the

harvested prey-predator systems is important from economical viewpoint. Little attention

has been paid so far in this direction Chattopadhyay et al [9], proposed and analyzed a

mathematical model of a harvested prey-predator system with infection on prey

population. They assumed that, the predator feeds on the susceptible prey population

according to Holling type-II functional response, while it feeds on infected prey

population according to Lotka-Volterra predation form. They reached to the following

result, harvesting of infected prey may be used as a biological control for the persistence

in an infected prey-predator system. In this chapter, Chattopadahyay et al model [9]

modified by assuming that the predator feeds on the infected prey only according to the

Holling type-II functional response. The possibility of occurrence of chaotic behavior is
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also considered, and then the effects of disease and harvesting on such chaotic behavior

are studied.

2. The Mathematical Model

Let  tS and  tI be the numbers of the susceptible and infected prey population at

time t respectively. Let  tZ be the number of the predator population at time t . The

dynamics of a harvested prey-predator model with infection on prey population can be

represented by the following set of differential equations:
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Here the positive constants r and K are, respectively, the intrinsic growth rate and

carrying capacity of the prey species in the absence of predation and harvesting. The

positive constants ,,c and  represent the infection rate, maximum attack rate, and the

half saturation coefficient, respectively. However, the positive constants  and  denote

to the death rates of the infected prey and the predator, respectively. The positive constant

h represents the growth rate of predator due to predation of infected prey and hence it

can be written as eh  with 10  e . Finally, the non-negative constants ,, 21 EE and

3E are the harvesting efforts for the susceptible prey, infected prey and predator,

respectively.
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Obviously, the interaction functions in the right hand side of system (1) are continuously

differentiable functions on   0,0,0,ZI,S, 33  ZISRR and hence they are

Lipschitzian functions. Therefore the solution of system (1) exists and is unique.

Note that, according to the form of  ZISf ,,1 in system (1), it is easy to verify that the

necessary condition of coexistence of all species in system (1) is given by

11 0 ErEr  (2)

Therefore, from now onward, we assume that condition (2) is always holds.

Furthermore, the solution of system (1) with non-negative initial conditions is bounded as

shown in the following theorem.

Theorem 1. All the solutions of system (1), which initiate in 3
R are uniformly bounded.

Proof: Let       ,, tZtItS be any solution of the system (1) with non-negative initial

conditions. According to first equation of system (1) we have

  .1 1SErS K
S

dt
dS 

Then due to the comparison theorem [10], we obtain

    .0;1   ttS r
ErK (3)

Let        ,tZtItStW h   then by straight forward computations we get that

 ZISNrS h
dt

dW  

where  .,,min 321 EEEN   Hence, by using Eq. (3) we obtains that:

 1ErKNWdt
dW 

Again, by applying the comparison theorem on the above differential inequality gives

  0t;  LtW  , where   01  ErK .
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Hence all the solutions of system (1) that initiate in 3
R are confined in the region

  0anyfor:,, 3   
LWRZIS . Thus these solutions are uniformly

bounded, and then the proof is complete. ■

Now, since an ecological system is said to be dissipative if the solution of the system,

which initiate in 3
R is uniformly bounded as t . Therefore, system (1) is

dissipative.

3. Stability analysis with Persistence:

In this section, the existence and stability analysis of all possible equilibrium

points of system (1) are discussed and the following results are obtained

1. The equilibrium points  0,0,00 F and   0,0,1
1 r

ErKF  are always exist.

2. The planar equilibrium point  ,0,,2 ISF  where

c
ES 2


 ;    

 cKrc
ErErcKI




 21  (4)

exists in the Int. 2
R of the SI plane under the following condition

   21 ErErcK   (5)

3. The positive equilibrium point  ***
3 ,, ZISF  , where:
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exists in the Int. 3
R if and only if the following set of conditions hold.

    
   cKrE
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 (7 a)

03  Eh  (7 b)
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 (7 c)

Now to analyze the local stability of system (1) around each of these equilibrium points,

the Jacobian matrix   3,2,1,0; iFJ i of system (1) at each equilibrium point is computed

and then the eigenvalues are determined. The following results are obtained.

The eigenvalues of  0FJ are given by 0101  Er ,   0,202  E

  0303  E , and hence 0F is a saddle point. However, the eigenvalues of  1FJ

are   0111  Er ,  
212

1 Er
ErcK    , and   .0313  E Therefore, 1F

is locally asymptotically stable provided that:

   21 ErErcK   (8)

While, it is a saddle point, with locally stable manifold in the SZ plane and with

locally unstable manifold in the I direction, under condition (5). Obviously, if 1F is

locally asymptotically stable then 2F does not exist. However, 1F is a saddle when 2F

exists.

The eigenvalues of  2FJ satisfy the following relations
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Where, i2 ( 3,2,1i ) represent the eigenvalues in the S , I and Z direction

respectively. Note that, from Eqs. (9 a)-(9 b) we obtain that, the eigenvalues 2221 and  ,

which are describe the dynamics in the S - and I -direction respectively, have negative

real parts under the condition (5). Therefore, 2F is locally asymptotically stable in the

2. RInt of the SI plane whenever it is exists. Further, 2F is locally asymptotically

stable or saddle point in the . 3
RInt , depending on whether the eigenvalue 23 is

negative or positive respectively.

Theorem 2. The equilibrium point 2F is a globally asymptotically stable in the 2. RInt

of the SI plane.

Proof: Clearly in the 2. RInt of the SI plane, system (1) reduces to the following

subsystem
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is not change sign and does not identically zero. Hence, according to Bendixson-Dulic

criterion [11], there is no closed curve in the 2. RInt of the SI plane. Therefore, 2F is

a globally asymptotically stable in the 2. RInt of the SI plane. ■

Finally, the Jacobian matrix of system (1) at the positive equilibrium point

 ***
3 ,, ZISF  is given by     3,2,1,;

333 


jiaFJ ij where:

0
*

11  K
rSa ;   0*

12  Sca K
r ; 013 a ; 0*

21  cIa ; 02

**
22 

B
ZIa  ;

0
*

23  B
Ia  ; 031 a ; 02

*

32 
B

Zha  ; 033 a and *IB   .

Then the characteristic equation of  3FJ can be written as

032
2

1
3  AAA  (10 a)

with  22111 aaA  ;  2211211232232 aaaaaaA  and 3223113 aaaA  .

Then, by substituting the values of jia , and then simplifying the resulting terms we

obtain:

2

***2

1
KB

ZKISrBA 
 (10 b)

03

***

3 
KB

ZIhSrA  always (10 c)

And     .3223112112322322112211321 aaaaaaaaaaaAAA 
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52

*
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BK
I  (10 d)

Now, it is easy to verify that 01 A and 0 under the following set of conditions
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***2 ZKISrB  (11 a)

  *2 ZrcKrcB  (11 b)
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Therefore, according to the above analysis, the following theorem can be easily proved.

Theorem 3. Assume that the positive equilibrium point 3F exists in the . 3
RInt . Then,

3F is locally asymptotically stable if and only if conditions (11 a)-(11 c) hold.

Keeping the above in view the persistence conditions of system (1) are established in the

following theorem.

Theorem 4. Suppose that, 2F exists in the 2. RInt of the SI plane. Then the necessary

condition for the persistence of system (1) is

0)()( 33  EEhI  (12)

However, the sufficient condition for the persistence of the system (1) is

0)()( 33  EEhI  (13)

Proof: Clearly the solution of system (1) is bounded as shown in theorem 1. Now, since

)(
)()(

23
33

I
EEhI


 
 is the eigenvalue, which gives the stability in the positive

direction orthogonal to the SI plane. In addition, 2F is a globally asymptotically stable

in the 2. RInt of the SI plane whenever it exists, therefore if condition (12) violates

then 023  and there are orbits in the positive cone approach 2F . Hence condition (12)

is the necessary condition for the persistence.
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For the sufficient condition (13), it is easy to verify that; system (1) satisfies the

following hypotheses:

(M1) 01 

 c
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(M2) The prey grows to carrying capacity in the absence of predation, infection and

harvesting, that is   00,0,01  rf ,   0,,1 


K
r

S
f ZIS . However, the predator

population dies in the absence of the prey (i.e     00,0,0 33  Ef  ).

(M3) There are no equilibria in the -IZ plane and SZ plane.

(M4) In the absence of the predator the susceptible prey and then the infected prey can

survive in the interior of positive quadrant of SI plane. Therefore, there exists an

equilibrium point 2F in the SI plane, which is globally asymptotically stable.

Hence, an application to the Freedman and Waltman persistence theorem [12], system (1)

persists provided that condition (13) satisfied, and that completes the proof. ■

Finally, the global dynamics of system (1) in the . 3
RInt is investigated in the following

theorem.

Theorem 5. Assume that, the positive equilibrium point 3F is locally asymptotically

stable with

   2*2*
*

SS
cKr

crII
R
Z





 (14)

Here    *IIR   . Then 3F is a globally asymptotically stable in the . 3
RInt .

Proof: Consider the following positive definite function
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Where 321 and, CCC are positive constants to be determined. Now, straight forward

calculations give that

    

  

 2*
*

2

**3
*

22

**
21

12*
1

II
R

ZC

ZZII
R
hC

R
IC

R
C

IISScCcC
K

rCSS
K

rC
dt
dV




























 












By choosing the positive constants as ;)(1 cKr
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Hence 0dt
dV provided that condition (14) holds, and then V is a Lyapunov function.

Therefore, 3F is a globally asymptotically stable in the Int. 3
R . ■

4. Numerical Simulation:

The globally dynamical behavior of the prey-predator system (1) with infectious

disease in prey species is studied numerically. The solution of the system with a positive

initial condition is obtained for biologically feasible range of parametric values. In all the

cases being considered here the data is chosen depending on two factors: first, we wanted

to investigate biologically reasonable harvested prey-predator system with disease, and

the second, we wanted to determine if chaotic dynamics were likely. Therefore, as the

solution of the system is bounded we expect that system (1) have a rich dynamic

including limit cycle, and chaos. Consequently, system (1) is solved numerically, and
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then number of bifurcation diagrams are drawn between the Maximum value of predator

and the control parameter.

The first bifurcation diagram, Fig. 1, shows the dynamical behavior of system (1) as a

function of the intrinsic growth rate  rparameter.ei in the range 15 25 r keeping

other parameters fixed at

0.0,0.10,8.0,0.0,3.4
,15.5,0.0,15.0,0.06c,400

32

1




EhE
EK




(15)

The evidence for the existence of cascade of periodic doubling leading to chaos can be

seen clearly in Fig. 1, and then the solution becomes chaotic in between there are periodic

windows too. Finally, the predator species, still survive for 7.23r and the solution

returns to periodic dynamic.

Fig. 1 Bifurcation diagram as a function of r in the range 2515  r keeping other parameters

fixed as in Eq. (15).

Now the projection of the attracting set of the solution of the system (1) in the

SI plane is drawn in Fig. 2 (a-d) for the parametric values given in Eq. (15) with r =15,

16.55, 17, and 18 respectively. The figures show the evidence of periodic doubling

leading to chaos.
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Fig. 2 The projection of the attracting set of the solution of system (1) in the S-I plane, at the parametric

values given in Eq. (15). (a) 15r . (b) 55.16r . (c) 17r . (d) 18r .

Fig. 3 shows the bifurcation diagram as a function of the natural death rate of

infected species  .ei in the range 5.65.1   , keeping other parameters fixed as in

Eq. (15) with 18r . It is observed that there are number of periodic regions followed by

the chaotic regions, and then the system return to periodic for  5.68.4   . Finally the

infected prey species and then the predator species approaches to extinction for 5.6

due to the effect of increasing in the natural death rate of the infected species, which is

the sole food for predator.

Fig. 3 Bifurcation diagram as a function of  in the range 5.65.1   , keeping the other

parameters fixed as in Eq. (15) with 18r .
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Again, the projection of the attracting set of the solution of the system (1) in the SI

plane is drawn in Fig. 4 (a-d) for the parametric values given in Eq. (15); 18r , with

 =4.5, 5.0, 5.5, and 6.0 respectively. The figures show the evidence of return to periodic

attractor from chaotic attractor through cascade of periodic halving.

Fig. 4. The projection of the attracting sets of the solution of system (1) in the S-I plane, at the

parametric values given in the Eq. (15) and 18r . (a) 5.4 . (b) 0.5 . (c) 5.5 . (d)

0.6 .

Now the dynamical behavior of system (1), as a function of varying in the infection rate

in the range 1.003.0  c keeping other parameters fixed as in Eq. (15) with ,18r is

investigated in the bifurcation diagram given by Fig. 5. It is observed that, the solution

start with periodic and then periodic doubling leading to chaos. The figure also shows the

existence of narrow periodic windows within the chaotic region and decline of predator

species for 063.0c , approaching to extinction, due to the effect of increasing in the

infection rate.
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Fig. 5. Bifurcation diagram as a function of c in the range 1.003.0  c , keeping other parameters

fixed as in Eq. (15) with 18r .

In the following, bifurcation diagrams as a function of harvest rate 20 1  E ,

30 2  E , and 6.00 3  E are drawn in Figs. 6(a-c) respectively keeping other

parameters fixed as in Eq. (15) with 18r . All these figures show the alternate between

the chaotic and periodic dynamic, and then the solution approaches to periodic attractors

through sequence of periodic halving. Moreover, increasing the bifurcation parameter

3,2,1; iEi further, will leads to decaying in the predator species Z approaching to

extinction.

Finally, the effect of infection rate on the dynamics of system (1), in case of existence

harvesting, is investigated in Figs. 7(a-e) for the range 1.003.0  c and

1.5,1.25,1.0,0.4,2.02 E respectively holding the rest of parameters as:

02.0,108,3.4,15.5,,4.015,,400,18 31  EhEKr  (16)
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Fig. 6. Bifurcation diagram as a function of harvest rate keeping other parameters fixed as in Eq. (15) with

18r : (a) 20 1  E ; (b) 30 2  E ; (c) 6.00 3  E .

According to Figs. 7(a-e), it is observed that, system (1) has rich dynamics

including periodic, period doubling leading to chaos, chaos, and periodic halving. The

predator species Z start increasing as c increases reaching its maximum, in the range

065.005.0  c , due to abundance of its sole food, and then declines for 07.0c ,

approaching to extinction due to rarity of its sole food. The chaotic regions become wider

as the harvest rate 2E increases from 0.2 to 0.4 keeping other parameters fixed as in Eq.

(16). However these regions become narrower, as 2E increases further, and they are fully

disappear for 5.12 E and the system becomes periodic.
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Fig. 7. Bifurcation diagram as a function of c in the range 1.003.0  c , keeping other parameters

fixed as in Eq. (16). (a) 2.02 E .(b) 4.02 E . (c) 0.12 E . (d) 25.12 E . (e) 5.12 E .

The projection of the attracting set of the solution of the system (1) in the SI

plane is drawn in Fig. 8(a-d) for the parametric values given in Eq. (16) with 06.0c
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and 2E =0.2, 0.4, 1.0, and 1.5 respectively. The figures show the evidence of return to

periodic attractor from chaotic attractor as the harvest rate of infected prey increases.

Fig. 8. The projection of the attracting set of the solution of system (1) in the S-I plane, at the parametric

values given in Eq. (16) with 06.0c . (a) 2.02 E . (b) 4.02 E . (c) 0.12 E . (d) 5.12 E .

5. Discussion and Conclusion:

A harvested prey-predator model with disease in prey population is proposed and

analyzed. It is assumed that, in the absence of predation and harvesting, the prey species

grows logistically. However, the predator species feeds on the infected preys (infected

preys are weakened and hence become easier to predate) according to Holling type- 

functional response. Further, the mode of disease transmission within the prey population

follows the simple law of mass action.

The qualitative dynamical behavior of the proposed model is investigated analytically.

Numerical integration is used to investigate the global dynamical behavior of the model

system (1). The objective is to explore the possibility of chaotic behavior. Extensive

numerical simulations are carried out for various values of control parameters and for

different sets of initial conditions. It has been shown that, the system (1) is very sensitive

to the parameters ( 321 and,,,,, EEEcr  ) and has different types of interesting attracting
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sets including periodic, periodic doubling, chaos, and periodic halving. Moreover,

depending on the simulation results, the following conclusion can be drawn:

1. For small value of intrinsic growth rate of the susceptible prey population

( 16r ) the system (1) has a periodic attracting set. However, increasing the

growth rate slightly increases the possibility of occurrence of chaotic dynamics. In

fact, if the intrinsic growth rate of susceptible prey increases further, the number

of the infected prey increases and hence the predator population still survives and

periodic dynamics is observed.

2. The situation is different in case of varying the infection rate  c keeping other

parameters fixed as in Eq. (16) with 18r . In this case, for small value of

03.0c there is small number of infected prey and hence the system undergo

periodic dynamic due to the rarity in the sole food of predator. As the infection

rate increases slightly  065.003.0  c the number of infected prey start

increases, consequently the number of predator species will be increase, and

hence chaos is observed. Finally, increases the value of infection rate further

 c065.0 causes decreasing in the number of susceptible prey and then

decreases the infected prey due to the effect of the predation. Accordingly the

system approaches to the extinction.

3. Similar conclusions can be drawn, in case of increases the natural death rate of

infected prey, as those in case of increasing of infection rate.

4. Obviously, the chaotic behavior of the system can be avoided and the system

returns to periodic dynamic by increasing the harvest rates, up to specific values.

However, increasing the harvest rates further will causes extinction of the system.
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Finally, according to the above observation to control the chaotic behavior of the

system (1), and hence control the disease, the value of intrinsic growth rate of the

susceptible prey should not be very high.
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معدن في الفریسةالمفترس مع مرض- الفوضى في نوذج حصاد الفریسة

رائد كامل ناجي و ھبة عبد االله ابراھیم

اقالعر- بغداد –جامعة بغداد –كلیة العلوم –قسم الریاضیات 

افترضنا ان المفترس . المفترس مع مرض معدن في الفریسة-في ھذا البحث بحثنا نموذج حصاد الفریسة: المستخلص

دود الحل للنموذج ــــوحدانیة و ح، ودــوج. یتغذى على الفریسة المصابة فقط اعتمادا على دالة ھولنك من النوع الثاني

الشروط الضروریة والكافیة للاصرار في النموذج . ة للنموذج نوقشتـالاستقراریة المحلیلات ـــتحلی. تــالمقترح بحث

واع ـــا بأن النموذج قید الدراسة یمتلك انـــلاحظن. اـــواخیرا الدینامیكیة الشاملة للنموذج درست تحلیلیا وعددی. وجدت

.مختلفة من السلوك الدینامیكي بضمنھا الفوضى


