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Abstract:

In the problem of scheduling a single machine to minimize the sum of completion

time and total late work, there are n jobs to be processed for which each has an integer

processing time and a due date. The objective is to minimize the sum of total

completion time and total late work ,where the late work for a job is the amount of

processing of this job that is performed after its due date.

Although dominance rules are derived for the special cases in which all processing

times are equal and all due dates are equal. Algorithm H is presented for the general

non preemptive sum of completion time and the total late work simultaneous

problems .
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1. Introduction

The late work objective function, minimizing the total number of tardy units of
particular activities executed in the system, takes into account mostly the mount of
late work not the quantity of the delay. It combines the idea of two classical
performance measures the total tardiness and the number of late jobs. Similarly as
tardiness, late work increases with a job delay, but when the job becomes totally late,
the penalty remains on the certain level (determined by the job processing time) as for
the number of late jobs parameter.

The paper concerns a performance measure based on the amount of late work in
the system [2, 6 9, 11]. This objective function was first proposed in the context of
parallel machines [2, 4] and  then  applied  to  the one-machine  scheduling  problem
[9, 10].  Based  on  this  concept,  a  new branch of the research has also appeared
which modifies the original  formulation of the late work for the real-time applications
by considering so called imprecise computations [1].

The scheduling model that we study is as follows.   There are n independent jobs
J1,…,Jn that have to be scheduled on a single machine.   Each job Ji ( i = 1,… ,n) has a
processing time pj and a due date dj . All jobs are available for processing at time 0.
The goal is to schedule the jobs without preemption on the single machine such that
the total late work and sum of completion time is minimized.

The field of late work scheduling has not been widely explored (see Table 1)
which causes some problems in estimating the complexity of other cases, not analyzed
yet[5].
PROBLEM COMPLEXITY REFERENCE

P | ri | Yw Unary NP-hard [4]
P | pmtn, ri | Yw O(n7 log n) [6]

Qk | pmtn, ri | Yw O(k3 n7 log kn) [6]
1 | pmtn | Y O(n log n) [22]

1 | | Y binary NP-hard [22]
1 | di = d | Y O(n) [22]
1 | pi = p | Y O(n log n) [22]

Table 1. Results for the late work criteria

However, based on the gathered results, the late work criterion seemed to be settled
in the difficulty rank between the maximum lateness and mean tardiness criteria [2].

Some basic assumptions taken from classical scheduling theory that are applied to
each of the rules and algorithms presented within this research are as follows
(Blazewicz, [3]; Gupta & Kypanrisis, [7]; Haupt, [8]).
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1. All task parameters are deterministic and known a priori.
2. All jobs are available for processing at time zero.
3. Each job is independent of the other jobs.
4. Once a job is started on a machine it must continue to completion.
5. The only constraint is the machine and the machine is always available for job
processing.
6. Job processing times include all ancillary processing times such as set-up,
transportation, or operator time.
Another assumption is that computer resources are not a limiting factor. Our objective
is to identify the scheduling rule, which results in a schedule that will provide the best
total penalty performance, given various combinations of due date and deadline
assignment.

This paper organized as follows: section 2 deals with the basic definitions for our
criteria  every one  is independent to each other , in section 3 we propose general
definition for the problem P ,some theorems ,some dominance rules ,present algorithm
H and then numerical example, and in section 4 conclusions are presented.

2.Late work definition and completion time

In this paper, we consider a scheduling problem with the total late work criterion
and sum of completion time .We’ll use some simples to refers that:

pj: processing time

dj: due date time

Cj: completion time (Cj=


j

i
ip

1

)

Lj: lateness (Lj=Cj-dj)

Tj:  tardiness (Tj=max{0,Lj} )

Uj: the number of tardy jobs(Uj=1, if Cj>dj, otherwise Uj=0).

We assume that the jobs are numbered in nondecreasing order of their due date
(EDD order) so that d1 d2 …dn . We can easily compute the completion time Cj
and its late work Yj where Late work combines the features of two parameters:
tardiness and the number of tardy jobs. Formally speaking, in the non-preemptive case
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the late work parameter is defined as Yj=min{max{0, Cj-dj}, pj}=min{Tj, pj} or,in a
more extensive way,as

0 if Cj ≤dj

Yj =          Cj -dj if  dj< Cj <dj+pj

pj if  dj+pj ≤Cj

The late work Yj is the amount of processing performed on job j after its due date .
If Yj=0, then job j is early; if 0 < Yj < pj, then job j is partially early; if Yj=pj, then job
j is late. The objective is to find a processing order of jobs which minimizes the sum
of total late work and total completion time .

3.problem setting

Now we formulate our problem , where we have independent jobs and satisfy the
conditions 1-6 from sec.1 above.

Min { ∑Ci+∑Yi}

s.t.

C i)(
≥ p i)(

i=1,…,n ………. P
C i)(

= Cσ(i-1)+Pσ(i) i=2,…,n
Yi=min{ max{Ci-di,0},pi} i=1,…,n

Yi≥0 i=1,…,n

Before we solve this problem refers that we can write Y=∑Yj, and now gives some
special cases ,theorems and dominance rule .

3.1 :Theorem 1 [5]
In the preemptive 1//Y problem ; YL  max

3.2 Special cases
Case1: For problem P, if Tmax(EDD)=0 then the optimal solution gives by “Smith
backward algorithem[12]”.



6

Proof: since Tmax=0 then Y=min{Ti,pi}=0 ,but smith backward minimize ∑Ci when
Tmax=0 hence we give minimum value for ∑Ci+Y.

Case2: For problem P, if di=d for all i, then the SPT rule gives an optimal schedule for
P.
Proof:
For SPT schedule σ=σ1,σ2,…,σn
Yi=min{ max{Ci-d ,0},pi}

Yj=min{ max{Cj-d ,0},pj}
But Ci ≤Cj in σ then Yi ≤Yj and in the same time ∑Ci≤∑Cj

3.3 Dominance rule:

D1: For problem P, if pi≤pj for all j and the same time di≤dj for all j then the job i must
be in the first postion in optimal schedule .
Proof:
Let we have σij and σji then
pi ≤ pj ,then Ci≤Cj ,but di≤dj then Ti≤Tj
Yi=min{ max{Ci-d ,0},pi}≤ Yj=min{ max{Cj-d ,0},pj}
Therefore pσij ≤ pσji for all j=2,…,n.

3.4 Algorithm H
step(0): Order the jobs by EDD rule and calculate Tmax and  đ=dj+pj.
step(1): If Tmax(EDD)=0 use Smith backward method to find an optimal schedule and
value for problem P.
Step(2): Ue=UT=Ul=φ where Ue set of early jobs,UT set of tardy jobs,Ul set of late
work,k=0,N={J1,…,Jn} un schedule jobs ,C0=0.
Step(3): i=i+1, if Ci≤di put Ji in Ue,Ci=Ci+pi , else if di<Ci< đ put Ji in UT ,else put Ji in
Ul.
Step(4):N=N-{Ji} , if i=n or N=φ go to step 6,else go to step4.
Step(5): Order the jobs in Ue,UT andUl by SPT rule ; put σH= Ue,UT ,Ul and calculate
∑Ci+Y

3.5 Theorem 2: An algorithm H  gives the best possible solution for problem P.
Proof:

Suppose we have another schedule σ in addition σH that satisfy algorithm H, we
need to proof that P(σH)≤P(σ) .
For schedule σji

Y(σ)= 
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For schedule σHij

Y(σH)= 
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Now, 
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From 1 and 2 we have σH gives best possible solution than σ □

3.5 numerical example :
let we have 6 jobs with pi(3,6,7,7,8,9) and di(6,6,9,10,14,10) respectively .

the SPT is (1,2,3,4,5,6) with ∑Ci=122 and Y=34 then the sum is 156
the EDD is (1,2,3,4,6,5) with ∑Ci=123 and Y=34 then the sum is 157
now ,apply algorithm H,

K N(EDD) Ck-1 Ue UT Ul
1 {1,2,3,4,6,5} 0 {1} φ φ
2 {2,3,4,6,5} 3 {1} {2} φ
3 {3,4,6,5} 3 {1} {2,3} φ
4 {4,6,5} 3 {1,4} {2,3} φ
5 {6,5} 10 {1,4} {2,3} {6}
6 {5} 10 {1,4} {2,3,5} {6}

Ue={1,4} Ue(SPT)={1,4}
UT={2,3,5} UT(SPT)={2,3,5}
Ul={6} Ul(SPT) ={6}
Now, σH={ Ue,UT,Ul } ={1,4,2,3,5,6} that have ∑Ci=123 and Y=30 then the sum is
153.

4. conclusions
In  this paper we  have  developed algorithm to solve the classical  single

machine  scheduling  problem when  the  decision-maker evaluates  alternative
schedules using more than one  criteria. If the user is interested only in aggregate
performance  measures  (in   this  work: sum completion time with sum of late work),
then,  irrespective of  the  decision-maker's trade-offs between the criteria.

Questions  related  to   the   effective   selection   of   a   schedule  from   the
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efficient   set remain  to   be   investigated.  This   work   should   include   both
decision   theoretic   approaches in which an attempt is made to identify the
underlying preference function  of the  decision-maker  and  interactive approaches  in
which  the  decision-maker provides information  sequentially  that  can   be   used   to
eliminate  schedules  as  a  part  of   the operation of  the  efficient  set  generation
algorithm itself.
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