A new kind of Fuzzy Topological Vector Spaces SALAH MAHDI ALI

Department of Mathematics, College of C. Sc. and Math., AL-Qadisiya University, Iraq. salah x9@yahoo.com

Abstract. In this paper, we introduce a new kind of fuzzy topological vector spaces that is a locally affine fuzzy topological vector space, finological space, S - space. Finally, we evidence that S - space has a base at zero.

2010 Mathematics Subject Classification : Primary 54A40, 46S40 Keywords : affine fuzzy set, S – fuzzy set, finological space, S – space .

1. Introduction

Fuzzy topological vector space defined and studied by Katsaras [2, 3]. In [3] the author was give a characteristic to a base at zero for a fuzzy vector topology in fuzzy topological vector spaces. Moreover, he was introduced the concept of bounded sets in a fuzzy topological vector space.

In this paper, we introduce a new kind of fuzzy topological vector spaces that is a locally affine fuzzy topological vector space by dependence on a new concept that is affine fuzzy sets. After that we introduce a finological space by dependence on a concept of bounded sets and we study a special kind of finological spaces that is S – space and we evidence that S – space has a base at zero.

2. Preliminaries

Let X be a non-empty set. A fuzzy set in X is the element of the set I^X of all functions from X into the unit interval I = [0,1]. If $C_{\alpha} : X \to I$ is a function defined by $C_{\alpha}(x) = \alpha$ for all $x \in X$, $\alpha \in I$, then C_{α} is called the constant fuzzy set.

Let X be a vector space over a field F, where F is the space of either the real or the complex numbers. If $A_1, A_2, ..., A_n$ are fuzzy sets in X, then the sum $A_1 + A_2 + \cdots + A_n$ (see [2]) is the fuzzy set A in X defined by

 $A(x) = \sup_{x_1 + x_2 + \dots + x_n = x} \min\{A_1(x_1), A_2(x_2), \dots, A_n(x_n)\}.$ Also, if A is a fuzzy set in X and

$$\alpha \in F, \text{ then } \alpha A \text{ is a fuzzy set defined by } \alpha A(x) = \begin{cases} A(x/\alpha) & \text{if } \alpha \neq 0 \text{ for all } x \in X \\ 0 & \text{if } \alpha = 0, x \neq 0 \\ \sup_{y \in X} A(y) & \text{if } \alpha = 0, x = 0 \end{cases}$$

If A is a fuzzy set in X and $x \in X$, then x + A is a fuzzy set in X and defined by (x + A)(y) = A(y - x). A fuzzy set A in X is called a balanced fuzzy set if $\alpha A \subset A$ or $A(\alpha x) \ge A(x)$ for all α with $|\alpha| \le 1$. For the definition of a fuzzy topology, we will use the one given by Lowen [1] that is a fuzzy topology on a set X we will mean a subset γ of I^X satisfying the following conditions :

(i) γ contains every constant fuzzy set in X;

- (ii) If $A_1, A_2 \in \gamma$, then $A_1 \cap A_2 \in \gamma$;
- (iii) If $A_i \in \gamma$ for all $i \in \Lambda$ (Λ any index), then $\bigcup_{i=1}^{n} A_i \in \gamma$.

The pair (X, γ) is called a fuzzy topological space. If $A \in \gamma$, then A is called an open fuzzy set and A is called a neighborhood of $x \in X$ if there exists an open fuzzy set B with $B \subseteq A$ and B(x) = A(x) > 0. Moreover, A is open fuzzy set in a fuzzy topological space X if and only if A is a neighborhood of x for each $x \in X$ with A(x) > 0. A fuzzy vector topology on a vector space X over F (see [3]) is a fuzzy topology γ on X such that the two functions

 $\mu: (X, \gamma) \times (X, \gamma) \rightarrow (X, \gamma)$, such that $\mu(x, y) = x + y$, for all $x, y \in X$;

 $\upsilon: (F, \mathfrak{I}_U) \times (X, \gamma) \to (X, \gamma)$, such that $\upsilon(\alpha, x) = \alpha . x$, for $\alpha \in F, x \in X$, are fuzzy continuous when *F* is equipped with the usual fuzzy topology, (\mathfrak{I}_U is a fuzzy topology generated by the usual topology *U* on *F*) and $F \times X, X \times X$ have the corresponding product fuzzy topologies. A vector space *X* equipped with a fuzzy vector topology γ is called a fuzzy topological vector space.

3. Main Results

Theorem 3.1. [3]

Let Φ be a family of balanced fuzzy sets in a vector space X over F. Then Φ is a base at zero for a fuzzy vector topology if, and only if Φ satisfies the following conditions :

(1) A(0) > 0, for each $A \in \Phi$;

(2) for each non-zero constant fuzzy set C_{β} and any $\alpha \in (0, \beta)$ there exists $A \in \Phi$ with $A \subseteq C_{\beta}$ and $A(0) > \alpha$;

(3) If $A, B \in \Phi$ and $\alpha \in (0, \min\{A(0), B(0)\})$, then there exists $D \in \Phi$ with

 $D \subseteq A \cap B$ and $D(0) > \alpha$;

(4) If $A \in \Phi$ and t a non-zero scalar, then for each $\alpha \in (0, A(0))$ there exists $B \in \Phi$ with $B \subseteq tA$ and $B(0) > \alpha$;

(5) Let $A \in \Phi$ and $\alpha \in (0, A(0))$. Then, there exists $B \in \Phi$ such that

 $B(0) > \alpha$ and $B + B \subseteq A$;

(6) Let $A \in \Phi$ and $x_{\circ} \in X$. If $\alpha \in (0, A(0))$, then there exists a positive number *s* such that $A(tx_{\circ}) > \alpha$, for all scalar $t \in R$ with $|t| \le s$;

(7) For each $A \in \Phi$ there exists a fuzzy set B in X with $B \subseteq A$, B(0) = A(0) such that for each $x \in X$ with B(x) > 0 and if $n \in (0, B(x))$, there exists $D \in \Phi$ with $D \subseteq -x + B$ and D(0) > n.

Definition 3.2.

Let X be a vector space over F. A fuzzy set A in X is called an affine fuzzy set if $\lambda A + (1 - \lambda)A \subset A$ for each $\lambda \in F$.

Theorem 3.3.

Let A be a fuzzy set in a vector space X over F and $\lambda \in F$, then the following statement are equivalent.

(1) A is an affine fuzzy set.

(2) for all x, y in X, we have $A(\lambda x + (1 - \lambda)y) \ge \min\{A(x), A(y)\}$.

Proof:

 $(1) \Rightarrow (2)$

Suppose that A is an affine fuzzy set, by (Definition 3.2) we have

 $\lambda A + (1 - \lambda)A \subset A$ for each $\lambda \in F$. Now, for each $x, y \in X$

$$A(\lambda x + (1 - \lambda)y) \ge (\lambda A + (1 - \lambda)A)(\lambda x + (1 - \lambda)y)$$

=
$$\sup_{\lambda x + (1 - \lambda)y = x_1 + y_1} \min\{(\lambda A)(x_1), ((1 - \lambda)A)(y_1)\}$$

$$\ge \min\{(\lambda A)(\lambda x), ((1 - \lambda)A)((1 - \lambda)y)\} \ge \min\{A(x), A(y)\}.$$

 $(2) \Rightarrow (1)$

Let
$$x \in X$$
, $(\lambda A + (1 - \lambda)A)(x) = \sup_{x_1 + x_2 = x} \min\{(\lambda A)(x_1), ((1 - \lambda)A)(x_2)\}$

(a) If $\lambda \neq 0$ and $1 - \lambda \neq 0$, then

$$(\lambda A)(x_1) = A(\frac{1}{\lambda}x_1)$$
 and $((1-\lambda)A)(x_2) = A(\frac{1}{(1-\lambda)}x_2)$

Thus, $(\lambda A + (1 - \lambda)A)(x) = \sup_{x_1 + x_2 = x} \min\{A(\frac{1}{\lambda}x_1), A(\frac{1}{(1 - \lambda)}x_2)\}$

But, $\min\{A(\frac{1}{\lambda}x_1), A(\frac{1}{(1-\lambda)}x_2)\} \le A(\lambda(\frac{1}{\lambda}x_1) + (1-\lambda)(\frac{1}{(1-\lambda)}x_2)) = A(x_1 + x_2) = A(x).$

(b) If $\lambda \neq 0$ and $1 - \lambda = 0$, then $(\lambda A)(x_1) = A(x_1)$ and

$$((1-\lambda)A)(x_2) = \begin{cases} 0 & , x_2 \neq 0\\ \sup_{z \in X} A(z) & , x_2 = 0 \end{cases}$$

(*i*) If
$$x_2 \neq 0$$
, then $((1 - \lambda)A)(x_2) = 0$ and
 $(\lambda A + (1 - \lambda)A)(x) = \sup_{x_1 + x_2 = x} \min\{A(x_1), 0\} = 0$
Since $((1 - \lambda)A)(x_2) \ge A(x_2)$, then $A(x_2) = 0$ and we get $\min\{A(x_1), A(x_2)\} = 0$
(*ii*) If $x_2 = 0$, then $((1 - \lambda)A)(x_2) = \sup_{z \in X} A(z)$ and
 $(\lambda A + (1 - \lambda)A)(x) = \sup_{x_1 = x} \min\{\lambda A(x_1), \sup_{z \in X} A(z)\} \le \sup_{x_1 = x} A(x_1) = A(x).$

(c) If $\lambda = 0$ and $1 - \lambda \neq 0$, by the same way in (b).

(d) if $\lambda = 0$ and $1 - \lambda = 0$, its impossible.

Definition 3.4.

Let X be a vector space over F. A fuzzy set A in X is called S - fuzzy set if A is balanced and affine fuzzy set.

Theorem 3.5.

Let X be a vector space over F and $x_{\circ} \in X$, then the characteristic function of $\{x_{\circ}\}$ (in symbol $\chi_{\{x_{\circ}\}}$) is S - fuzzy set.

Proof:

(1) To prove $\chi_{\{x_n\}}$ is an affine fuzzy set. Let $x, y \in X$, $\lambda \in F$ and suppose that

$$\chi_{\{x_n\}}(\lambda x + (1 - \lambda)y) < \min\{\chi_{\{x_n\}}(x), \chi_{\{x_n\}}(y)\}$$

Then $\chi_{\{x_o\}}(\lambda x + (1 - \lambda)y) = 0$ and $\min\{\chi_{\{x_o\}}(x), \chi_{\{x_o\}}(y)\} = 1$. Thus, $\lambda x + (1 - \lambda)y \neq x_o$ and $x = y = x_o$ implies that $x_o \neq x_o$ which is impossible. Hence,

 $\chi_{\{x_o\}}(\lambda x + (1 - \lambda)y) \ge \min\{\chi_{\{x_o\}}(x), \chi_{\{x_o\}}(y)\}\)$. From (Theorem 3.3), we get the result. (2) To prove $\chi_{\{x_o\}}$ is a balanced fuzzy set. Let $\lambda \in F$ such that $|\lambda| \le 1$, then from (1) we get for $x \in X$, $\chi_{\{x_o\}}(\lambda x) = \chi_{\{x_o\}}(\lambda x + (1 - \lambda)0) \ge \min\{\chi_{\{x_o\}}(x), \chi_{\{x_o\}}(0)\}\)$. Now, the proof is completely if $\chi_{\{x_o\}}(x) < \chi_{\{x_o\}}(0)$. Suppose that $\chi_{\{x_o\}}(x) > \chi_{\{x_o\}}(0)$, then $\chi_{\{x_o\}}(x) = 1$ and $\chi_{\{x_o\}}(0) = 0$. That is mean $x = x_o$ for all $x \in X$ and $x_o \neq 0$. By other word $0 \notin X$ which contradiction.

Theorem 3.5.

Let A be S - fuzzy set. Define $B: X \to I$, $B(x) = \sup \{A(tx) : t > 1\}$, then B is S - fuzzy set. Moreover, $B \subseteq A$ and B(0) = A(0).

Proof:

(1) To prove *B* is a balanced fuzzy set. Let $\lambda \in F$ such that $|\lambda| \le 1$, $x \in X$. $B(\lambda x) = \sup \{A(\lambda tx) : t > 1\} \ge \sup \{A(tx) : t > 1\} = B(x)$.

(2) To prove *B* is an affine fuzzy set. Let $\lambda \in F$ and for any $x, y \in X$, we have $B(\lambda x + (1 - \lambda)y) = \sup\{A(t(\lambda x + (1 - \lambda)y)) : t > 1\} = \sup\{A(\lambda tx + (1 - \lambda)ty) : t > 1\}$ $\ge \sup\{\min\{A(tx), A(ty)\} : t > 1\}$ $\geq \min\{\sup A(tx), \sup A(ty)\} \text{ for } t > 1.$ = $\min\{B(x), B(y)\}$. Then B is S - fuzzy set.

(3) To prove $B \subseteq A$ and B(0) = A(0). Let $x \in X$, since A is a balanced fuzzy

set, we get $B(x) = \sup_{t>1} A(tx) = \sup_{t>1} \frac{1}{t} A(x) \le \sup_{t>1} A(x) = A(x)$. That is mean $B \subseteq A$. $B(0) = \sup \{A(t0) : t>1\} = A(0)$.

Definition 3.6. [3]

A fuzzy set A in a vector space X, absorbs a fuzzy set B if A(0) > 0 and for every $\theta < A(0)$, there exists t > 0 such that $C_{\theta} \cap tB \subseteq A$

Definition 3.7. [3]

A fuzzy set A in a fuzzy topological vector space X is called bounded if it is absorbs by every neighborhood of zero.

Definition 3.8.

A fuzzy topological vector space X is called locally affine if it has a base at zero consisting of affine fuzzy sets.

Theorem 3.9.[3]

Let *A* be a neighborhood of zero in a fuzzy topological vector space *X*. Then, there exist an open neighborhood B_1 of zero and a balanced neighborhood B_2 of zero such that $B_1(0) = B_2(0) = A(0)$, $B_1 \subseteq B_2 \subseteq A$ and $tB_1 \subseteq B_1$ for each scalar *t* with $|t| \le 1$.

Remark.

If a neighborhood A of zero is an affine, then we called an affine neighborhood of zero. Likewise is called S -neighborhood if it is balanced and affine fuzzy set.

Theorem 3.10.

Let A be an affine neighborhood of zero in a fuzzy topological vector space X. Then there exist S -neighborhood B of zero with $B \subseteq A$ and B(0) = A(0).

Proof:

By (Theorem 3.9.), there exists an open neighborhood D_1 of zero and a balanced neighborhood D_2 of zero with $D_1 \subseteq D_2 \subseteq A$ and $D_1(0) = D_2(0) = A(0)$. Let $B = span(D_2)$, then B is S - fuzzy set and $D_2 \subseteq B \subseteq A$. To get the result only prove that B is a neighborhood of zero and this fact is true, since $D_1 \subseteq B$ and $D_1(0) = B(0) > 0$.

Theorem 3.11.

If X is a fuzzy topological vector space, $x_{\circ} \in X$ then $\chi_{\{x_{\circ}\}}$ is bounded set.

Proof:

Let $x \in X$ and A is a neighborhood of zero, then A(0) > 0. Let $\theta \in (0, A(0))$. By (6) of theorem 3.1., there exists a positive number δ such that $A(tx) > \theta$ for all scalars t with $|t| \le \delta$. Take $t = \delta$, we see that $\min\{\theta, \chi_{\{x_o\}}(x)\} \le \theta < A(\delta x) = \frac{1}{\delta}A(x)$. Thus,

 $C_{\theta} \cap \delta \chi_{\{x_{i}\}} \subset A$. This complete the proof.

Definition 3.12.

A locally affine fuzzy topological vector space X is called finological if every S - fuzzy set in X which absorbs bounded sets is a neighborhood of zero.

The next definition is related to a special kind of finological spaces that is the space which contains all S - fuzzy sets which absorbs the characteristic function for {0} (in symbol $\chi_{\{0\}}$ or χ_{\circ} for short).

Definition 3.13.

A locally affine fuzzy topological vector space X is called S-space if every S-fuzzy set in X which absorbs χ_{\circ} is a neighborhood of zero.

Theorem 3.14.

Any S-space has a base at zero.

Proof:

Let (X, γ) be S – space and let

 $IB = \{ A \in I^X : A \text{ is } S - fuzzy \text{ set which absorbs } \chi_\circ \}$

<u>To prove</u> *IB* is a base at zero for S – *space* X. By another word it suffices to show that *IB* satisfies the conditions (1)-(7) of (Theorem 3.1).

(1)

Let $A \in IB$ and let *B* be a bounded set. If A(0) = 0, then there is no $\theta < A(0)$ such that $C_{\theta} \cap tB \subseteq A$ for all t > 0. That is mean *A* is not absorbs *B* but this impossible with assume. Thus, A(0) > 0 for each $A \in IB$.

(2)

Let $0 < \beta \le 1$ and suppose that $\alpha \in (0, \beta)$. Choose $\alpha_1 \in (\alpha, \beta)$. Now, C_{α_1} is $S - fuzzy \ set$ and $C_{\alpha_1} \cap \chi_{\circ} \subseteq C_{\alpha_1} \subseteq C_{\beta}$. Thus, that $C_{\alpha_1} \in IB$ and $C_{\alpha_1}(0) = \alpha_1 > \alpha$. (3)

Let $A, B \in IB$ and $0 < \alpha < \min\{A(0), B(0)\}$. Let $\alpha_1 \in (\alpha, \min\{A(0), B(0)\})$, then $\alpha_1 < A(0)$ and $\alpha_1 < B(0)$ subsequently, there are $t_1, t_2 > 0$ such that $C_{\alpha_1} \cap t_1 \chi_0 \subseteq A$ and $C_{\alpha_1} \cap t_2 \chi_0 \subseteq B$. Choose $0 < t < t_1, t_2$. Then $|t/t_1| < 1$ and $|t/t_2| < 1$. Since $\chi_{\{x_0\}}$ is a balanced fuzzy set then $t\chi_0 \subseteq t_1\chi_0$ and $t\chi_0 \subseteq t_2\chi_0$. Now, let $D = C_{\alpha_1} \cap t\chi_0$, we see that $D = C_{\alpha_1} \cap t\chi_0 \subseteq (C_{\alpha_1} \cap t_1\chi_0) \cap (C_{\alpha_1} \cap t_2\chi_0) \subseteq A \cap B$. Likewise $D(0) = (C_{\alpha_1} \cap t\chi_0)(0) = \alpha_1 > \alpha$. (4)

Let $A \in IB$ and $0 \neq t \in R$. Suppose that $0 < \alpha < A(0)$. Choose $\alpha_1 \in (\alpha, A(0))$. Since $A \in IB$, then there exist $t_1 > 0$ such that $C_{\alpha_1} \cap t_1 \chi_{\circ} \subseteq A$. That is implies $t(C_{\alpha_1} \cap t_1 \chi_{\circ}) \subseteq tA$. In other words $(C_{\alpha_1} \cap t_1 \chi_{\circ})(x/t) \leq (tA)(x)$ for all $x \in X$. Let $B = C_{\alpha_1} \cap t.t_1 \chi_{\circ}$. Now, $B(x) = (C_{\alpha_1} \cap t.t_1 \chi_{\circ})(x) = (C_{\alpha_1} \cap t_1 \chi_{\circ})(x/t) \leq tA(x)$. Then $B \subseteq tA$ and $B(0) = \alpha_1 > \alpha$. Suppose that $A \in IB$ and $0 < \theta < A(0)$. Choose $\theta_1 \in (\theta, A(0))$. Since $A \in IB$, then there exist t > 0 such that $C_{\theta_1} \cap t\chi_{\circ} \subseteq A$. Let $s = \frac{t}{2}$, $B = C_{\theta_1} \cap s\chi_{\circ}$. Now, to prove that *B* which was to be demonstrated.

$$(B+B)(x) = \sup_{x_1+x_2=x} \min\{B(x_1), B(x_2)\}$$

= $\sup_{x_1+x_2=x} \min\{(C_{\theta_1} \cap s\chi_{\circ})(x_1), (C_{\theta_1} \cap s\chi_{\circ})(x_2)\}$
= $\sup_{y \in X} \min\{C_{\theta_1}, \min\{s\chi_{\circ}(y), s\chi_{\circ}(x-y)\}\}$
= $\sup_{y \in X} \min\{C_{\theta_1}, \min\{\frac{t}{2}\chi_{\circ}(y), \frac{t}{2}\chi_{\circ}(x-y)\}\}$
= $\sup_{y \in X} \min\{C_{\theta_1}, \min\{\chi_{\circ}(\frac{2y}{t}), \chi_{\circ}(\frac{2x-2y}{t})\}\}$
 $\leq \sup_{y \in X} \min\{C_{\theta_1}, \chi_{\circ}((\frac{1}{2})(\frac{2y}{t}) + (\frac{1}{2})(\frac{2x-2y}{t}))\}, \chi_{\circ} \text{ is an affine fuzzy set.}$
= $\sup_{y \in X} \min\{C_{\theta_1}, t\chi_{\circ}(y+x-y))\} = \min\{C_{\theta_1}, t\chi_{\circ}(x)\} \leq A(x).$
Also, $B(0) = C_{\theta_1} \cap t\chi_{\circ}(0) = \min\{\theta_1, 1\} = \theta_1 > \theta.$

Also, $B(0) = C_{\theta_1} \cap t\chi_{\circ}(0) = \min\{\theta_1, 1\} = \theta_1 > \theta$ (6)

Let $x_{\circ} \in X$, $A \in IB$ and $0 < \theta < A(0)$. Choose $\theta_{1} \in (\theta, A(0))$. Since the fuzzy set $\chi_{\{x_{\circ}\}}$ is bounded, then there is t > 0 such that $C_{\theta_{1}} \cap t\chi_{\{x_{\circ}\}} \subseteq A$. Now, if $|s| \le t$, then $A(sx_{\circ}) \ge A(tx_{\circ}) \ge \min\{\theta_{1}, \chi_{\{x_{\circ}\}}(x_{\circ}) = 1\} = \theta_{1} > \theta$.

Let $A \in IB$. Define $B: X \to I$, $B(x) = \sup\{A(tx): t > 1\}$. Form (Theorem 3.5) B is $S - fuzzy \, set$. Moreover, $B \subseteq A$ and B(0) = A(0). Also, B absorbs χ_{\circ} . In fact, let $0 < \theta < B(0)$. Since A absorbs χ_{\circ} , then there exists t > 0 such that $C_{\theta} \cap t\chi_{\circ} \subseteq A$. Now, $(C_{\theta} \cap t\chi_{\circ})(2x) \le A(2x) \le B(x)$. And so $C_{\theta} \cap (\frac{1}{2}t\chi_{\circ}) \subseteq B$ which proves that B absorbs χ_{\circ} . By other word $B \in IB$. If $0 < \theta < B(x)$, let $\theta_{1} \in (\theta, B(x))$, there exists t > 1 such that $A(tx) > \theta_{1}$. Let 1 < s < t. Then $B(sx) \ge A(tx) > \theta_{1}$ for $x \in X$. Take $\eta = \frac{1}{s}$, $\mu = 1 - \eta$. Using the fact that B is an affine fuzzy set and for $y \in X$,

we get,

 $(-x+B)(y) = B(x+y) = B(\eta(sx) + \mu(\mu^{-1}y)) \ge \min\{B(sx), B(\mu^{-1}y)\} \ge \min\{\theta_1, (\mu B)(y)\}$ let $B_2 = C_{\theta_1} \cap \mu B$. Now, $B_2 \subseteq -x+B$ and $B_2(0) = \theta_1 > \theta$. We just prove $B_2 \in IB$. It is clear that B_2 is S - fuzzy set and $C_{\theta} \cap \frac{1}{2}t\mu^{-1}\chi_{\circ} \subset C_{\theta_1} \cap \mu B = B_2$ which means B_2 absorbs χ_{\circ} . Hereupon, Which complete the proof.

Acknowledgment. The author would like to express their thanks to the referee Asst. Prof. Dr. Noori. F. AL-Mayahi for his detailed examinations of this paper.

References

[1] R. Lowen, Fuzzy Topological Spaces and Fuzzy Compactness, *J. Math. Anal. Appl.*, **56** (1976) 621-633.

[2] A. K. Katsaras and D. B. Liu, Fuzzy Vector Spaces and Fuzzy Topological Vector Spaces, *J. Math. Anal. Appl.* **58** (1977) 135-146.

[3] A. K. Katsaras, Fuzzy Topological Vector Spaces I, *Fuzzy Sets and Systems*,**6** (1981) 85-95.