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Abstract:
In this paper, we study an approximation of continuous functions by using some types of

Beta- operators (modified Beta-operator and modified mulit Beta-operator) defined on the some
normed space.
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1. Introduction:
In 1889 Karl Weierstrass, proved the fundamental theorem in the approximation theory which

is called "Weierstrass approximation theorem ", S.N.Bernstein in 1912[3] used a sequence of
positive linear operators called Bernstein polynomial and several papers are generalization of
Bernstein polynomials in the interval ),0[  like  korovkin [1].

In this work, we introduce a new sequence of positive linear operators
),...,,;( 21,...,, 21 mnnn xxxf

m
 of modified mulit-Beta operators to approximate a function of m
independent variables.

2. Definitions and Notations:
Let f :   R,0 be any function and the function    R,0: is defined by
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n is a positive linear operator.

The following proposition gives some properties for the operator n .

Proposition (2.1):-

For ),0[ x and ,Nn then the following statements holds:
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Next, we prove that fn is convergent to f as .n But before that we need the
following lemma.

Lemma (2.2), [2]:-

Let nL be a uniformly bounded sequence of positive linear operators from ,pL into itself

satisfying the condition ,0)(lim
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3. Approximation of Functions of One Variable by modified Beta Operator:
Here, we approximate any continuous function defined on ),0[  by the modified Beta

operator .n

Lemma (3.1):-

For each RffLp p 



 ),0[:,1 , is a continuous function such that
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is a normed space where  

 ,)( xex  is a positive real number.

Proof:-

It is easy to check .0 ,pL Therefore .,  pL Define + and . on ,pL by

,,)()())(( pLgfxgxfxgf  and ,)())(.( pLfxcfxfc  and c

Then by using [4, p. 236], one can have:
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The other conditions for ,pL to be a vector space is easy to be verified, thus we omitted them.
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Therefore; ,pL is a normed space.

Now, we are in the position that we can give the following theorem.

Theorem (3.2):-

Let ,pLf  then ffn  as .n

Proof:-

From [2], n is a uniformly bounded sequence of positive linear operators.



4

Let ),,0[,1)(  xxf then from proposition (2.1) one can have: .0lim
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Then by using lemma (2.2), one can get desired result.

4. Approximation of Functions of  Multiple Variables by Modified Multi-Bata-
Operator:

Here, we generalized the results that are given in the pervious section to be valid for the
modified multi-Beta operator and we approximate any continuous function of m independent
variables on m),0[  by this operators.

For any Nnnnandxxx m
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Lemma (4.1):-

For each RffLq m
q 
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Proof:-

It is easy to check that ,qL is a vector space.
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Therefore; ,qL is a normed space.

Now, the following lemma shows some properties of the operator .,...,, 21 mnnn

Lemma (4.2):-

For any mx ),0[  and ,,..., 21 Nnnn m  the following statements hold:
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Next, we prove that f
mnnn ,...,, 21

 is convergent to f as .,..., 21 mnnn But before that we
need the following lemma. This lemma is a modification of lemma (2.2) and the proof of it is
similar to the proof of lemma (2.2), thus we omitted it.
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