Pairwise Separation Axioms And Compact Double Topological Spaces

By

&

Rewayda Razaq Mohsin Ahmed M. Rajab Enas Y. Abdalla

Coll. of Math. Sci. Math-Dep.

Coll. of Edu. Math-Dep.

University of Kufa, Najaf, Iraq

Abstract

The concept of intuitionistic (double) topological spaces was introduced by Çoker 1996. The aim of this paper is to give a nation of pairwise compactness for double topological spaces and some separation axioms .

الملخص:

1-Introduction

The concept of a fuzzy topology was introduced by Change in 1968 [2] after the introduction of fuzzy sets by Zadeh in 1965. Later this concept was extended to intuitionistic fuzzy topological spaces by Çoker in [4]. In [5] Coker studied continuity, connectedness, compactness and separation axioms in intuitionistic fuzzy topological spaces. In this paper we follow the suggestion of J.G. Garcia and S.E. Rodabaugh [7] that (double fuzzy set) is a more appropriate name than (intuitionistic fuzzy set) , and therefore adopt the term (double-set) for the intuitionistic set , and (double-topology) for the intuitionistic topology of Dogan Çoker , (this issue) we denote by **Dbl-Top** the construct (concrete texture over Set) whose objects are pairs (X, τ) where τ is a double-topology on X. In Section three we discuss making use of this relation between bitopological spaces and double- topological spaces , we generalize a nation of compactness for double- topological space in section four with some theorems about T₁, T₂, T₃.

2-Preliminaries

Throughout the paper by X we denote a non-empty set . In this section we shall present various fundamental definitions and propositions. The following definition is obviously inspired by Atanassov [1].

2.1.Definition. [8] A double-set (Ds in brief) A is an object having the form $A = \langle x, A_1, A_2 \rangle$.

Where A₁ and A₂ are subsets of X satisfying $A_1 \cap A_2 = \phi$. The set A₁ is called the set of members of A, while A₂ is called the set of non-members of A.

Throughout the remainder of this paper we use the simpler $A = (A_1, A_2)$ for a double-set.

2.2.Remark. Every subset A of X may obviously be regarded as a double-set having the form $A^{c} = (A, A^{c})$, where $A^{c} = X \setminus A$ is the complement of A in X.

We recall several relations and operations between DS's as follows:

2.3.Definition. [8] Let the DS's A and B on X be the form $A=(A_1, A_2)$, $B=(B_1, B_2)$, respectively. Furthermore, let $\{A_j : j \in J\}$ be an arbitrary family of DS's in X, where $A_j = (A_j^{(1)}, A_j^{(2)})$. Then

- (a) $A \subseteq B$ if and only if $A_1 \subseteq B_1$ and $A_2 \supseteq B_2$;
- (b) A = B if and only if $A \subseteq B$ and $B \subseteq A$;
- (c) $\overline{A} = (A_2, A_1)$ denotes the complement of A;
- (d) $\bigcap A_i = (\bigcap A_i^{(1)}, \bigcup A_i^{(2)});$
- (e) $\bigcup A_i = (\bigcup A_i^{(1)}, \bigcap A_i^{(2)});$
- (f) [] $A = (A_1, A_1^c);$
- (g) $\langle \rangle A = (A_2^c, A_2);$
- (h) $\phi = (\phi, X)$ and $\underset{\sim}{X} = (X, \phi)$.

In this paper we require the following :

(i) () $A = (A_1, \phi)$, and (ii)) $(A = (\phi, A_2)$.

Is call the image and preimage of DS's under a function.

2.4.Definition. [3,8] Let $x \in X$ be a fixed element in X. Then:

(a)The DS given by $x = (\{x\}, \{x\}^c)$ is called a double-point (DP in brief X).

(b)The DS $x = (\phi, \{x\}^c)$ is called a vanishing double-point (VDP in brief X).

2.5.Definition. [3,8]

- (a) Let x be a DP in X and A=(A₁,A₂) be a DS in X. Then $x \in A$ iff $x \in A_1$.
- (b) Let $x \in A$ be a VDP in X and A=(A₁,A₂) a DS in X. Then $x \in A$ iff $x \notin A_2$.
- It is clear that $x \in A \Leftrightarrow x \subseteq A$ and that $x \in A \Leftrightarrow x \subseteq A$.

2.6.Definition. [10] A double-topology (DT in brief) on a set X is a family τ of DS's in X satisfying the following axioms :

T1: ϕ , $X \in \tau$,

T2: $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,

T3: $\bigcup G_i \in \tau$ for any arbitrary family $\{G_i : j \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called a double-topological space (DTS in brief), and any DS in τ is known as a double open set (DOS in brief). The complement \overline{A} of a DOS A in a DTS is called a double closed set (DCS in brief) in X.

2.7.Definition. [10] Let (X, τ) be an DTS and $A = (A_1, A_2)$ be a DS in X.

Then the interior and closure of A are defined by :

$$int(A) = \bigcup \{G : G \text{ is a DOS in } X \text{ and } G \subseteq A\},\$$

$$cl(A) = \bigcap \{ (H : H \text{ is a DCS in } X \text{ and } A \subseteq H \},$$

respectively.

It is clear that cl(A) is a DCS in X and int(A) a DOS in X. Moreover A is a DCS in X iff cl(A) = A, and A is a DOS in X iff int(A) = A.

2.8. Example. [5] Any topological space (X, τ_0) gives rise to a DT of the form $\tau = \{A' : A \in \tau_0\}$ by identifying a subset A in X with its counterpart $A' = (A, A^c)$, as in Remark 2.2.

3- The Construction of Dbl-Top and Bitop :

We begin by recalling the following results which associates a bitopology with a double topology.

3.1.Prposition. [5] Let (X, τ) be a DTS.

(a) $\tau_1 = \{A_1 : \exists A_2 \subseteq X \text{ with } A = (A_1, A_2) \in \tau\}$ is a topology on X.

(b) $\tau_2^* = \{A_2 : \exists A_1 \subseteq X \text{ with } A = (A_1, A_2) \in \tau\}$ is the family of closed sets of the topology $\tau_2 = \{A_2^c : \exists A_1 \subseteq X \text{ with } A = (A_1, A_2) \in \tau\}$ is a topology on X.

(c) Using (a) and (b) we may conclude that (X, τ_1, τ_2) is a bitopological space.

3.2.Proposition. Let (*X*,*u*,*v*) be a bitopological space. Then the family

 $\{(U,V^c): U \in u, V \in v, U \subseteq V\}$

is a double topology on X.

Proof: The condition $U \subseteq V$ ensures that $U \cap V^c = \phi$, while the given family contains ϕ because $\phi \in u, v$, and it contains X because $X \in u, v$. Finally this family is closed under finite intersections and arbitrary unions by Definition 2.3 (d,e) and the corresponding properties of the topologies u and v.

3.3. Definition. Let (*X*,*u*,*v*) be a bitopological space. Then we set

 $\tau_{uv} = \{ (U, V^c) : U \in u, V \in v, U \subseteq V \}$

and call this the double topology on X associated with (X, u, v).

3.4.Proposition. If (X, u, v) is a bitopological space and τ_{uv} the corresponding DT on X, then

$$(\tau_{uv})_1 = u \text{ and } (\tau_{uv})_2 = v.$$

Proof. $U \in u$ implies $(U, \phi) \in \tau_{uv}$ since $U \subseteq X \in v$, so $u \subseteq (\tau_{uv})_1$. Conversely, take $U \in (\tau_{uv})_1$. Then $(U, B) \in \tau_{uv}$ for some $B \subseteq X$, and now $U \in u$. Hence $(\tau_{uv})_1 \subseteq u$, and the first equality is proved.

The proof of the second equality may be obtained in a similar manner, and we omit the details. Now we define double compact set and we use the link between bitopological space and double topological space to established some theorems .

4. Pairwise Double Compact Set :

4.1. Definition. By an double open cover of a subset A of a double topological space (X, τ) , we mean a collection $C = \{G_j : j \in J\}$ of double open subsets of X such that $A \subset \bigcup \{G_j : j \in J\}$ then we say that C covers A. In particular, A collection C is said to be an open cover of the space X iff $X = \bigcup \{(G_i^1, G_i^2) : j \in J\}$ of double open subsets of X.

4.2.Definition. A double-set A of DTS in (X, τ) is said to be double compact set iff every double sub cover, that is iff for every collection $\{G_j : j \in J\}$ of DOS's for which $A \subset \{G_j : j \in J\}$ for $A = (A_1, A_2)$ such that $(A_1, A_2) \subset (G_{j1}^1, G_{j1}^2) \cup ... \cup (G_{jn}^1, G_{jn}^2)$.

4.3.Definition. Let (X, τ) be DTS and let $N \in X$. A double set N of X is said to be

 τ -nhd of x iff there exists τ -DOS, G such that $x \in G \subset N$, similarly N is called a τ double nhd of $A \subset X$ iff there exists an DOS, G such that $A \subset G \subset N$.

4.4.Definition.[3] The DTS (X, τ) is called pairwise T_2 if given $x \neq y$ in X there exists $G, H \in \tau$ Satisfying $x \in G, y \in H$ and $G \subseteq ()\overline{H}$.

4.5. Proposition. If (X, τ) is pairwise T₂ then every double compact set is double closed set.

Proof: We shall show that $\overline{G} \in \tau$ is double open set. Let $p \in \overline{G} = (G_1, G_2)$. Since X is T_2 then for.

Then $p \in G_2$, $y \notin H_2 \implies y \in H_2^c$, $G_2 \cap H_2^c = \phi$

 \exists double open nhds of p,y, $\mu(p) \& N(y)$ such that $\mu(p) \cap N(y) = \phi$

Now the collection { $\mu(p) : p \in G_2$ } double open cover of G_2

 $:: G \text{ is compact then } \{G_2 \subset \bigcup \mu(p_i)\}.$

let $M = \bigcup \mu(p_i)$, $N = \cap N(y_i)$ then N is double open nhd of y_i

We claim that $M \cap N = \phi$,

$$z \in \mu \Longrightarrow z \in \mu(p_i) \Longrightarrow z \notin N(y_i) \Longrightarrow z \notin N$$
, thus $M \cap N = \phi$

Since $G_2 \subset M$, then $G_2 \cap N = \phi \Longrightarrow N \subset G_2 \Longrightarrow N \subset \overline{G}$ this shows that \overline{G} contains a nhd of each of its point and so \overline{G} is DOS otherwise G is DCS.

4.6. Proposition. Let A and B be disjoint double compact subsets of a DTS (X, τ) Then there exists disjoint DOS's G and H such that $A \subset G$ and $B \subset H$.

Proof: First, let $x \in A$ be fixed. Since X is pairwise T_2 and $x \notin B$, for each $y \in BA \subseteq ()\overline{B}$. $(clearly \ x \in A_1, y \notin B_2 \Longrightarrow y \in B_2^c for A = (A_1, A_2), B = (B_1, B_2))$ There exists DOS's G_y and H_y such that $x \in G_y$ and $y \in H_y$. The collection $\{H_y : y \in B\}$ is a double open cover of B. Since B is double compact subspace of X, many points y_1 , y_2 , ..., y_n of there exist finitely В such that $B \subset \{H_{y_i} : i = 1, 2, ..., n\}, \quad (B_1, B_2) \subset \{(H_{y_i}^1, H_{y_i}^2) : i = 1, 2, ..., n\}$ let $G_{x} = \bigcap \{ G_{y_i} : i = 1, 2, ..., n \} = \bigcap \{ (G_{y_i}^1, G_{y_i}^2) : i = 1, 2, ..., n \}$ $H_x = \bigcup \{ (H_{y_i}^1, H_{y_i}^2) : i = 1, 2, ..., n \}$ then G_x, H_x are disjoint open sets such that $x \in G_x$ and $B \subset H_x$.

now let $x \in A$ be arbitrary and let G_x and H_x be as constructed above, then evidently the collection $\{G_x : x \in A\}$ is a double open cover of A. Since A is a double compact subspace of X. There exist finitely many points, $x_1, x_2, ..., x_m$ such that $A \subset \bigcup \{G_{x_i} : i = 1, 2, ..., m\}$, let $G = \bigcup \{G_{x_i} : i = 1, 2, ..., m\}$ and $H = \bigcap \{H_{x_i} : i = 1, 2, ..., m\}$ then G and H are disjoint double open sets such that

 $A \subset G$ and $B \subset H$.

4.7. Definition. [3] The DTS (X, τ) is called pairwise T₁ if given $x \neq y$ in X there exists

G $\in \tau$ with $x \in G$, $y \notin G$, and there exists $H \in \tau$ with $y \in H$, $x \notin H$.

4.8. Definition. [6] The DTS (X, τ) is called pairwise T₃ if \forall DCS $A \in \tau, a \in int A$ in X there exists $G, H \in \tau$ satisfying $a \in G, a \notin H$, $A \subseteq H$ and $G \subseteq ()\overline{H}$.

4.9. Proposition. The DTS (X, τ) is called pairwise T₁ iff every singleton double set $\{x\}$ of X is DCS.

Proof : \leftarrow Let every singleton double set $\{x\}$ of X be DCS to show that the space

is T₁.Let x , y be any two disjoint double point of X , then $\{x\}$ is a DOS which contain y

Similarly $\overline{\{y\}}$ is a DOS which contain x but does not contain y. Hence (X, τ) is pairwise T_1 . \Rightarrow Let the space be pairwise T_1 and let x be any point of X, we want to show that $\{x\}$ is DCS, that to show X- $\{x\}$ is DOS. Let $y \in X - \{x\}$ then $x \neq y$ since X is pairwise T_1 . There exist an open G_y such that $y \in G_y$ but $x \notin G_y$. It follows that $y \in G_y \subset X-\{x\}$. Hence $X - \{x\}$ is DOS, and to show that $X - \{y\}$ is DOS. Let $x \in X - \{y\}$ this means $x \in X - \{(\phi, \{y\}^{\circ})\} \Rightarrow x \notin X\{y\}^{\circ}, x \in X - \{y\}$ and $y \notin X - \{y\}$ then there exists a DOS H_x such that $x \in H_x$ but $y \notin H_x$, it follows that $x \in H_x \subset X - \{y\}$. Hence $X - \{y\}$ is DOS. Accordingly $\{x\}$ is DCS.

4.10. Proposition. For a DTS (X, τ) pairwise T_3 is pairwise T_1 . **Proof**: Let DTS (X, τ) be pairwise T_3 , we have G=(A,B), $H=(C,D) \in \tau$ with $x \in G, x \notin H$ and $G \subseteq ()\overline{H}$ i.e $A \subseteq D$, take $x \neq y$ in X and $y \in H$ $\Rightarrow y \notin D \Rightarrow y \notin A \Rightarrow y \notin G$ Then (X, τ) is T_1 .

4.11. Proposition. For a DTS (X, τ) pairwise T₃ is pairwise T₂.

Proof : Let DTS (X, τ) be pairwise T_3 . Take $x \neq y$ in X Since X is pairwise T_1 , then there exist $G \in \tau$ with x and $y \notin G$ and $H \in \tau$ with $y \in H$ and $x \notin H$, and since X is pairwise regular there exist $G, H \in \tau$

such that $x \in G$ and $x \notin H$, $G \subseteq ()\overline{H}$ so that $x \in G$, $y \in H$ and $G \subseteq ()\overline{H}$. Accordingly (X,τ) is T_2 .

References

[1] Atanassov, K, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1),87-96,1986.

[2] Change, C. L, Fuzzy Topological Spaces, J. Math. Appl. 24, 182-190, 1968.

[3] Coker, D, A note on Intuitionistic Sets and Intuitionistic Points, Turkish J. Math. 20(3), 343-351, 1996.

[4] Coker, D. and Es, A. H. On Fuzzy Compactness In Intuitionistic Fuzzy Topological Spaces, j. Fuzzy Mathematics 3(4), 899-909, 1995.

[5] Coker, D. and Demirci, M. On Intuitionistic Fuzzy Points, Notes IFS 1(2), 79-84, 1995.

[6] P. Fletcher , H. B. Holye and C. W. Patty, The Comparison of Topologies , Duke Math. J.36,325-331, 1965.

[7] Garia, J.G. and Rodabaugh, S.E. Order-theoretic, topological, categorical redundancies of interval-valued sets, grey sets, vague sets, interval-valued (intuitionistic) sets, (intuitionistic) fuzzy sets and topologies, Fuzzy Sets ans Systems 156(3),445-484, 2005.

[8] Kelly, J. G, Bitopological Space, Proc. London Math. Soc.13,71-89, 1963.

[9] Zadeh, L. A, Fuzzy Sets, Inform. And Control 8,338-353, 1965.