# ON A NEW SUBFAMILY OF MALTIVALENT FUNCTIONS WITH NEGATIVE COFFICIENTS 

Waggas Glib Atshan<br>Department of Mathematics<br>Collage of Computer Science and Mathematics<br>University of Al-Qadisiya<br>Email: Waggashnd@yahoo.com


#### Abstract

In the present paper, we establish a new subfamily of multivalent functions with negative coefficients. Sharp results concerning coefficients, distortion theorem and the radius of convexity for the class $W H_{p}(\alpha, \beta, \varepsilon)$ are obtained. Furthermore it is shown that the class $W H_{p}(\alpha, \beta, \varepsilon)$ is closed under convex linear combinations. The arithmetic mean is also obtained.


2000 Mathematics Subject Classification: Primary 30C45.
Key Words: Multivalent Function, Distortion Theorem, Radius of Convexity, Convex Linear Combination, Arithmetic Mean.

## 1. Introduction :

Let $W_{p}(p$ a fixed integer greater than 1$)$ denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{n+p} p^{n+p}, p, n \in I N=\{1,2,3, \ldots\} \tag{1.1}
\end{equation*}
$$

which are analytic and multivalent functions in the open unit disk $U=\{z \in C:|z|<1\}$. Also let $H_{p}$ denote the subclass of $W_{p}$ consisting of functions of the form:
$f(z)=z^{p}-\sum_{n=1}^{\infty} a_{n+p} z^{n+p} \quad, a_{n+p} \geq 0, n, p \in I N$.

A function $f \in H_{p}$ is said to be in the class $W H_{p}(\alpha, \beta, \varepsilon)$ if and only if

$$
\begin{aligned}
& \left|\frac{\left(f^{\prime \prime}(z) z^{2-p}-p(p-1)\right)+\left(f^{\prime}(z) z^{1-p}-p\right)}{2 \varepsilon\left(f^{\prime \prime}(z) z^{2-p}-\alpha\right)-\left(f^{\prime \prime}(z) z^{2-p}-p(p-1)\right.}\right|<\beta, \\
& z \in U, \text { for } 0 \leq \alpha<\frac{\mathrm{p}}{2 \varepsilon}, 0<\beta \leq 1, \frac{1}{2}<\varepsilon \leq 1 .
\end{aligned}
$$

Such type of study and study another different classes of univalent and multivalent functions was carried out by Aouf [1] caplinger [5], Gupte - Jain [6], Juneja - Mogra [7], Kulkarni [8], Atshan [2] and Atshan - Kulkarni [3,4].

In the present paper, sharp results concerning coefficients, distortion theorem and the radius of convexity for the class $W H_{p}(\alpha, \beta, \varepsilon)$ are obtained. Finally, we prove that the class $W H_{p}(\alpha, \beta, \varepsilon)$ is closed under the arithmetic mean and convex linear combinations.

## 2. Coefficient Theorem :

Theorem 1: A function $f(z)=z^{p}-\sum_{n=1}^{\infty} a_{n+p} z^{n+p}$ is in the class $W H_{p}(\alpha, \beta, \varepsilon)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}(n+p)[(n+p)+(n+p-1)(2 \varepsilon-1) \beta] a_{n+p} \leq 2 \varepsilon \beta(p(p-1)-\alpha) . \tag{2.1}
\end{equation*}
$$

The result (2.1) is sharp, the extermal function being

$$
\begin{equation*}
f(z)=z^{p}-\frac{2 \varepsilon \beta(p(p-1)-\alpha)}{(n+p)[(n+p)+(n+p-1)(2 \varepsilon-1) \beta] a_{n+p}} z^{n+p} . \tag{2.2}
\end{equation*}
$$

Proof: Let $|z|=1$. Then

$$
\begin{aligned}
& \left|\left(f^{\prime \prime}(z) z^{2-p}-p(p-1)\right)+\left(f^{\prime}(z) z^{1-p}-p\right)\right|-\beta\left|2 \varepsilon\left(f^{\prime \prime}(z) z^{2-p}-\alpha\right)-\left(f^{\prime \prime}(z) z^{2-p}-p(p-1)\right)\right| \\
& =\left|-\sum_{n=1}^{\infty}(n+p)^{2} a_{n+p} z^{n}\right|-\beta\left|2 \varepsilon(p(p-1)-\alpha)-(2 \varepsilon-1) \sum_{n=1}^{\infty}(n+p)(n+p-1) a_{n+p} z^{n}\right| \\
& \leq \sum_{n=1}^{\infty}(n+p)[(n+p)+(n+p-1)(2 \varepsilon-1) \beta] a_{n+p}-2 \varepsilon \beta(p(p-1)-\alpha) \leq 0,
\end{aligned}
$$

by hypothesis. Hence, by the maximum modulus theorem $f \in W H_{p}(\alpha, \beta, \varepsilon)$.

Conversely, suppose that

$$
\begin{aligned}
& \left|\frac{\left(f^{\prime \prime}(z) z^{2-p}-p(p-1)\right)+\left(f^{\prime}(z) z^{1-p}-p\right)}{2 \varepsilon\left(f^{\prime \prime}(z) z^{2-p}-\alpha\right)-\left(f^{\prime \prime}(z) z^{2-p}-p(p-1)\right)}\right| \\
& =\left|\frac{-\sum_{n=1}^{\infty}(n+p)^{2} a_{n+p} z^{n}}{2 \varepsilon(p(p-1)-\alpha)-(2 \varepsilon-1) \sum_{n=1}^{\infty}(n+p)(n+p-1) a_{n+p} z^{n}}\right|<\beta .
\end{aligned}
$$

Since $|\operatorname{Re}(z)| \leq|z|$ for all $z$, we have

$$
\operatorname{Re}\left\{\frac{\sum_{n=1}^{\infty}(n+p)^{2} a_{n+p} z^{n}}{2 \varepsilon(p(p-1)-\alpha)-(2 \varepsilon-1) \sum_{n=1}^{\infty}(n+p)(n+p-1) a_{n+p} z^{n}}\right\}<\beta .
$$

We select the values of $z$ on the real axis so that $f^{\prime \prime}(z) z^{2-p}$, $f^{\prime}(z) z^{1-p}$ are real. Simplifying the denominator in the in the above expression and letting $z \rightarrow 1$ through real values, we obtain

$$
\sum_{n=1}^{\infty}(n+p)^{2} a_{n+p} \leq 2 \varepsilon \beta(p(p-1)-\alpha)-(2 \varepsilon-1) \beta \sum_{n=1}^{\infty}(n+p)(n+p-1) a_{n+p},
$$

and it results in the required condition.
The result is sharp for the function (2.2) .

## 3. Distortion Theorem:

Theorem2: Let $f \in W H_{p}(\alpha, \beta, \varepsilon)$. Then for $|z|=r$,
$r^{p}-\frac{2 \varepsilon \beta(p(p-1)-\alpha)}{(p+1)[(p+1)+p(2 \varepsilon-1) \beta]} r^{p+1} \leq|f(z)| \leq r^{p}+\frac{2 \varepsilon \beta(p(p-1)-\alpha)}{(p+1)[(p+1)+p(2 \varepsilon-1) \beta]} r^{p+1}$,
and
$p r^{p-1}-\frac{2 \varepsilon \beta(p(p-1)-\alpha)}{(p+1)+p(2 \varepsilon-1) \beta} r^{p} \leq\left|f^{\prime}(z)\right| \leq p r r^{p-1}+\frac{2 \varepsilon \beta(p(p-1)-\alpha)}{(p+1)+p(2 \varepsilon-1) \beta} r^{p}$,
Proof: In view of Theorem 1, we have
$\sum_{n=1}^{\infty} a_{n+p} \leq \frac{2 \varepsilon \beta(p(p-1)-\alpha)}{(p+1)[(p+1)+p(2 \varepsilon-1) \beta]}$
Hence $|f(z)| \leq r^{p}+\sum_{n=1}^{\infty} a_{n+p} r^{n+p} \leq r^{p}+\frac{2 \varepsilon \beta(p(p-1)-\alpha)}{(p+1)[(p+1)+p(2 \varepsilon-1) \beta]} r^{p+1}$,
and $|f(z)| \geq r^{p}-\sum_{n=1}^{\infty} a_{n+p} r^{n+p} \geq r^{p}-\frac{2 \varepsilon \beta(p(p-1)-\alpha)}{(p+1)[(p+1)+p(2 \varepsilon-1) \beta]} r^{p+1}$.
In the same way, we have

$$
\left|f^{\prime}(z)\right| \leq p r^{p-1}+\sum_{n=1}^{\infty}(n+p) a_{n+p} r^{n+p-1} \leq p r^{p-1}+\frac{2 \varepsilon \beta(p(p-1)-\alpha)}{(p+1)+p(2 \varepsilon-1) \beta} r^{p},
$$

and

$$
\left|f^{\prime}(z)\right| \geq p r^{p-1}-\sum_{n=1}^{\infty}(n+p) a_{n+p} r^{n+p-1} \geq p r^{p-1}-\frac{2 \varepsilon \beta(p(p-1)-\alpha)}{(p+1)+p(2 \varepsilon-1) \beta} r^{p} .
$$

This complete the proof of the theorem.

The above bounds are sharp. Equalities are attended for the following function

$$
\begin{equation*}
f(z)=z^{p}-\frac{2 \varepsilon \beta(p(p-1)-\alpha)}{(p+1)[(p+1)+p(2 \varepsilon-1) \beta]} z^{p+1}, z= \pm 1 . \tag{3.3}
\end{equation*}
$$

## 4. Radius of Convexity :

Theorem 3: Let $f \in W H_{p}(\alpha, \beta, \varepsilon)$. Then $f$ is convex in the disk $|z|<r=r(p, \alpha, \beta, \varepsilon)$, where

$$
r(p, \alpha, \beta, \varepsilon)=\inf _{n \in I N}\left\{\frac{p^{2}(n+p)[(n+p)+(n+p-1)(2 \varepsilon-1) \beta]}{(n+p)^{2} 2 \varepsilon \beta(p(p-1)-\alpha)}\right\}^{\frac{1}{n}} .
$$

The result is sharp, the extermal function being of the form (2.2).

Proof: It is enough to show that.

$$
\left|\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-p\right| \leq p \text { for }|z|<1 .
$$

First, we note that

$$
\left|\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-p\right|=\left|\frac{\mid f^{\prime \prime}(z)+(1-p) f^{\prime}(z)}{f^{\prime}(z)}\right| \leq \frac{\sum_{n=1}^{\infty} n(n+p) a_{n+p}|z|^{n}}{p-\sum_{n=1}^{\infty}(n+p) a_{n+p}|z|^{n}} .
$$

Thus, the result follows if

$$
\sum_{n=1}^{\infty} n(n+p) a_{n+p}|z|^{n} \leq p\left\{p-\sum_{n=1}^{\infty}(n+p) a_{n+p}|z|^{n}\right\},
$$

or, equivalently,
$\sum_{n=1}^{\infty}\left(\frac{n+p}{p}\right)^{2} a_{n+p}|z|^{n} \leq 1$.

But, in view of Theorem 1, we have
$\sum_{n=1}^{\infty}(n+p)[(n+p)+(n+p-1)(2 \varepsilon-1) \beta] a_{n+p} \leq 2 \varepsilon \beta(p(p-1)-\alpha)$.
Thus $f$ is convex if
$\left(\frac{n+p}{p}\right)^{2}|z|^{n} \leq \frac{(n+p)[(n+p)+(n+p-1)(2 \varepsilon-1) \beta]}{2 \varepsilon \beta(p(p-1)-\alpha)}, n=1,2,3, \ldots$,
hence
$|z|=\left\{\frac{p^{2}(n+p)[(n+p)+(n+p-1)(2 \varepsilon-1) \beta]}{(n+p)^{2} 2 \varepsilon \beta(p(p-1)-\alpha)}\right\}^{\frac{1}{n}}, n=1,2,3, \ldots$,
which complete the proof.

## 5. Closure Theorem:

Next, two results respectively show that the family $W H_{p}(\alpha, \beta, \varepsilon)$ is closed under taking "arithmetic mean" and "convex linear combination".

Theorem4: Let $f(z)=z^{p}-\sum_{n=1}^{\infty} a_{n+p} z^{n+p}$ and $g(z)=z^{p}-\sum_{n=1}^{\infty} b_{n+p} z^{n+p}$ are in the class $W H_{p}(\alpha, \beta, \varepsilon)$. Then
$h(z)=z^{p}-\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n+p}+b_{n+p}\right) z^{n+p} \quad$ is also in the class $W H_{p}(\alpha, \beta, \varepsilon)$.

Proof: $f$ and $g$ both being members of $W H_{p}(\alpha, \beta, \varepsilon)$, we have in accordance with Theorem 1,

$$
\begin{equation*}
\sum_{n=1}^{\infty}(n+p)[(n+p)+(n+p-1)(2 \varepsilon-1) \beta] a_{n+p} \leq 2 \varepsilon \beta(p(p-1)-\alpha) \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty}(n+p)[(n+p)+(n+p-1)(2 \varepsilon-1) \beta] b_{n+p} \leq 2 \varepsilon \beta(p(p-1)-\alpha) . \tag{5.2}
\end{equation*}
$$

To show that h is member of $W H_{p}(\alpha, \beta, \varepsilon)$ it is enough to show $\frac{1}{2} \sum_{n=1}^{\infty}(n+p)[(n+p)+(n+p-1)(2 \varepsilon-1) \beta]\left(a_{n+p}+b_{n+p}\right) \leq 2 \varepsilon \beta(p(p-1)-\alpha)$.

This is exactly an immediate consequence of (5.1) and (5.2).
Let the function $f_{j}(z) \quad(j=1,2, \ldots, \ell)$ be defined by

$$
\begin{equation*}
f_{j}(z)=z^{p}-\sum_{n=1}^{\infty} a_{n+p, j} z^{n+p},\left(a_{n+p, j} \geq 0, n \in I N, n \geq 1\right) . \tag{5.3}
\end{equation*}
$$

Theorem 5: $W H_{p}(\alpha, \beta, \varepsilon)$ is closed under convex linear combination.

Proof: Let the function $f_{j}(z)(j=1,2)$ defined by (5.3) be in the class $W H_{p}(\alpha, \beta, \varepsilon)$. It is sufficient to show that the function $h(z)$ defined by

$$
h(z)=\lambda f_{1}(z)+(1-\lambda) f_{2}(z), \quad(0 \leq \lambda \leq 1)
$$

is in the class $W H_{p}(\alpha, \beta, \varepsilon)$. Since, for $0 \leq \lambda \leq 1$,

$$
h(z)=z^{p}-\sum_{n=1}^{\infty}\left[\lambda a_{n+p, 1}+(1-\lambda) a_{n+p, 2}\right] z^{n+p}
$$

by applying Theorem 1, we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(n+p)[(n+p)+(n+p-1)(2 \varepsilon-1) \beta]}{2 \varepsilon \beta(p(p-1)-\alpha)}\left[\lambda a_{n+p, 1}+(1-\lambda) a_{n+p, 2}\right] \\
& =\lambda \sum_{n=1}^{\infty} \frac{(n+p)[(n+p)+(n+p-1)(2 \varepsilon-1) \beta]}{2 \varepsilon \beta(p(p-1)-\alpha)} a_{n+p, 1}+ \\
& (1-\lambda) \sum_{n=1}^{\infty} \frac{(n+p)[(n+p)+(n+p-1)(2 \varepsilon-1) \beta]}{2 \varepsilon \beta(p(p-1)-\alpha)} a_{n+p, 2} \leq 1,
\end{aligned}
$$

which implies that $h(z)$ is in the class $W H_{p}(\alpha, \beta, \varepsilon)$ and this completes the proof.

## REFERENCES

[1] M.K. Aouf, Certain classes of P-valent functions with negative coefficients II, Indian J. pure appl. Math. 19(8), (1988), 761-767.
[2] W.G. Atshan, Fractional calculus on a subclass of spirallike Functions defined by Komatu operator, Int. Math. Forum 32(3), (2008), 1587-1594.
[3] W.G. Atshan and S.R. Kulkarni, On a class of p-valent analytic Function with negative coefficients defined by Dziok-Sirvastava linear operator, Int. J Math. Sci. \& Engg. Appls. (IJMSEA) 2(1) (2007), 173-182.
[4]W.G. Atshan and S.R. Kulkarni, Application of subordination and Ruscheweyh derivative for p-valent functions with negative coefficients, Acta Ciencia Indica, Vol. XXXIV M, No.1, (2008), 461-474.
[5] T.R. Caplinger, On certain classes of analytic functions, Ph.D. dissertation, University of Mississipi, 1972.
[6] V.P. Gupta, P.K. Jain, Certain classes of univalent functions with negative coefficients, Bull. Auster. Math. Soc. 15, (1976),467-473.
[7] O.P. Juneja, M.L. Mogra, Radii of convexity for certain classes of univalent analytic functions, pacific Jour. Math. 78.(1978), 359-368.
[8] S.R. Kulkarni, Some problems connected with univalent functions, Ph.D. Thesis, Shivaji University, Kolhapur (1981) , unpublished.

