The inverse of operator matrix A where $A \geq I$ and $A>0$

Mohammad Saleh Balasim

Department of Mathematics,Collage of Science,AL-Mustansiryah University,Baghdad,Iraq

الخلاصة
ليكن كل من H,K فضـاء هلبرت وليكنH@Kهو الضرب الايكارتي لهما وليكن

، $\mathrm{H}, \mathrm{K}, \mathrm{H} \oplus \mathrm{K}$ فضاءات باناخ لكل المؤثرات المقيده(المستمره)على B(K, H), $\mathrm{C}(\mathrm{H}, \mathrm{K}) \mathrm{B}(\mathrm{K}), \mathrm{B}(\mathrm{H}), \mathrm{B}(\mathrm{H} \oplus \mathrm{K})$

على

Abstract

Let H and K be Hilbert spaces and let $\mathrm{H} \oplus \mathrm{K}$ be the cartesian product of them. Let $\mathrm{B}(\mathrm{H}), \mathrm{B}(\mathrm{K}), \mathrm{B}(\mathrm{H} \oplus \mathrm{K}), \mathrm{B}(\mathrm{K}, \mathrm{H}), \mathrm{B}(\mathrm{H}, \mathrm{K})$ be the Banach spaces of bounded(continuous) operators on $\mathrm{H}, \mathrm{K}, \mathrm{H} \oplus \mathrm{K}$, and from K into H and from H into K respectively.In this paper we find the inverse of operator matrix $A=\left[\begin{array}{ll}B & C \\ D & E\end{array}\right] \in B(H \oplus K)$ where $B \in B(H), C \epsilon B(K, H), D \in B(H, K)$, $\mathrm{E} \epsilon \mathrm{B}(\mathrm{K})$ and $\mathrm{A} \geq \mathrm{I}_{\mathrm{H} \oplus \mathrm{K}}, \mathrm{A}>$ Owhere $\mathrm{I}_{\mathrm{H} \oplus \mathrm{K}}$ is the identity operator on $\mathrm{H} \oplus \mathrm{K}$

\section*{Introduction}

Let <,> denotes an inner product on a Hilbert space, and we will denote Hilbert spaces by $\mathrm{H}, \mathrm{K}, \mathrm{H}_{\mathrm{i}}, \mathrm{K}_{\mathrm{i}}$ and $\mathrm{H} \oplus \mathrm{K}$ denotes the Cartesian product of the Hilbert spaces H, K, and $\mathrm{B}(\mathrm{H})$ $, \mathrm{B}(\mathrm{H} \oplus \mathrm{K}), \mathrm{B}(\mathrm{K}, \mathrm{H})$, be the Banach spaces of bounded(continuous) operators on $\mathrm{H}, \mathrm{H} \oplus \mathrm{K}$, and from K into H respectively[see2]. The inner product on $\mathrm{H} \oplus \mathrm{K}$ is define by: $\langle(\mathrm{x}, \mathrm{y}),(\mathrm{w}, \mathrm{z}) \geq\langle x, w\rangle+\langle y, z\rangle x, w \in \mathrm{H}, y, z \in \mathrm{~K}$ we say that A is positive operator on H and denote that by $\mathrm{A} \geq 0$ if $\langle A x, x\rangle \geq 0$ for all x in H , and in this case it has a unique positive square root, we denote this square root by $\sqrt{\mathrm{A}}$ [see2], it is easy to check that A is invertible if and only if \sqrt{A} is invertible. A^{*} denotes the adjoint of A and I_{H} denotes the identity operator on the Hilbert space H.We define the operator matrix $A=\left[\begin{array}{ll}B & C \\ E & D\end{array}\right] \epsilon B(H \oplus K, L \oplus M)$ where $B \in B(H, L), C \in B(K, L), E \in B(H, M), D$ $\epsilon B(K, M)$ as following $A\binom{x}{y}=\left[\begin{array}{ll}B & C \\ E & D\end{array}\right]\binom{x}{y}=\left[\begin{array}{l}B x+C y \\ E x+D y\end{array}\right]$, where $\binom{x}{y} \in H \oplus K$, and similar for the case $\mathrm{m} \times \mathrm{n}$ operator matrix [see $1 \& 3 \& 6$]. If $A=\left[\begin{array}{ll}B & C \\ E & D\end{array}\right]$ then $A^{*}=\left[\begin{array}{ll}B^{*} & E^{*} \\ C^{*} & D^{*}\end{array}\right]$.

If $A=\left[\begin{array}{ll}B & C \\ E & D\end{array}\right] \geq 0$ then A is a self- adjoint and so has the form $A=\left[\begin{array}{cc}B & C \\ C^{*} & D\end{array}\right]$ and similar for the case $\mathrm{n} \times \mathrm{n}$ operator matrix [see 1\&3]. For related topics[see 7\&8]. For elementary facts about matrices [see5 \&9] and for elementary facts about Hilbert spaces and operator theory [see 2\&6].
Remark: we will sometimes denote $\mathrm{I}_{\mathrm{H} \oplus \mathrm{K}}$ (the identity on $\mathrm{H} \oplus \mathrm{K}$) or I_{H} (the identity on H) or I_{K} (the identity on K) or any identity operator by I, and also we will sometimes denote any zero operator by 0

1)Preliminaries:

Proposition1.1.: Let $\mathrm{T} \epsilon \mathrm{B}(\mathrm{H}, \mathrm{K})$ then
1)if $\mathrm{T}^{*} \mathrm{~T} \geq \mathrm{I}$ and $\mathrm{TT}^{*} \geq \mathbf{I}$ then T is invertible,
2)if T is self-adjoint, $\mathrm{T}^{2} \geq$ I then T is invertible,
3)if $T \geq 0$ then T is invertible if and only if \sqrt{T} is invertible, and in this case we have $\left.(\sqrt{\mathrm{T}})^{2}\right)^{-1}=\left((\sqrt{\mathrm{T}})^{-1}\right)^{2}$,
4)if T is self-adjoint then T is invertible from right if and only if it is invertible from left,
5)if $\mathrm{T} \geq \mathrm{I}$ then T is invertible,
6) if $\mathbf{T} \geq 0$ and it is invertible then $T^{-1} \geq 0$, and in this case we have $\sqrt{T^{-1}}=(\sqrt{T})^{-1}$
7) $\mathrm{T} \geq$ I if and only if $0 \leq \mathrm{T}^{-1} \leq \mathrm{I}$.

Proof:1)see[2]p. 156
2)from 1)
3) if T is invertible then there exists an operator S such that $S T=T S=I$,so $(\mathrm{S} \sqrt{\mathrm{T}}) \sqrt{\mathrm{T}}=\sqrt{\mathrm{T}}(\sqrt{\mathrm{T}} \mathrm{S})=$ I i.e. $\sqrt{\mathrm{T}}$ is invertible. Conversely if $\sqrt{\mathrm{T}}$ is invertible then there exists an operator R such that $R \sqrt{T}=\sqrt{T} R=I$,so $I=I$. $I=(\sqrt{T} R)(\sqrt{T} R)=\sqrt{T}(R \sqrt{T}) R$
$=\sqrt{T}(\sqrt{T} R) R=T R^{2}=R^{2} T$, hence T is invertible, and in this case we have
$\left.(\sqrt{\mathrm{T}})^{2}\right)^{-1}=\mathrm{T}^{-1}=\mathrm{R}^{2}=\left((\sqrt{\mathrm{T}})^{-1}\right)^{2} . \mathrm{a}$
4) if T is self-adjoint then $\mathrm{T}=\mathrm{T}^{*}$, but T is invertible from right if and only if T^{*} is invertible from left.a
5) if $T \geq I$ then $T \geq 0$,so \sqrt{T} exists and it is self-adjoint and $(\sqrt{T})^{2} \geq I$,so \sqrt{T} is invertible and hence T is invertible.a
6)if $\mathbf{T} \geq 0$ and it is invertible then $\langle T x, x\rangle \geq 0$,so
$\left\langle T^{-1} x, T^{-1} x\right\rangle \geq 0$. i.e. $\left\langle x, T^{-1} x\right\rangle \geq 0, \forall x$.Hence $T^{-1} \geq 0$.Now $\sqrt{I}=I$, because
$\sqrt{\mathrm{I}} \cdot \sqrt{\mathrm{I}}=\mathrm{I}$, and $\mathrm{I} . \mathrm{I}=\mathrm{I}$, but the positive square root is unique(see[2]p.149) so $\sqrt{\mathrm{I}}=\mathrm{I}$.and since $\mathrm{T} \geq 0, \mathrm{~T}^{-1} \geq 0, \mathrm{~T}^{-1} \mathrm{~T}=\mathrm{I} \geq 0$, we have $\sqrt{T^{-1}} \sqrt{T}=\sqrt{T^{-1}} \mathrm{~T}\left(\right.$ see[2]p.149),so $\sqrt{T^{-1}} \sqrt{T}=\sqrt{I}=I$, hence $\sqrt{T^{-1}}=(\sqrt{T})^{-1} . a^{\prime}$ 7)if $\mathrm{T} \geq \mathrm{I}$ then $\mathrm{T} \geq 0$ and it is invertible .so[from 6)]we have $\mathrm{T}^{-1} \geq 0$.Now $\mathrm{T}^{-1} \geq 0$ $\& T-I \geq 0 \& T^{-1}(T-I)=(T-I) T^{-1}$ [because
$\mathrm{T}^{-1}(\mathrm{~T}-\mathrm{I})=\mathrm{T}^{-1} \mathrm{~T}-\mathrm{T}^{-1}=\mathrm{I}-\mathrm{T}^{-1}$ and
$\left.(\mathrm{T}-\mathrm{I}) \mathrm{T}^{-1}=\mathrm{T} \mathrm{T}^{-1}-\mathrm{T}^{-1}=\mathrm{I}-\mathrm{T}^{-1}\right]$.So, $\mathrm{T}^{-1}(\mathrm{~T}-\mathrm{I}) \geq 0$ (see[2]p.149), hence
$\mathrm{T}^{-1} \leq \mathrm{I} . \square$ Conversely if $0 \leq \mathrm{T}^{-1} \leq \mathrm{I}$ then [from 6)]we have $\mathrm{T} \geq 0$
but $\mathrm{I}-\mathrm{T}^{-1} \geq 0$ and $\mathrm{T}\left(\mathrm{I}-\mathrm{T}^{-1}\right)=\left(\mathrm{I}-\mathrm{T}^{-1}\right) \mathrm{T}$, so
$\mathrm{T}\left(\mathrm{I}-\mathrm{T}^{-1}\right) \geq 0$, hence $\mathrm{T} \geq \mathrm{I}$.
Proposition1.2:1)if $A=\left[\begin{array}{ll}B & C \\ D & E\end{array}\right] \geq 0$ then $C=D^{*}$ and $B \geq 0 \& E \geq 0$
2)if $A=\left[\begin{array}{ll}B & C \\ D & E\end{array}\right] \geq I$ then $C=D^{*}$ and $B \geq I \& E \geq I$
3) if $A=\left[\begin{array}{ll}B & C \\ D & E\end{array}\right] \leq$ I then $C=D^{*}$ and $B \leq I \& E \leq I$

Proof:1)see[1]p.18.a
2)if $A \geq I$ then $A-I \geq 0$ but $I=\left[\begin{array}{ll}I & 0 \\ 0 & I\end{array}\right]$,so
$\left[\begin{array}{ll}B & C \\ D & E\end{array}\right]-\left[\begin{array}{cc}I & 0 \\ 0 & I\end{array}\right]=\left[\begin{array}{cc}B-I & C \\ D & E-I\end{array}\right] \geq 0$. Then from 1) we have that $C=D^{*}$
$, B-I \geq 0, E-I \geq 0$ i.e. $B \geq I \& E \geq I$.
3)Similar to 2)

Proposition1.3.: if $A=\left[\begin{array}{cc}B & C \\ C^{*} & E\end{array}\right]$ is invertible, $A \geq I$ then B, E are invertible
Proof: from Proposition1.2.2) we have $B \geq I \& E \geq I$,so B, E are invertible. \square
To show that the converse is not true we need the following theorem from[1]p.19:-

Theorem1.4.:Let $\mathrm{B} \in \mathrm{B}(\mathrm{H}), \mathrm{E} \epsilon \mathrm{B}(\mathrm{K}), \mathrm{C} \epsilon \mathrm{B}(\mathrm{K}, \mathrm{H})$ such that $\mathrm{B} \geq 0$ \& $\mathrm{E} \geq 0$ then:
$\left[\begin{array}{cc}B & C \\ C^{*} & E\end{array}\right] \geq 0$ if and only if there exists a contraction $\mathrm{X} \epsilon \mathrm{B}(\mathrm{K}, \mathrm{H})$ such that $\mathrm{C}=\sqrt{\mathrm{B}} \mathrm{X} \sqrt{\mathrm{E}}$.
Now the following example show that the converse of proposition1.3. is not true
Example1.5: Let $\mathrm{A}=\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$,so $\mathrm{B}=2 \geq 1, \mathrm{E}=2 \geq 1$ and they are invertible but A is not invertible[since $\operatorname{det} \mathrm{A}=0]$. Note that $\mathrm{A} \geq 0[$ since $\mathrm{C}=2=\sqrt{2} \sqrt{2}=\sqrt{\mathrm{B}} \quad \mathrm{X} \sqrt{\mathrm{E}}$ where X $=1$, hence $|X| \leq 1]$, but $A \notin$ [since $A-I=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$,and if $\exists X$ such that $2=\sqrt{1} X \sqrt{1}$,so X $=2$, hence $|X| \$ 1$ i.e. $A-I \neq 0$, hence $A \neq I]$.

Remark1.6.: it is easy to check that:

1) if A is invertible $m \times n$ operator matrix (i.e. \exists ann X mopeator marix B s.t. $A B=I_{m} \& B A=I_{n}$,

Where $\mathrm{I}_{\mathrm{m}} \& \mathrm{I}_{\mathrm{n}}$ are the $\mathrm{m} \times \mathrm{m} \&$ the $\mathrm{n} \times \mathrm{n}$ identity operator matrices respectively) and if matrix C results from A by interchanging two rows(columns) of A then C is also invertible.
2)if two rows(columns) of an $m \times n$ operator matrix A are equal then A is not invertible.
3)if a row(column) of an $m \times n$ operator matrix A consists entirely of zero operators then A is not invertible.
4) $A=\left[\begin{array}{ll}B & 0 \\ 0 & E\end{array}\right]$ is invertible if and only if B, E are invertible, and in this case $A^{-1}=\left[\begin{array}{cc}B^{-1} & 0 \\ 0 & E^{-1}\end{array}\right]$.

Remark1.7.from remark1.6. 1) we can conclude :if $A=\left[\begin{array}{ll}B & C \\ D & E\end{array}\right] \in B(H \oplus K, L \oplus M)$ then $A=\left[\begin{array}{ll}B & C \\ D & E\end{array}\right]$ is invertible if and only if $\left[\begin{array}{ll}C & B \\ E & D\end{array}\right]$ is invertible if and only if $\left[\begin{array}{ll}D & E \\ B & C\end{array}\right]$ is invertible if and only if $\left[\begin{array}{ll}E & D \\ C & B\end{array}\right]$ is invertible.

2) The inverse of a 2×2 operator matrix A where $A \geq I$

Theorem2.1.:1)if $A=\left[\begin{array}{cc}B & C \\ C^{*} & E\end{array}\right] \geq I$ then $B, E, B-C^{-1} C^{*}, E-C^{*} B^{-1} C$ are invertible and $A^{-1}=\left[\begin{array}{cc}\left(B-C E^{-1} C^{*}\right)^{-1} & -\left(B-C E^{-1} C^{*}\right)^{-1} C E^{-1} \\ -E^{-1} C^{*}\left(B-C E^{-1} C^{*}\right)^{-1} & \left(E-C^{*} B^{-1} C\right)^{-1}\end{array}\right]$

In fact :2)ifA $=\left[\begin{array}{cc}B & C \\ C^{*} & E\end{array}\right] \geq I$ then $B \geq I, E \geq I, B-C E^{-1} C^{*} \geq I, E-C^{*} B^{-1} C \geq I$
Proof 1) if $\mathrm{A}=\left[\begin{array}{ll}\mathrm{B} & \mathrm{C} \\ \mathrm{C}^{*} & \mathrm{E}\end{array}\right] \geq \mathrm{I}$ then A is invertible[proposition1.1.5)] and
$\mathrm{B} \geq \mathrm{I}, \mathrm{E} \geq \mathrm{I}[$ proposition 1.2.2)], so B,E are invertible [proposition1.1.5)]
Now, let $A^{-1}=\left[\begin{array}{cc}J & G \\ G^{*} & F\end{array}\right]$ i.e. $A A^{-1}=I=\left[\begin{array}{cc}\mathbf{I}_{H} & 0 \\ 0 & I_{K}\end{array}\right]$
,then $\mathrm{J} \geq 0, \mathrm{~F} \geq 0$ since $\mathrm{A}^{-1} \geq 0$. And
i) $\mathrm{BJ}+\mathrm{CG}^{*}=\mathrm{I}_{\mathrm{H}}$, ii) $\mathrm{BG}+\mathrm{CF}=0$, ,iii) $\mathrm{C}^{*} \mathrm{~J}+\mathrm{EG}^{*}=0$, iv) $\mathrm{C}^{*} \mathrm{G}+\mathrm{EF}=\mathrm{I}_{\mathrm{K}}$.

So from iii) we have JC $+\mathrm{GE}=0 . \mathrm{So}$,

$$
\mathrm{G}=-\mathrm{JCE}^{-1}=-\mathrm{B}^{-1} \mathrm{CF} .
$$

Then we have from iv) that
$\left(E-C^{*} B^{-1} C\right) F=I_{K}$ i.e. $E-C^{*} B^{-1} C$ is invertible , $F=\left(E-C^{*} B^{-1} C\right)^{-1}$,
and from i) we have $\mathrm{J}\left(\mathrm{B}-\mathrm{CE}^{-1} \mathrm{C}^{*}\right)=\mathrm{I}_{\mathrm{H}}, \mathrm{so} \mathrm{B}-\mathrm{CE}^{-1} \mathrm{C}^{*}$ is invertible, and
$J=\left(B-C E^{-1} C^{*}\right)^{-1}, G=-\left(B-C E^{-1} C^{*}\right)^{-1} C E^{-1}=-B^{-1} C\left(E-C^{*} B^{-1} C\right)^{-1}$.
Then it is clear that, $A^{-1}=\left[\begin{array}{cc}\left(B-C E^{-1} C^{\prime}\right)^{-1} & -\left(B-C E^{-1} C^{2}\right)^{-1} C E^{-1} \\ -E^{-1} C\left(B-C E^{-1} C^{\prime}\right)^{-1} & \left(E-C B^{-1} C\right)^{-1}\end{array}\right]$
2) if $A=\left[\begin{array}{ll}B & C \\ C^{*} & E\end{array}\right] \geq I$ then
$0 \leq A^{-1}=\left[\begin{array}{ll}\left(B-C C^{-1} C\right)^{-1} \\ -E^{-1} C\left(B-C E^{-1} C\right)^{-1} & \left(B-C E^{-1} C\right)^{-1} C C^{-1} \\ \left(E-C B^{-1} C\right)^{-1}\end{array}\right] \leq 1$
,so from proposition 1.2.1\&3)We have $0 \leq\left(B-C E^{-1} C^{*}\right)^{-1} \leq I, 0 \leq\left(E-C^{*} B^{-1} C\right)^{-1} \leq I$,
then from proposition 1.1.7)
$\mathrm{B}-\mathrm{CE}^{-1} \mathrm{C}^{*} \geq \mathrm{I}, \mathrm{E}-\mathrm{C}^{*} \mathrm{~B}^{-1} \mathrm{C} \geq \mathrm{I}$,
also from proposition 1.2.2) We have that $\mathrm{B} \geq \mathrm{I}$ \& $\mathrm{E} \geq \mathrm{I}$. .

Remark2.2.:it is easy to check that if $\mathrm{B}, \mathrm{E}, \mathrm{B}-\mathrm{CE}^{-1} \mathrm{C}^{*}, \mathrm{E}-\mathrm{C}^{*} \mathrm{~B}^{-1} \mathrm{C}$ are invertible then $A=\left[\begin{array}{cc}B & C \\ C^{*} & E\end{array}\right]$ is invertible and
$A^{-1}=\left[\begin{array}{cc}\left(B-C E^{-1} C^{*}\right)^{-1} & -\left(B-C E^{-1} C^{*}\right)^{-1} C E^{-1} \\ E^{-1} C^{*}\left(B \quad C E^{-1} C^{*}\right)^{-1} & \left(E \quad C^{*} B^{-1} C\right)^{-1}\end{array}\right]$.
Remark2.3.:since $\left(B-C E^{-1} C^{*}\right)^{-1} C E^{-1}=B^{-1} C\left(E-C^{*} B^{-1} C\right)^{-1}$, and since $A=\left[\begin{array}{cc}B & C \\ C^{*} & E\end{array}\right] \geq I$, hence $A-I \geq 0$ and $A \geq 0$,therefore there exists a contraction X and a contraction Y such that

$$
C=\sqrt{B} X \sqrt{E}=\sqrt{B-I} Y \sqrt{E-I}
$$

then we have alternative forms of A^{-1} such:

$$
\begin{aligned}
& \text { 1) } A^{-1}=\left[\begin{array}{cc}
\left(B-C E^{-1} C^{*}\right)^{-1} & -B^{-1} C\left(E-C^{*} B^{-1} C\right)^{-1} \\
-E^{-1} C^{*}\left(B-C E^{-1} C^{*}\right)^{-1} & \left(E-C^{*} B^{-1} C\right)^{-1}
\end{array}\right] \text { or } \\
& \text { 2) } A^{-1}=\left[\begin{array}{cc}
(\sqrt{B})^{-1}\left(1-X X^{*}\right)^{-1}\left(\sqrt{ }{ }^{B}\right)^{-1} & -(\sqrt{B})^{-1}\left(I-X X^{*}\right)^{-1} X(\sqrt{E})^{-1} \\
-(\sqrt{E})^{-1} X^{*}\left(I-X X^{*}\right)^{-1}(\sqrt{B})^{-1} & (\sqrt{E})^{-1}\left(I-X^{*} X\right)^{-1}(\sqrt{E})^{-1}
\end{array}\right] \ldots \text { etc. }
\end{aligned}
$$

Remark2.4.:the second form of A^{-1} above show that $\mathrm{I}-\mathrm{XX}{ }^{*}, \mathrm{I}-\mathrm{X}^{*} \mathrm{X}$ are invertible and this is easy to check.

Remark2.5.:we know that if a ,c , e are complex numbers(the complex number is a special case of an operator) and
$\mathrm{A}=\left[\begin{array}{cc}b & c \\ c^{*} & \mathrm{e}\end{array}\right]$ where c^{*} is the conjugate of c then $\mathrm{A}^{-1}=\left[\begin{array}{cc}\frac{\mathrm{e}}{\mathrm{be}-|\mathrm{c}|^{2}} & \frac{-\mathrm{c}}{\mathrm{be}-|\mathrm{c}|^{2}} \\ \frac{-\mathrm{c}^{*}}{\mathrm{be}-|\mathrm{c}|^{2}} & \frac{\mathrm{~b}}{\mathrm{be}-|\mathrm{c}|^{2}}\end{array}\right]$ but from above:
$A^{-1}=\left[\begin{array}{cc}\left(b-c e^{-1} c^{*}\right)^{-1} & -\left(b-c e^{-1} c^{*}\right)^{-1} c e^{-1} \\ -e^{-1} c^{*}\left(b-c e^{-1} c^{*}\right)^{-1} & \left(e-c^{*} b^{-1} c\right)^{-1}\end{array}\right]=$
$\left[\begin{array}{cc}\frac{1}{\mathrm{~b}-\frac{|\mathrm{c}|^{2}}{\mathrm{e}}} & -\frac{1}{\mathrm{~b}-\frac{|\mathrm{c}|^{2}}{\mathrm{e}}} \mathrm{c} \\ -\frac{1}{\mathrm{e}} \\ -\frac{1}{\mathrm{e}} \mathrm{c}^{*} \frac{1}{\mathrm{~b}-\frac{|\mathrm{c}|^{2}}{\mathrm{e}}} & \frac{1}{\mathrm{e}-\frac{|\mathrm{c}|^{2}}{\mathrm{~b}}}\end{array}\right]$
$=\left[\begin{array}{cc}\frac{\mathrm{e}}{\mathrm{be}-|\mathrm{cc}|^{2}} & \frac{-c}{\mathrm{be}-|c|^{2}} \\ \frac{-\mathrm{c}^{*}}{\mathrm{be}-|\mathrm{c}|^{2}} & \frac{\mathrm{~b}}{\mathrm{be}-|\mathrm{c}|^{2}}\end{array}\right] . \square$

Remark2.6.:of course we can generalize the 2×2 case to the $n \times n$ case by iteration. For example: if $A=\left[\begin{array}{ccc}B & C & D \\ C^{*} & E & G \\ D^{*} & G^{*} & F\end{array}\right] \geq I$, then
$A=\left[\begin{array}{ccc}B & C & D \\ C^{*} & E & G \\ D^{*} & G^{*} & F\end{array}\right]=\left[\begin{array}{cc}B & C \\ C^{*} & E\end{array}\right] \quad\left[\begin{array}{l}D \\ G\end{array}\right]\left[\begin{array}{cc}{\left[\begin{array}{cc}B & C \\ D^{*} & G^{*}\end{array}\right]} & F\end{array}\right]=\left[\begin{array}{l}D \\ C^{*} \\ E\end{array}\right] \quad\left[\begin{array}{l}G \\ {\left[\begin{array}{l}D \\ G\end{array}\right]} \\ F\end{array}\right]$, and we can first find the inverse of $\left[\begin{array}{cc}B & C \\ C^{*} & E\end{array}\right] \geq$ I,then find the inverse of A.

Remark2.7.:there is no general relation between the invertiblity of $A=\left[\begin{array}{ll}B & C \\ D & E\end{array}\right]$ and the invertiblity of B,C,D,E and all the 32 cases can be hold,for example

1) $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ is not invertible but B, C, D, E are invertible
2) $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ is invertible and also B, C, D, E are invertible
3) $A=\left[\begin{array}{llll}1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & 1 & 1\end{array}\right]$ is not invertible
$[$ sincedet $A=0] \operatorname{andB}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
is not invertible, but $\mathrm{C}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right], \mathrm{D}=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right], \mathrm{E}=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$ are invertible.
And so on.
of course, $A=\left[\begin{array}{ll}B & C \\ D & E\end{array}\right]$ is invertible if and only if $\left[\begin{array}{ll}C & B \\ E & D\end{array}\right]$ is invertible if and only if $\left[\begin{array}{ll}D & E \\ B & C\end{array}\right]$ is invertible if and only if $\left[\begin{array}{ll}E & D \\ C & B\end{array}\right]$ is invertible, is useful here

3) The inverse of a 2×2 operator matrix A where $A>0$

In this section we generalize the results of $\mathbf{A} \geq \mathbf{I}$ to $\mathbf{A}>0$.
Theorem 3.1.:if $A=\left[\begin{array}{ll}B & C \\ C^{*} & D\end{array}\right]>a$ is an invertible then so are B\&D.

Proof: $C=\sqrt{B} X \sqrt{D}, C^{*}=\sqrt{D} X^{*} \sqrt{E}$ and $\exists M=\left[\begin{array}{cc}E & G \\ G^{*} & F\end{array}\right]$ s.t. $A M=I=\left[\begin{array}{ll}I & 0 \\ 0 & I\end{array}\right]$ then $B E+\sqrt{B} X \sqrt{D} G^{*}=I, \sqrt{D} X^{*} \sqrt{B} G+D F=I$ Hence, $\sqrt{B}\left(\sqrt{B} E+X \sqrt{D} G^{*}\right)=I, \sqrt{D}\left(X^{*} \sqrt{B} G+\sqrt{D} F\right)=I \cdot$ So, \sqrt{B}, \sqrt{D} are invertible ,then B, D are invertible

Remark 3.2.:the converse of theorem 3.1.is not true as we can see by the following example.
Example 3.3.:let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]>0($ since $C=1=\sqrt{1} X \sqrt{1}$ where $X=1$ and $\|X\|=|1|=1$ so $A>0)$, then $B=1, D=1$ are invertible but A is not an invertible $(\operatorname{det} A=0)$.

Remark 3.4.:if A is not positive then it is may be that $A=\left[\begin{array}{ll}B & C \\ E & D\end{array}\right]$ is an invertible but B, D are not , as we can see by the following example.

Example 3.5.:let $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ then A is not positive $(C=1 \neq \sqrt{B} X \sqrt{D}=0)$ and A is an invertible $(\operatorname{det} A \neq 0)$ but $B=0, D=0$ are not invertible.

The main result in this section is the following:

Theorem 3.6.: $A=\left[\begin{array}{ll}B & C \\ C^{*} & D\end{array}\right]>0$ is an invertible if and only if
$\mathrm{B}, \mathrm{D}, \mathrm{B}-\mathrm{CD}^{-1} \mathrm{C}^{*}, \mathrm{D}-\mathrm{C}^{*} \mathrm{~B}^{-1} \mathrm{C}$ are invertible, and in this case we have:
$A^{-1}=\left[\begin{array}{cc}\left(B-C D^{-1} C^{*}\right)^{-1} & -\left(B-C D^{-1} C^{*}\right)^{-1} C D^{-1} \\ -D^{-1} C^{*}\left(B-C D^{-1} C^{*}\right)^{-1} & \left(D-C^{*} B^{-1} C\right)^{-1}\end{array}\right]$.
Proof: \Rightarrow)If $A=\left[\begin{array}{ll}B & C \\ C^{*} & D\end{array}\right]>0$ is an invertible $A^{-1}>0$
so let $A^{-1}=\left[\begin{array}{cc}E & G \\ G^{*} & F\end{array}\right]$ then
i) $\mathrm{BE}+\mathrm{CG}^{*}=\mathrm{I}$, ii) $\mathrm{BG}+\mathrm{CF}=0$, iii) $\mathrm{C}^{*} \mathrm{E}+\mathrm{DG}^{*}=0$,
iv) $C^{*} G+D F=I$, then we have
$G=-E C D^{-1}=-B^{-1} C F$. Hence
$E\left(B-C D^{-1} C^{*}\right)=I$, i.e. $B-C D^{-1} C^{*}$ is an invertible and $E=\left(B-C D^{-1} C^{*}\right)^{-1}$.
$\left(D-C^{*} B^{-1} C\right) F=I$, i.e. $D-C^{*} B^{-1} G$ is an invertible and
$F=\left(D-C^{*} B^{-1} C\right)^{-1}$. Then it is clear that
$A^{-1}=\left[\begin{array}{cc}\left(B-C D^{-1} C^{*}\right)^{-1} & -\left(B-C D^{-1} C^{*}\right)^{-1} C D^{-1} \\ -D^{-1} C^{*}\left(B-C D^{-1} C^{*}\right)^{-1} & \left(D-C^{*} B^{-1} C\right)^{-1}\end{array}\right]$.
$\Leftrightarrow)$ if we let $M=\left[\begin{array}{cc}\left(B-C D^{-1} C^{*}\right)^{-1} & -\left(B-C D^{-1} C^{*}\right)^{-1} C D^{-1} \\ -D^{-1} C^{*}\left(B-C D^{-1} C^{*}\right)^{-1} & \left(D-C^{*} B^{-1} C\right)^{-1}\end{array}\right]$ then it is easy to check that $A M=I$ i.e. $M=A^{-1}$

From the proof of theorem 3.6 we can prove that
Theorem 3.7.:if B\&D are invertible then
$A=\left[\begin{array}{ll}B & C \\ E & D\end{array}\right] \in B(H \oplus K, L \oplus M)$ is an invertible if and only if $B-C D^{-1} E, D-E B^{-1} C$ are invertible and in this case we have
$A^{-1}=\left[\begin{array}{cc}\left(B-C D^{-1} E\right)^{-1} & -\left(B-C D^{-1} E\right)^{-1} C D^{-1} \\ -\left(D-E B^{-1} C\right)^{-1} E B^{-1} & \left(D-E B^{-1} C\right)^{-1}\end{array}\right] \in B(L \oplus M, H \oplus K)$
Proof: Similar to proof of theorem 3.6..
Remark 3.8.: Also we can get the following alternative forms of A^{-1}

1) $A^{-1}=\left[\begin{array}{cc}\left(B-C D^{-1} E\right)^{-1} & -B^{-1} C\left(D-E B^{-1} C\right)^{-1} \\ -\left(D-E B^{-1} C\right)^{-1} E B^{-1} & \left(D-E B^{-1} C\right)^{-1}\end{array}\right]$.
2) $A^{-1}=\left[\begin{array}{cc}\left(B-C D^{-1} E\right)^{-1} & -\left(B-C D^{-1} E\right)^{-1} C D^{-1} \\ -D^{-1} E\left(B-C D^{-1} E\right)^{-1} & \left(D-E B^{-1} C\right)^{-1}\end{array}\right]$.
3) $A^{-1}=\left[\begin{array}{cc}\left(B-C D^{-1} E\right)^{-1} & -B^{-1} \mathrm{C}\left(D-E B^{-1} \mathrm{C}\right)^{-1} \\ -D^{-1} E\left(B-C D^{-1} E\right)^{-1} & \left(D-E B^{-1} \mathrm{C}\right)^{-1}\end{array}\right]$.
Remark 3.9.: $A=\left[\begin{array}{cc}B & C \\ C^{*} & D\end{array}\right] \geq I$ is special case of $A=\left[\begin{array}{cc}B & C \\ C^{*} & D\end{array}\right]>0$ (because $A \geq I>0$). And if $A=\left[\begin{array}{ll}B & C \\ C^{*} & D\end{array}\right] \geq I$ then it is necessary that A is invertible then $B, D, B-C D^{-1} C^{*}, D-C^{*} B^{-1} C$ are invertible, in fact $B \geq I, D \geq I, B-C D^{-1} C^{*} \geq I, D-C^{*} B^{-1} C \geq I$,(and hence they are invertible). And if they are invertible then $A=\left[\begin{array}{cc}B & C \\ C^{*} & D\end{array}\right]$ is an invertible. So we may ask the following question :

Question 3.10.:is it true that if $B \geq I, D \geq I, B-C D^{-1} C^{*} \geq I, D-C^{*} B^{-1} C \geq I$ then
$\mathrm{A}=\left[\begin{array}{cc}\mathrm{B} & \mathrm{C} \\ \mathrm{C}^{*} & \mathrm{D}\end{array}\right] \geq \mathrm{I}$?
But the following example show that this is not true:-

Example 3.11.: $A=\left[\begin{array}{cc}5 & 4.1 \\ 4.1 & 5\end{array}\right]$ then $B \geq 1, D \geq 1$,
$B-C^{-1} C^{*}=B-\frac{|C|^{2}}{D}=5-\frac{16.81}{5}=1.638 \geq 1$,
$D-C^{*} B^{-1} C=D-\frac{|c|^{2}}{B}=5-\frac{16.81}{5}=1.638 \geq 1$ but,
$A=\left[\begin{array}{cc}5 & 4.1 \\ 4.1 & 5\end{array}\right] \geq\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ if and only if $\left[\begin{array}{cc}4 & 4.1 \\ 4.1 & 4\end{array}\right] \geq 0$ but this is not true(because it is true if and only if there exists $X,|X| \leq 1$ such that $4.1=\sqrt{4} X \sqrt{4}$, but then
$|X|=\frac{4.1}{4}>1$, a contradiction).
Remark3.12:If $\mathrm{T} \in \mathrm{B}(\mathrm{H}, \mathrm{K})$ then it is easy to check
T is an invertible if and only if $T^{*} T \in B(H, H) \& T^{*} \in B(K, K)$ are invertible and in this case we have $\mathrm{T}^{-1}=\left(\mathrm{T}^{*} \mathrm{~T}\right)^{-1} \mathrm{~T}^{*}=\mathrm{T}^{*}\left(\mathrm{TT}^{*}\right)^{-1}$

Also from [2] we have:
i) $\mathrm{T}^{*} \mathrm{~T} \geq 0$ and $\mathrm{TT}^{*} \geq 0$
ii) $\mathrm{T} \neq 0$ if and only if $\mathrm{T}^{*} \mathrm{~T} \neq \mathbb{0}$ if and only if $\mathrm{T}^{*} \mathrm{~T} \neq 0$
so we have that
T is an invertible if and only if $\mathrm{T}^{*} \mathrm{~T}>0 \& \mathrm{TT}^{*}>0$ are invertible and in this case we have $\mathrm{T}^{-1}=\left(\mathrm{T}^{*} \mathrm{~T}\right)^{-1} \mathrm{~T}^{*}=\mathrm{T}^{*}\left(\mathrm{TT}^{*}\right)^{-1}$. Hence we can use this fact to find the inverse of $A=\left[\begin{array}{ll}B & C \\ E & D\end{array}\right]$ (if it exists) by first find the inverses of $A A^{*}>0 \& A^{*} A>0$ and use them to find the inverse of A,so
Theorem3.13: $A=\left[\begin{array}{ll}B & C \\ E & D\end{array}\right] \in B(H \oplus K, L \oplus M)$ is an invertible if and only if

1) $\left.\left.\mathrm{a}=\mathrm{BB}^{*}+\mathrm{CC}^{*} 2\right) \mathrm{b}=E E^{*}+\mathrm{DD}^{*} 3\right) \mathrm{c}=\mathrm{a}-\left(\mathrm{BE}^{*}+\mathrm{CD}^{*}\right) \mathrm{b}^{-1}\left(\mathrm{BE}^{*}+\mathrm{CD}^{*}\right)^{*}$
2) $\mathrm{d}=\mathrm{b}-\left(E B^{*}+\mathrm{DC}^{*}\right) \mathrm{a}^{-1}\left(E B^{*}+\mathrm{DC}^{*}\right)^{*}$ 5) $\mathrm{e}=\mathrm{B}^{*} \mathrm{~B}+\mathrm{E}^{*} \mathrm{E}$ 6) $\mathrm{f}=\mathrm{C}^{*} \mathrm{C}+\mathrm{D}^{*} \mathrm{D}$
3) $\left.g=e-\left(B^{*} C+E^{*} D\right) f^{-1}\left(B^{*} C+E^{*} D\right)^{*} 8\right) h=f-\left(C^{*} B+D^{*} E\right) e^{-1}\left(C^{*} B+D^{*} E\right)^{*}$
are invertible and in this case we have

$$
\begin{aligned}
& A^{-1}=\left[\begin{array}{cc}
g^{-1}\left(B^{*}-\left(B^{*} C+E^{*} D\right) f^{-1} C^{*}\right) & g^{-1}\left(E^{*}-\left(B^{*} C+E^{*} D\right) f^{-1} D^{*}\right) \\
h^{-1} C^{*}-f^{-1}\left(C^{*} B+D^{*} E\right) g^{-1} B^{*} & h^{-1} D^{*}-f^{-1}\left(C^{*} B+D^{*} E\right) g^{-1} E^{*}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\left(B^{*}-E^{*} b^{-1}\left(E B^{*}+D C^{*}\right)\right) c^{-1} & E^{*} d^{-1}-B^{*} c^{-1}\left(B E^{*}+C D^{*}\right) b^{-1} \\
\left(C^{*}-D^{*} b^{-1}\left(E B^{*}+D C^{*}\right)\right) c^{-1} & D^{*} d^{-1}-C^{*} c^{-1}\left(B E^{*}+C D^{*}\right) b^{-1}
\end{array}\right]
\end{aligned}
$$

Proof: A is an invertible if and only if $A A^{*}>0 \& A^{*} A>0$ are invertible if and only if $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}$ are invertible and we have

$$
\begin{gathered}
A^{-1}=\left(A^{*} A\right)^{-1} A^{*}=\left[\begin{array}{ll}
g^{-1}\left(B^{*}-\left(B^{*} C+E^{*} D\right) f^{-1} C^{*}\right) & g^{-1}\left(E^{*}-\left(B^{*} C+E^{*} D\right) f^{-1} D^{*}\right) \\
h^{-1} C^{*}-f^{-1}\left(C^{*} B+D^{*} E\right) g^{-1} B^{*} & h^{-1} D^{*}-f^{-1}\left(C^{*} B+D^{*} E\right) g^{-1} E^{*}
\end{array}\right] \\
=A^{*}\left(A A^{*}\right)^{-1} \\
=\left[\begin{array}{ll}
\left(B^{*}-E^{*} b^{-1}\left(E B^{*}+D C^{*}\right)\right) c^{-1} & E^{*} d^{-1}-B^{*} C^{-1}\left(B E^{*}+C D^{*}\right) b^{-1} \\
\left(C^{*}-D^{*} b^{-1}\left(E B^{*}+D C^{*}\right)\right) c^{-1} & D^{*} d^{-1}-C^{*} c^{-1}\left(B E^{*}+C D^{*}\right) b^{-1}
\end{array}\right]
\end{gathered}
$$

Remark3.14: we can generalize theorem3.13 and find the inverse of the $m \times n$ operator matrix A by first we find the inverse of ${A A^{*}}^{*}>0 \& A^{*} A>0$ by iteration as we did in remark2.6.then we find A^{-1} by the relation $A^{-1}=\left(A^{*} A\right)^{-1} A^{*}=A^{*}\left(A A^{*}\right)^{-1}$

REFERENCES

[1] Balasim, M.S. (1999),completion of operator matrices, thesis ,university of Baghdad, collage of science, department of mathematics.
[2]Berberian, S.K. 1976,Introduction to Hilbert space ,CHELESEA PUBLISHING COMPANY,NEW YORK,N.Y.
[3]Choi M.D, Hou j.and Rosehthal P. (1997), Completion of operator partial matrices to square-zero contractions,Linear algebra and its applications 2561-30
[4]Douglas R.G. (1966),On majorization,factorization and range inclusion of operators on Hilbert space .Proc.Amer.Math.Soc.17413-416
[5]Frank Ayres 1962 ,Matrices,Schaum outline series,
[6] Halmos ,P.R. 1982,A Hilbert space problem book,Van Nostrand princetron,Nj.
[7]Heuser, H.J. 1982,Functional analysis,John Wiley,New york
[7] Israel .A. B and. Greville .T. N. E, 2003. Generalized inverses: theory and applications, Sec. Ed., Springer,.
[8] KIM.A.H and KIM.I.H. 2006, ESSENTIAL SPECTRA OF QUASISIMILAR (p,k)QUASIHYPONORMAL OPERATORS, Journal of Inequalities and Applications, Article ID 72641, Volume, Pages 1-7.
[9]Kolman, B. 1988 ,Introductory linear algebra with applications, $4^{\text {th }}$ edition,Macmillan Publishing Company,New york, Collier Macmillan Publishers,London,

