The inverse of operator matrix A where $A \ge I$ and A > 0

Mohammad Saleh Balasim

Department of Mathematics, Collage of Science, AL-Mustansiryah University, Baghdad, Iraq

محمد صالح بلاسم أسم الرياضيات اللية العلوم الجامعة المستنصرية الغداد العراق

الخلاصة

ليكن كل من $H_{,K}$ فضاء هلبرت وليكن $H_{,K}$ هو الضرب الديكارتي لهما وليكن

، $H,K,H\oplus K$ فضاءات باناخ لكل المؤثرات المقيده (المستمره) على B(K,H),B(H,K) $B(K),B(H),B(H\oplus K)$ $A=\begin{bmatrix}B&C\\D&E\end{bmatrix}$ \in $B(H\oplus K)$ مصفوفة المؤثر B(K,H) \in $B(H\oplus K)$ على الترتيب في هذا البحث سنجد معكوس مصفوفة المؤثر A>0 مصفوفة المؤثر المحايد A>0 مصفوفة $B(H),C\in B(K,H),D\in B(H,K),E\in B(K)$ على A>0 مصفوفة المؤثر المحايد على المؤثر ا

ABSTRACT

Let H and K be Hilbert spaces and let $H \oplus K$ be the cartesian product of them.Let $B(H),B(K),B(H\oplus K),B(K,H),B(H,K)$ be the Banach spaces of bounded(continuous) operators on $H,K,H\oplus K$,and from K into H and from H into K respectively.In this paper we find the inverse of operator matrix $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \in B(H \oplus K)$ where $B \in B(H)$, $C \in B(K,H)$, $D \in B(H,K)$, $E \in B(K)$ and $A \ge I_{H \oplus K}$, A > 0 where $I_{H \oplus K}$ is the identity operator on $H \oplus K$

Let <> denotes an inner product on a Hilbert space, and we will denote Hilbert spaces by

Introduction

H, K, H_i, K_i and H \oplus K denotes the Cartesian product of the Hilbert spaces H, K, and B(H), B(H \oplus K), B(K,H), be the Banach spaces of bounded(continuous) operators on H, H \oplus K, and from K into H respectively[see2]. The inner product on H \oplus K is define by: $\langle (x,y), (w,z) \geq \langle x,w \rangle + \langle y,z \rangle x,w \in H,y,z \in K$ we say that A is positive operator on H and denote that by $A \geq 0$ if $\langle Ax,x \rangle \geq 0$ for all x in H, and in this case it has a unique positive square root, we denote this square root by \sqrt{A} [see2], it is easy to check that A is invertible if and only if \sqrt{A} is invertible. A*denotes the adjoint of A and I_H denotes the identity operator on the Hilbert space H. We define the operator matrix $A = \begin{bmatrix} B & C \\ E & D \end{bmatrix} \in B(H \oplus K,L \oplus M)$ where $B \in B(H,L)$, $C \in B(K,L)$, $E \in B(H,M)$, $D \in B(K,M)$ as following $A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} B & C \\ E & D \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} Bx + Cy \\ Ex + Dy \end{bmatrix}$, where $\begin{pmatrix} x \\ y \end{pmatrix} \in H \oplus K$, and similar for the case $m \times n$ operator matrix [see 1&3&6]. If $A = \begin{bmatrix} B & C \\ E & D \end{bmatrix}$ then $A^* = \begin{bmatrix} B^* & E^* \\ C^* & D^* \end{bmatrix}$.

If $A = \begin{bmatrix} B & C \\ E & D \end{bmatrix} \ge 0$ then A is a self- adjoint and so has the form $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix}$ and similar for the case $\mathbf{n} \times \mathbf{n}$ operator matrix [see 1&3]. For related topics[see 7&8]. For elementary facts about matrices [see5 &9] and for elementary facts about Hilbert spaces and operator theory [see 2&6].

Remark: we will sometimes denote $I_{H \oplus K}$ (the identity on $H \oplus K$) or I_{H} (the identity on H) or I_{K} (the identity on H) or any identity operator by I, and also we will sometimes denote any zero operator by I

1)Preliminaries:

Proposition 1.1.: Let $T \in B(H,K)$ then

1) if $T^*T \ge I$ and $TT^* \ge I$ then T is invertible,

2)if T is self-adjoint, $T^2 \ge I$ then T is invertible,

3)if $T \ge 0$ then T is invertible if and only if \sqrt{T} is invertible, and in this case we have $(\sqrt{T})^2)^{-1} = ((\sqrt{T})^{-1})^2$,

4)if T is self-adjoint then T is invertible from right if and only if it is invertible from left,

5) if $T \ge I$ then T is invertible,

6) if $T \ge 0$ and it is invertible then $T^{-1} \ge 0$, and in this case we have $\sqrt{T^{-1}} = (\sqrt{T})^{-1}$

7) $T \ge I$ if and only if $0 \le T^{-1} \le I$.

Proof:1)see[2]p.156

2) from 1)

3) if T is invertible then there exists an operator S such that ST = TS = I, so $(S\sqrt{T})\sqrt{T} = \sqrt{T}(\sqrt{T}S) = I$ i.e. \sqrt{T} is invertible. Conversely if \sqrt{T} is invertible then there exists an operator R such that $R\sqrt{T} = \sqrt{T}R = I$, so I = I. $I = (\sqrt{T}R)(\sqrt{T}R) = \sqrt{T}(R\sqrt{T})R = \sqrt{T}(\sqrt{T}R)R = TR^2 = R^2T$, hence T is invertible, and in this case we have $(\sqrt{T})^2)^{-1} = T^{-1} = R^2 = ((\sqrt{T})^{-1})^2$.

4) if T is self-adjoint then $T = T^*$, but T is invertible from right if and only if T^* is invertible from left.

5) if $T \ge I$ then $T \ge 0$, so \sqrt{T} exists and it is self-adjoint and $(\sqrt{T})^2 \ge I$, so \sqrt{T} is invertible and hence T is invertible.

6) if $T \ge 0$ and it is invertible then $\langle Tx, x \rangle \ge 0$, so

$$\langle TT^{-1}x, T^{-1}x \rangle \ge 0$$
. i.e. $\langle x, T^{-1}x \rangle \ge 0$, $\forall x$. Hence $T^{-1} \ge 0$. Now $\sqrt{I} = I$, because

 \sqrt{I} . \sqrt{I} = I and I. I = I,but the positive square root is unique(see[2]p.149) so \sqrt{I} = I and since $T \ge 0$, $T^{-1} \ge 0$, $T^{-1}T = I \ge 0$,we

have
$$\sqrt{T^{-1}}\sqrt{T} = \sqrt{T^{-1}}T$$
 (see[2]p.149), so $\sqrt{T^{-1}}\sqrt{T} = \sqrt{I} = I$, hence $\sqrt{T^{-1}} = (\sqrt{T})^{-1}$.

7)if $T \geq I$ then $T \geq 0$ and it is invertible .so[from 6)]we have $T^{-1} \geq 0$.Now $T^{-1} \geq 0$

$$\&T - I \ge 0 \& T^{-1}(T - I) = (T - I) T^{-1}$$
 [because

$$T^{-1}(T-I) = T^{-1}T - T^{-1} = I - T^{-1}$$
 and

$$(T-I)T^{-1} = TT^{-1} - T^{-1} = I - T^{-1}$$
]. So, $T^{-1}(T-I) \ge 0$ (see[2]p.149), hence

 $T^{-1} \le I$. \square Conversely if $0 \le T^{-1} \le I$ then [from 6)] we have $T \ge 0$

but
$$I - T^{-1} \ge 0$$
 and $T(I - T^{-1}) = (I - T^{-1})T$, so

$$T(I-T^{-1}) \ge 0$$
, hence $T \ge I$.

Proposition 1.2:1) if
$$A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \ge 0$$
 then $C = D^*$ and $B \ge 0$ & $E \ge 0$

2)if
$$A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \ge I$$
 then $C = D^*$ and $B \ge I$ & $E \ge I$

3) if
$$A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \le I$$
 then $C = D^*$ and $B \le I \& E \le I$

Proof:1)see[1]p.18.□

2) if
$$A \ge I$$
 then $A - I \ge 0$ but $I = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$, so

$$\begin{bmatrix} B & C \\ D & E \end{bmatrix} - \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} = \begin{bmatrix} B-I & C \\ D & E-I \end{bmatrix} \geq 0 \text{ .Then from 1) we have that C=D}^*$$

$$B-I \ge 0, E-I \ge 0$$
 i.e. $B \ge I \& E \ge I$.

3)Similar to 2)

Proposition 1.3.: if $A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix}$ is invertible, $A \ge I$ then B,E are invertible

Proof: from Proposition 1.2. 2) we have $B \ge I \& E \ge I$, so B, E are invertible.

To show that the converse is not true we need the following theorem from [1]p.19:-

Theorem1.4.:Let B ε B(H),E ε B(K),C ε B(K,H) such that B \geq 0 & E \geq 0 then:

$$\begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \geq 0 \text{ if and only if there exists a contraction } X \in B(K,H) \text{ such that } C = \sqrt{B} \ X \sqrt{E} \ .$$

Now the following example show that the converse of proposition 1.3. is not true

Example 1.5: Let $A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$, so $B=2 \ge 1$, $E=2 \ge 1$ and they are invertible but A is not invertible [since det A=0]. Note that $A \ge 0$ [since $C=2=\sqrt{2}\sqrt{2}=\sqrt{B}$ $X\sqrt{E}$ where X=1, hence $|X| \le 1$], but $A \not \ge 1$ [since $A-I=\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, and if $\exists X$ such that $2=\sqrt{1}$ $X\sqrt{1}$, so X=2, hence $|X| \le 1$ i.e. $A-I \ge 0$, hence $A \ge 1$].

Remark1.6.: it is easy to check that:

1) if A is invertible $\mathbf{m} \times \mathbf{n}$ operator matrix (i.e. $\exists \mathbf{ann} \times \mathbf{m}$ operator matrix B s.t. $AB = I_m \& BA = I_m$

Where $I_m \& I_n$ are the $m \times m \&$ the $n \times n$ identity operator matrices respectively) and if matrix C results from A by interchanging two rows(columns) of A then C is also invertible.

- 2) if two rows (columns) of an $\mathbf{m} \times \mathbf{n}$ operator matrix A are equal then A is not invertible.
- 3)if a row(column) of an $\mathbf{m} \times \mathbf{n}$ operator matrix A consists entirely of zero operators then A is not invertible.
- 4) $A = \begin{bmatrix} B & 0 \\ 0 & E \end{bmatrix}$ is invertible if and only if B,E are invertible, and in this case $A^{-1} = \begin{bmatrix} B^{-1} & 0 \\ 0 & E^{-1} \end{bmatrix}$.

Remark1.7.: from remark1.6. 1) we can conclude : if $\mathbf{A} = \begin{bmatrix} \mathbf{B} & \mathbf{C} \\ \mathbf{D} & \mathbf{E} \end{bmatrix} \in \mathbf{B}(\mathbf{H} \oplus \mathbf{K}, \mathbf{L} \oplus \mathbf{M})$ then

 $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \text{ is invertible if and only if } \begin{bmatrix} C & B \\ E & D \end{bmatrix} \text{ is invertible if and only if } \begin{bmatrix} D & E \\ B & C \end{bmatrix} \text{ is invertible.}$ invertible if and only if $\begin{bmatrix} E & D \\ C & B \end{bmatrix} \text{ is invertible.}$

2) The inverse of a 2×2 operator matrix A where $A \ge I$

Theorem2.1.:1)if
$$A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \ge I$$
 then $B, E, B - CE^{-1}C^*, E - C^*B^{-1}C$ are invertible and $A^{-1} = \begin{bmatrix} (B - CE^{-1}C^*)^{-1} & -(B - CE^{-1}C^*)^{-1}CE^{-1} \\ -E^{-1}C^*(B - CE^{-1}C^*)^{-1} & (E - C^*B^{-1}C)^{-1} \end{bmatrix}$

In fact :2)if
$$A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \ge I$$
 then $B \ge I, E \ge I, B - CE^{-1}C^* \ge I, E - C^*B^{-1}C \ge I$

Proof 1) if $A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \ge I$ then A is invertible[proposition1.1.5)] and

 $B \ge I, E \ge I$ [proposition1.2.2)], so B,E are invertible [proposition1.1.5)]

Now, let
$$A^{-1} = \begin{bmatrix} J & G \\ G^* & F \end{bmatrix}$$
 i.e. $AA^{-1} = I = \begin{bmatrix} I_H & 0 \\ 0 & I_K \end{bmatrix}$

,then $J \ge 0$, $F \ge 0$ since $A^{-1} \ge 0$.And

i)BJ + CG*=
$$I_H$$
, ii)BG + CF=0, iii)C*J + EG*=0, iv)C*G + EF = I_K .

So from iii) we have JC + GE = 0.So,

$$G = -JCE^{-1} = -B^{-1}CF$$
.

Then we have from iv) that

$$(E - C^*B^{-1}C)F = I_K$$
 i.e. $E - C^*B^{-1}C$ is invertible, $F = (E - C^*B^{-1}C)^{-1}$,

and from i) we have $J(B - CE^{-1}C^*)=I_H$, so $B - CE^{-1}C^*$ is invertible, and

$$J = (B - CE^{-1}C^*)^{-1}, G = -(B - CE^{-1}C^*)^{-1}CE^{-1} = -B^{-1}C(E - C^*B^{-1}C)^{-1}$$

Then it is clear that,
$$A^{-1} = \begin{bmatrix} (B - CE^{-1}C')^{-1} & -(B - CE^{-1}C')^{-1}CE^{-1} \\ -E^{-1}C'(B - CE^{-1}C')^{-1} & (E - C'B^{-1}C)^{-1} \end{bmatrix}$$

2) if
$$A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \ge I$$
 then

$$0 \leq A^{-1} \!=\! \begin{bmatrix} (B - CE^{-1}C')^{-1} & -(B - CE^{-1}C')^{-1}CE^{-1} \\ -E^{-1}C'(B - CE^{-1}C')^{-1} & (E - C'B^{-1}C)^{-1} \end{bmatrix} \!\leq\! I$$

,so from proposition 1.2.1 & 3) We have $0 \le (B - CE^{-1}C^*)^{-1} \le I$, $0 \le (E - C^*B^{-1}C)^{-1} \le I$,

then from proposition 1.1.7)

$$B - CE^{-1}C^* \ge I, E - C^*B^{-1}C \ge I,$$

also from proposition 1.2.2) We have that $B \ge I \& E \ge I$.

Remark2.2.:it is easy to check that if $B,E,B-CE^{-1}C^*,E-C^*B^{-1}C$ are invertible then $A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix}$ is invertible and

$$A^{-1} = \begin{bmatrix} (B - CE^{-1}C^*)^{-1} & -(B - CE^{-1}C^*)^{-1}CE^{-1} \\ E^{-1}C^*(B - CE^{-1}C^*)^{-1} & (E - C^*B^{-1}C)^{-1} \end{bmatrix}.$$

Remark2.3.:since $(B - CE^{-1}C^*)^{-1}CE^{-1} = B^{-1}C(E - C^*B^{-1}C)^{-1}$, and since

 $A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \ge I$, hence $A - I \ge 0$ and $A \ge 0$, therefore there exists a contraction X and a contraction Y such that

$$C = \sqrt{B} X\sqrt{E} = \sqrt{B-I} Y\sqrt{E-I}$$

then we have alternative forms of A^{-1} such:

1)
$$A^{-1} = \begin{bmatrix} (B - CE^{-1}C^*)^{-1} & -B^{-1}C(E - C^*B^{-1}C)^{-1} \\ -E^{-1}C^*(B - CE^{-1}C^*)^{-1} & (E - C^*B^{-1}C)^{-1} \end{bmatrix}$$
 or

$$2) \mathbf{A^{-1}} = \begin{bmatrix} (\sqrt{B})^{-1} (1 - XX^*)^{-1} (\sqrt{B})^{-1} & -(\sqrt{B})^{-1} (I - XX^*)^{-1} X (\sqrt{E})^{-1} \\ -(\sqrt{E})^{-1} X^* (I - XX^*)^{-1} (\sqrt{B})^{-1} & (\sqrt{E})^{-1} (I - X^*X)^{-1} (\sqrt{E})^{-1} \end{bmatrix} \dots \text{etc.}$$

Remark2.4.: the second form of A^{-1} above show that $I - XX^*$, $I - X^*X$ are invertible and this is easy to check.

Remark2.5.:we know that if a ,c , e are complex numbers(the complex number is a special case of an operator) and

$$\mathbf{A} = \begin{bmatrix} b & c \\ c^* & \mathbf{e} \end{bmatrix} \text{ where } c^* \text{ is the conjugate of c then } \mathbf{A}^{-1} = \begin{bmatrix} \frac{\mathbf{e}}{\mathsf{be}-|\mathbf{c}|^2} & \frac{-\mathbf{c}}{\mathsf{be}-|\mathbf{c}|^2} \\ \frac{-\mathbf{c}^*}{\mathsf{be}-|\mathbf{c}|^2} & \frac{\mathbf{b}}{\mathsf{be}-|\mathbf{c}|^2} \end{bmatrix} \text{ but from } \mathbf{e}^{-1}$$

above:

$$\begin{split} A^{-1} &= \begin{bmatrix} (b-ce^{-1}c^*)^{-1} & -(b-ce^{-1}c^*)^{-1}ce^{-1} \\ -e^{-1}c^*(b-ce^{-1}c^*)^{-1} & (e-c^*b^{-1}c)^{-1} \end{bmatrix} = \\ \begin{bmatrix} \frac{1}{b-\frac{|c|^2}{e}} & -\frac{1}{b-\frac{|c|^2}{e}}c^{\frac{1}{e}} \\ -\frac{1}{e}c^*\frac{1}{b-\frac{|c|^2}{e}} & \frac{1}{e-\frac{|c|^2}{b}} \end{bmatrix} \\ &= \begin{bmatrix} \frac{e}{be-|c|^2} & \frac{-c}{be-|c|^2} \\ \frac{-c^*}{be-|c|^2} & \frac{b}{be-|c|^2} \end{bmatrix}. \end{split}$$

Remark2.6.:of course we can generalize the 2×2 case to the $n \times n$ case by iteration. For

example: if
$$A = \begin{bmatrix} B & C & D \\ C^* & E & G \\ D^* & G^* & F \end{bmatrix} \ge I$$
, then

$$A = \begin{bmatrix} B & C & D \\ C^* & E & G \\ D^* & G^* & F \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} & \begin{bmatrix} D \\ G \end{bmatrix} \\ \begin{bmatrix} D \\ G \end{bmatrix} & F \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} & \begin{bmatrix} D \\ G \end{bmatrix} \\ \begin{bmatrix} D \\ G \end{bmatrix}^* & F \end{bmatrix}, \text{and we can first find the}$$

inverse of $\begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \ge I$, then find the inverse of A.

Remark2.7.: there is no general relation between the invertibility of $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}$ and the invertibility of B, C, D, E, and all the 32 cases can be hold, for example

1)
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 is not invertible but B, C, D, E are invertible

2)
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 is invertible and also B, C, D, E are invertible

3)A =
$$\begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & 1 & 1 \end{bmatrix}$$
 is not invertible

[sincedet A=0]andB =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

is not invertible, but
$$C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$, $E = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ are invertible.

And so on.

of course, $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}$ is invertible if and only if $\begin{bmatrix} C & B \\ E & D \end{bmatrix}$ is invertible if and only if $\begin{bmatrix} D & E \\ B & C \end{bmatrix}$ is invertible if and only if $\begin{bmatrix} E & D \\ C & B \end{bmatrix}$ is invertible, is useful here

3) The inverse of a 2×2 operator matrix A where A > 0

In this section we generalize the results of $A \ge I$ to A > 0.

Theorem 3.1.: if $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} > 0$ is an invertible then so are B&D.

Proof:
$$C = \sqrt{B} X \sqrt{D}$$
, $C^* = \sqrt{D} X^* \sqrt{E}$ and $\exists M = \begin{bmatrix} E & G \\ G^* & F \end{bmatrix}$ s.t. $AM = I = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$ then

$$BE + \sqrt{B} X \sqrt{D}G^* = I, \sqrt{D} X^* \sqrt{B}G + DF = I.Hence,$$

 $\sqrt{B}(\sqrt{B}E + X\sqrt{D}G^*) = I$, $\sqrt{D}(X^*\sqrt{B}G + \sqrt{D}F) = I$. So, \sqrt{B} , \sqrt{D} are invertible ,then B, D are invertible

Remark 3.2.: the converse of theorem 3.1. is not true as we can see by the following example.

Example 3.3.:let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} > 0$ (since $C = 1 = \sqrt{1} X \sqrt{1}$ where X = 1 and ||X|| = |1| = 1 so A > 0), then B = 1, D = 1 are invertible but A is not an invertible (detA = 0).

Remark 3.4.:if **A** is not positive then it is may be that $A = \begin{bmatrix} B & C \\ E & D \end{bmatrix}$ is an invertible but **B**, **D** are not, as we can see by the following example.

Example 3.5.:let $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ then A is not positive $(C = 1 \neq \sqrt{B} \times \sqrt{D} = 0)$ and A is an invertible $(\det A \neq 0)$ but B = 0, D = 0 are not invertible.

The main result in this section is the following:

Theorem 3.6.: $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} > 0$ is an invertible if and only if

B, D, B - $CD^{-1}C^*$, D - $C^*B^{-1}C$ are invertible, and in this case we have:

$$A^{-1} = \begin{bmatrix} (B - CD^{-1}C^*)^{-1} & -(B - CD^{-1}C^*)^{-1}CD^{-1} \\ -D^{-1}C^*(B - CD^{-1}C^*)^{-1} & (D - C^*B^{-1}C)^{-1} \end{bmatrix}.$$

Proof: \Rightarrow) If $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} > 0$ is an invertible $A^{-1} > 0$

so let
$$A^{-1} = \begin{bmatrix} E & G \\ G^* & F \end{bmatrix}$$
 then

$$\mathrm{i}) BE + CG^* = \mathrm{I}\,, \mathrm{ii}) \, BG + CF = 0\,, \mathrm{iii}) C^*E + DG^* = 0\,,$$

iv) $C^*G + DF = I$, then we have

$$G = -ECD^{-1} = -B^{-1}CF$$
. Hence

$$E(B-CD^{-1}C^*)=I$$
, i.e. $B-CD^{-1}C^*$ is an invertible and $E=(B-CD^{-1}C^*)^{-1}$.

$$(D - C^*B^{-1}C)F = I$$
, i.e. $D - C^*B^{-1}C$ is an invertible and

$$F = (D - C^*B^{-1}C)^{-1}$$
. Then it is clear that

$$A^{-1} = \begin{bmatrix} (B - CD^{-1}C^*)^{-1} & -(B - CD^{-1}C^*)^{-1}CD^{-1} \\ -D^{-1}C^*(B - CD^{-1}C^*)^{-1} & (D - C^*B^{-1}C)^{-1} \end{bmatrix}.$$

$$\Leftarrow \text{ (if we let } M = \begin{bmatrix} (B - CD^{-1}C^*)^{-1} & -(B - CD^{-1}C^*)^{-1}CD^{-1} \\ -D^{-1}C^*(B - CD^{-1}C^*)^{-1} & (D - C^*B^{-1}C)^{-1} \end{bmatrix} \text{ then it is easy to check that } AM = I \text{ i.e. } M = A^{-1} \quad \Box$$

From the proof of theorem 3.6 we can prove that

Theorem 3.7.:if B&D are invertible then

 $A = \begin{bmatrix} B & C \\ E & D \end{bmatrix} \in B(H \oplus K, L \oplus M)$ is an invertible if and only if $B - CD^{-1}E$, $D - EB^{-1}C$ are invertible and in this case we have

$$A^{-1} = \begin{bmatrix} (B - CD^{-1}E)^{-1} & -(B - CD^{-1}E)^{-1}CD^{-1} \\ -(D - EB^{-1}C)^{-1}EB^{-1} & (D - EB^{-1}C)^{-1} \end{bmatrix} \in B(L \oplus M, H \oplus K)$$

Proof: Similar to proof of theorem 3.6..

Remark 3.8.: Also we can get the following alternative forms of A⁻¹

$$1)A^{-1} = \begin{bmatrix} (B - CD^{-1}E)^{-1} & -B^{-1}C(D - EB^{-1}C)^{-1} \\ -(D - EB^{-1}C)^{-1}EB^{-1} & (D - EB^{-1}C)^{-1} \end{bmatrix}.$$

$$2)A^{-1} = \begin{bmatrix} (B - CD^{-1}E)^{-1} & -(B - CD^{-1}E)^{-1}CD^{-1} \\ -D^{-1}E(B - CD^{-1}E)^{-1} & (D - EB^{-1}C)^{-1} \end{bmatrix}.$$

$$3)A^{-1} = \begin{bmatrix} (B - CD^{-1}E)^{-1} & -B^{-1}C(D - EB^{-1}C)^{-1} \\ -D^{-1}E(B - CD^{-1}E)^{-1} & (D - EB^{-1}C)^{-1} \end{bmatrix}.$$

Remark 3.9.: $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} \ge I$ is special case of $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} > 0$ (because $A \ge I > 0$). And if $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} \ge I$ then it is necessary that A is invertible then $B \setminus D, B - CD^{-1}C^*, D - C^*B^{-1}C$ are invertible, in fact $B \ge I$, $D \ge I$, $B - CD^{-1}C^* \ge I$, $D - C^*B^{-1}C \ge I$, (and hence they are invertible). And if they are invertible then $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix}$ is an invertible. So we may ask the following question:

Question 3.10.: is it true that if
$$B \ge I$$
, $D \ge I$, $B - CD^{-1}C^* \ge I$, $D - C^*B^{-1}C \ge I$ then $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} \ge I$?

But the following example show that this is not true:-

Example 3.11.:
$$A = \begin{bmatrix} 5 & 4.1 \\ 4.1 & 5 \end{bmatrix}$$
 then $B \ge 1$, $D \ge 1$,

$$B - CD^{-1}C^* = B - \frac{|C|^2}{D} = 5 - \frac{16.81}{5} = 1.638 \ge 1,$$

$$D - C^*B^{-1}C = D - \frac{|c|^2}{B} = 5 - \frac{16.81}{5} = 1.638 \ge 1 \text{ but},$$

 $A = \begin{bmatrix} 5 & 4.1 \\ 4.1 & 5 \end{bmatrix} \ge \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ if and only if $\begin{bmatrix} 4 & 4.1 \\ 4.1 & 4 \end{bmatrix} \ge 0$ but this is not true(because it is true if and only if there exists X, $|X| \le 1$ such that $4.1 = \sqrt{4} X \sqrt{4}$, but then

 $|X| = \frac{4.1}{A} > 1$, a contradiction).

Remark3.12:If TeB(H,K) then it is easy to check

T is an invertible if and only if $T^*T \in B(H,H) \& TT^* \in B(K,K)$ are invertible and in this case we have $T^{-1} = (T^*T)^{-1}T^* = T^*(TT^*)^{-1}$

Also from [2] we have:

i)
$$T^*T \ge 0$$
 and $TT^* \ge 0$

ii) $T \neq 0$ if and only if $T^*T \neq 0$ if and only if $T^*T \neq 0$ so we have that

T is an invertible if and only if $T^*T > 0 \& TT^* > 0$ are invertible and in this case we have $T^{-1} = (T^*T)^{-1}T^* = T^*(TT^*)^{-1}$. Hence we can use this fact to find the inverse of $A = \begin{bmatrix} B & C \\ E & D \end{bmatrix}$ (if it exists) by first find the inverses of $AA^* > 0$ & $A^*A > 0$ and use them to find the inverse of A,so

Theorem3.13: $A = \begin{bmatrix} B & C \\ F & D \end{bmatrix} \in B(H \oplus K, L \oplus M)$ is an invertible if and only if 1)a = BB*+ CC* 2) b = EE* + DD* 3)c = a - (BE* + CD*)b⁻¹(BE* + CD*)* 4)d = b - (EB* + DC*)a⁻¹(EB* + DC*)* 5) e = B*B + E*E 6) f = C*C + D*D 7) $g = e - (B^*C + E^*D)f^{-1}(B^*C + E^*D)^* 8) h = f - (C^*B + D^*E)e^{-1}(C^*B + D^*E)^*$

are invertible and in this case we have
$$A^{-1} = \begin{bmatrix} g^{-1}(B^* - (B^*C + E^*D)f^{-1}C^*) & g^{-1}(E^* - (B^*C + E^*D)f^{-1}D^*) \\ h^{-1}C^* - f^{-1}(C^*B + D^*E)g^{-1}B^* & h^{-1}D^* - f^{-1}(C^*B + D^*E)g^{-1}E^* \end{bmatrix} = \begin{bmatrix} (B^* - E^*b^{-1}(EB^* + DC^*))c^{-1} & E^*d^{-1} - B^*c^{-1}(BE^* + CD^*)b^{-1} \\ (C^* - D^*b^{-1}(EB^* + DC^*))c^{-1} & D^*d^{-1} - C^*c^{-1}(BE^* + CD^*)b^{-1} \end{bmatrix}$$
 Proof: A is an invertible if and only if $AA^* > 0$ & $A^*A > 0$ are invertible if and only if

a,b,c,d,e,f,g,h are invertible and we have

$$A^{-1} = (A^*A)^{-1}A^* = \begin{bmatrix} g^{-1}(B^* - (B^*C + E^*D)f^{-1}C^*) & g^{-1}(E^* - (B^*C + E^*D)f^{-1}D^*) \\ h^{-1}C^* - f^{-1}(C^*B + D^*E)g^{-1}B^* & h^{-1}D^* - f^{-1}(C^*B + D^*E)g^{-1}E^* \end{bmatrix}$$

$$= A^*(AA^*)^{-1}$$

$$= \begin{bmatrix} (B^* - E^*b^{-1}(EB^* + DC^*))c^{-1} & E^*d^{-1} - B^*c^{-1}(BE^* + CD^*)b^{-1} \\ (C^* - D^*b^{-1}(EB^* + DC^*))c^{-1} & D^*d^{-1} - C^*c^{-1}(BE^* + CD^*)b^{-1} \end{bmatrix}$$

Remark3.14: we can generalize theorem3.13 and find the inverse of the $m \times n$ operator matrix A by first we find the inverse of $AA^* > 0$ & $A^*A > 0$ by iteration as we did in remark2.6.then we find A^{-1} by the relation $A^{-1} = (A^*A)^{-1}A^* = A^*(AA^*)^{-1}$

REFERENCES

- [1] **Balasim**, **M.S.** (1999), completion of operator matrices, thesis ,university of Baghdad, collage of science, department of mathematics.
- [2]**Berberian, S.K. 1976**, *Introduction to Hilbert space*, CHELESEA PUBLISHING COMPANY, NEW YORK, N.Y.
- [3] Choi M.D, Hou j.and Rosehthal P. (1997), Completion of operator partial matrices to square-zero contractions, Linear algebra and its applications 2561-30
- [4]**Douglas R.G.** (1966), On majorization, factorization and range inclusion of operators on Hilbert space .Proc.Amer.Math.Soc.17413-416
- [5] Frank Ayres 1962, Matrices, Schaum outline series,
- [6] Halmos, P.R. 1982, A Hilbert space problem book, Van Nostrand princetron, Nj.
- [7] Heuser, H.J. 1982, Functional analysis, John Wiley, New york
- [7] Israel .A. B and. Greville .T. N. E, 2003. Generalized inverses: theory and applications, Sec. Ed., Springer,.
- [8] KIM.A.H and KIM.I.H. 2006, ESSENTIAL SPECTRA OF QUASISIMILAR (p,k)-QUASIHYPONORMAL OPERATORS, Journal of Inequalities and Applications, Article ID 72641, Volume, Pages 1–7.
- [9]**Kolman, B. 1988**, *Introductory linear algebra with applications*, 4th edition, Macmillan Publishing Company, New york, Collier Macmillan Publishers, London,