Affine Furzy Set

Noori Farhan AL-Mayahi \& Salah Mahdi Ali

Department of Mathematics, College of C. Sc. and Math., AL-Qadisiya University nafm2005@yahoo.com \& salah_x9@yahoo.com

Abstract

In this paper, we introduce a new concept that is the affine fuzzy set and we give some properties of it .

2010 Mathematics Subject Classification : Primary $46 S 40$
Keywords: affine fuzzy set, affine spanned.

1. Introduction

There are many kind of fuzzy sets in a fuzzy vector space . Katsaras in [1] was defined a convex fuzzy set, a balanced fuzzy set and absorbing fuzzy set. In this paper we defined and introduced a new kind of fuzzy sets that is affine fuzzy sets by dependence on a concept of affine set which introduced in [2]. Some properties of affine fuzzy sets was prove it in this paper.

2. Preliminaries

Let X be a non-empty set. A fuzzy set in X is the element of the set I^{X} of all functions from X into the unit interval $I=[0,1]$. If $C_{\alpha}: X \rightarrow I$ is a function defined by $C_{\alpha}(x)=\alpha$ for all $x \in X, \alpha \in I$, then C_{α} is called a constant fuzzy set. Let X be a vector space over a field F, where F is the space of either the real or the complex numbers. If $A_{1}, A_{2}, \ldots, A_{n}$ are fuzzy sets in X, then the sum $A_{1}+A_{2}+\cdots+A_{n}$ (see [1]) is the fuzzy set A in X defined by
$A(x)=\sup _{x_{1}+x_{2}+\cdots+x_{n}=x} \min \left\{A_{1}\left(x_{1}\right), A_{2}\left(x_{2}\right), \ldots, A_{n}\left(x_{n}\right)\right\}$. Also, if A is a fuzzy set in X and
$\alpha \in F$, then αA is a fuzzy defined by $\alpha A(x)=\left\{\begin{array}{cl}A(x / \alpha) & \text { if } \alpha \neq 0 \text { for } x \in X \\ 0 & \text { if } \alpha=0, x \neq 0 \\ \sup _{y \in X} A(y) & \text { if } \alpha=0, x=0\end{array}\right.$.

Let X, Y be non-empty sets and $f: X \rightarrow Y$ be a function. If A_{1} and A_{2} are fuzzy sets in X, then $f\left(A_{1}\right) \subset f\left(A_{2}\right)$.

Let A be a subset of a vector space X on a field F. Then A is an affine set in X (see [2]) if $\lambda A+(1-\lambda) A \subset A$ for all $\lambda \in F$. The smallest affine set of X which contains a subset A of X is called the affine spanned of A (in simple aff (A)) and $\operatorname{aff}(A)=\left\{\sum_{k=1}^{n} \lambda_{k} x_{k}: \lambda_{k} \in F, x_{k} \in A, \sum_{k=1}^{n} \lambda_{k}=1\right\}$.

3. Main Results

Theorem 3.1. [2]

Let A, B be fuzzy sets in a vector space X over F, and let $\lambda, \alpha \in F$. Then,
(1) $\alpha(\lambda A)=\lambda(\alpha A)=(\alpha \lambda) A$;
(2) If $A \subseteq B$, then $\lambda A \subseteq \lambda B$.
(3) $\alpha(A+B)=\alpha A+\alpha B$

Definition 3.2.

Let X be a vector space over F. A fuzzy set A in X is called an affine fuzzy set if $\lambda A+(1-\lambda) A \subset A$ for each $\lambda \in F$.

Theorem 3.3.

Let A be a fuzzy set in a vector space X over F and $\lambda \in F$, then the following statement are equivalent.
(1) A is an affine fuzzy set.
(2) for all x, y in X, we have $A(\lambda x+(1-\lambda) y) \geq \min \{A(x), A(y)\}$.

Proof :

$(1) \Rightarrow(2)$
Suppose that A is an affine fuzzy set, by (Definition 3.2) we have $\lambda A+(1-\lambda) A \subset A$ for each $\lambda \in F$. Now, for each $x, y \in X$
$A(\lambda x+(1-\lambda) y) \geq(\lambda A+(1-\lambda) A)(\lambda x+(1-\lambda) y)$

$$
=\sup _{\lambda x+(1-\lambda) y=x_{1}+y_{1}} \min \left\{(\lambda A)\left(x_{1}\right),((1-\lambda) A)\left(y_{1}\right)\right\}
$$

$$
\geq \min \{(\lambda A)(\lambda x),((1-\lambda) A)((1-\lambda) y)\} \geq \min \{A(x), A(y)\} .
$$

(2) $\Rightarrow(1)$

Let $x \in X,(\lambda A+(1-\lambda) A)(x)=\sup _{x_{1}+x_{2}=x} \min \left\{(\lambda A)\left(x_{1}\right),((1-\lambda) A)\left(x_{2}\right)\right\}$
(a) If $\lambda \neq 0$ and $1-\lambda \neq 0$, then

$$
(\lambda A)\left(x_{1}\right)=A\left(\frac{1}{\lambda} x_{1}\right) \text { and }((1-\lambda) A)\left(x_{2}\right)=A\left(\frac{1}{(1-\lambda)} x_{2}\right)
$$

Thus, $(\lambda A+(1-\lambda) A)(x)=\sup _{x_{1}+x_{2}=x} \min \left\{A\left(\frac{1}{\lambda} x_{1}\right), A\left(\frac{1}{(1-\lambda)} x_{2}\right)\right\}$
But, $\min \left\{A\left(\frac{1}{\lambda} x_{1}\right), A\left(\frac{1}{(1-\lambda)} x_{2}\right)\right\} \leq A\left(\lambda\left(\frac{1}{\lambda} x_{1}\right)+(1-\lambda)\left(\frac{1}{(1-\lambda)} x_{2}\right)\right)=A\left(x_{1}+x_{2}\right)=A(x)$.
(b) If $\lambda \neq 0$ and $1-\lambda=0$, then $(\lambda A)\left(x_{1}\right)=A\left(x_{1}\right)$ and

$$
((1-\lambda) A)\left(x_{2}\right)=\left\{\begin{array}{cl}
0 & , x_{2} \neq 0 \\
\sup _{z \in X} A(z) & , x_{2}=0
\end{array}\right.
$$

(i) If $x_{2} \neq 0$, then $((1-\lambda) A)\left(x_{2}\right)=0$ and

$$
(\lambda A+(1-\lambda) A)(x)=\sup _{x_{1}+x_{2}=x} \min \left\{A\left(x_{1}\right), 0\right\}=0
$$

Since $((1-\lambda) A)\left(x_{2}\right) \geq A\left(x_{2}\right)$, then $A\left(x_{2}\right)=0$ and we get $\min \left\{A\left(x_{1}\right), A\left(x_{2}\right)\right\}=0$.
(ii) If $x_{2}=0$, then $((1-\lambda) A)\left(x_{2}\right)=\sup _{z \in X} A(z)$ and

$$
(\lambda A+(1-\lambda) A)(x)=\sup _{x_{1}=x} \min \left\{\lambda A\left(x_{1}\right), \sup _{z \in X} A(z)\right\} \leq \sup _{x_{1}=x} A\left(x_{1}\right)=A(x) .
$$

(c) If $\lambda=0$ and $1-\lambda \neq 0$, by the same way in (b).
(d) if $\lambda=0$ and $1-\lambda=0$, its impossible.

Theorem 3.4.

Let X be a vector space over a field F and $x_{0} \in X$, then
(1) the constant fuzzy set $C_{\alpha}, \alpha \in I$ is an affine fuzzy set.
(2) the characteristic function of $\left\{x_{0}\right\}$ (in symbol $\chi_{\left\{x_{0}\right\}}$) is an affine fuzzy set.

Proof :

(1) clear.
(2) Let $x, y \in X, \lambda \in F$ and suppose that $\chi_{\left\{x_{0}\right\}}(\lambda x+(1-\lambda) y)<\min \left\{\chi_{\left\{x_{0}\right\}}(x), \chi_{\left\{x_{0}\right\}}(y)\right\}$

Then $\chi_{\left\{x_{0}\right\}}(\lambda x+(1-\lambda) y)=0$ and $\min \left\{\chi_{\left\{x_{0}\right\}}(x), \chi_{\left\{x_{0}\right\}}(y)\right\}=1$. Thus, $\lambda x+(1-\lambda) y \neq x_{0}$ and $x=y=x_{0}$ implies that $x_{0} \neq x_{\mathrm{o}}$ which is impossible. Hence, $\chi_{\left\{x_{0}\right\}}(\lambda x+(1-\lambda) y) \geq \min \left\{\chi_{\left\{x_{0}\right\}}(x), \chi_{\left\{x_{0}\right\}}(y)\right\}$. Using (Theorem 3.3), we get the result.

Theorem 3.5.

Let A be a fuzzy set in a vector space X over F. Then, A is an affine fuzzy set in X if and only if $A_{[\alpha]}=\{x \in X: A(x) \geq \alpha\}$ is an affine set in X for all $0 \leq \alpha \leq 1$.

Proof :

Suppose that A is an affine fuzzy set in X. Let $x, y \in A_{[\alpha]}$, then $A(x) \geq \alpha$ and $A(y) \geq \alpha$, thus, $\min \{A(x), A(y)\} \geq \alpha$. Since A is an affine fuzzy set in X, then $A(\lambda x+(1-\lambda) y) \geq \min \{A(x), A(y)\} \geq \alpha$, for all $\lambda \in F$. Thus, $\lambda x+(1-\lambda) y \in A_{[\alpha]}$. By other word $A_{[\alpha]}$ is an affine set in X.

The converse :

Suppose that $A_{[\alpha]}$ is an affine set in X for all $\alpha \in[0,1]$ and let $x, y \in X, \lambda \in F$.
Let $\alpha=\min \{A(x), A(y)\}$, then $\alpha \in[0,1]$. Now, $A(x) \geq \min \{A(x), A(y)\}=\alpha$ and $A(y) \geq \min \{A(x), A(y)\}=\alpha$

That is mean $x, y \in A_{[\alpha]}$. But $A_{[\alpha]}$ is an affine set , then $\lambda x+(1-\lambda) y \in A_{[\alpha]}$. Thus, $A(\lambda x+(1-\lambda) y) \geq \alpha=\min \{A(x), A(y)\}$. From (Theorem 3.3.), A is an affine fuzzy set in X.

Theorem 3.6.

Let A and B be affine fuzzy sets in a vector space X over F, and let $\alpha \in F$. Then, $\alpha A, A \cap B$ and $A+B$ are affine fuzzy sets in X.

Proof :

(1) To prove αA is an affine fuzzy set in X. From (Theorem 3.1.(1),(3)), for $\lambda \in F$ $\lambda(\alpha A)+(1-\lambda)(\alpha A)=\alpha(\lambda A)+\alpha((1-\lambda) A)=\alpha(\lambda A+(1-\lambda) A) \subset \alpha A$.
(2) To prove $A \cap B$ is an affine fuzzy set in X. Let $\lambda \in F$ and Suppose that for all $x, y \in X$, let
$g_{1}: X \rightarrow X, g_{1}(x)=\lambda x ;$
$g_{2}: X \rightarrow X, g_{2}(x)=(1-\lambda) x ;$
$g_{3}: X \rightarrow X, g_{3}(x)=x ;$
are functions. Since A and B are affine fuzzy sets in X, then $\lambda A+(1-\lambda) A \subset A$ and $\lambda B+(1-\lambda) B \subset B$. In other words $g_{1}(A)+g_{2}(A) \subset g_{3}(A)$ and
$g_{1}(B)+g_{2}(B) \subset g_{3}(B)$. Now, $g_{1}(A \cap B) \subset g_{1}(A)$ and $g_{2}(A \cap B) \subset g_{2}(A)$. Likewise $g_{1}(A \cap B) \subset g_{1}(B)$ and $g_{2}(A \cap B) \subset g_{2}(B)$. Thus,
$g_{1}(A \cap B)+g_{2}(A \cap B) \subset g_{1}(A)+g_{2}(A) \subset g_{3}(A) \quad$ and
$g_{1}(A \cap B)+g_{2}(A \cap B) \subset g_{1}(B)+g_{2}(B) \subset g_{3}(B)$. Subsequently
$\lambda(A \cap B)+(1-\lambda)(A \cap B)=g_{1}(A \cap B)+g_{2}(A \cap B) \subset g_{3}(A) \cap g_{3}(B)=A \cap B$.
(3) To prove $A+B$ is an affine fuzzy set in X. By using the same style in (2). For $\lambda \in F$

$$
\begin{aligned}
\lambda(A+B)+(1-\lambda)(A+B) & =\lambda A+(1-\lambda) A+\lambda B+(1-\lambda) B \\
& =g_{1}(A)+g_{2}(A)+g_{1}(B)+g_{2}(B) \\
& \subset g_{3}(A)+g_{3}(B)=A+B .
\end{aligned}
$$

Definition 3.7.

Let A be a fuzzy set in a vector space X over F, then the smallest affine fuzzy set which contains A is called the affine spanned of A (in $\operatorname{symbol} \operatorname{Span}(A))$.

Theorem 3.8.

Let A be a fuzzy set of a vector space X over F. Then the affine spanned of A (
$\operatorname{Span}(A))$ is the set $B=\cup\left\{\mu_{j}=\sum_{i=1}^{n} \lambda_{i j} A: \lambda_{i j} \in F, \sum_{i=1}^{n} \lambda_{i j}=1\right\}$.

Proof :

It is clear that $A \subset B \subset \operatorname{Span}(A)$. We will finish the proof by showing that B is an affine fuzzy set. Let now $\lambda \in F, \mu_{k_{1}}, \mu_{k_{2}} \subset B$, then there is $\lambda_{i k_{1}}, \lambda_{j k_{2}} \in F, \begin{aligned} & i=1, \ldots, n \\ & j=1, \ldots, m\end{aligned}$ such that $\mu_{k_{1}}=\sum_{i=1}^{n} \lambda_{i k_{1}} A, \mu_{k_{2}}=\sum_{j=1}^{m} \lambda_{j k_{2}} A$ and $\sum_{i=1}^{n} \lambda_{i k_{1}}=1, \sum_{j=1}^{m} \lambda_{j k_{2}}=1$.
Now,

$$
\lambda \mu_{k_{1}}+(1-\lambda) \mu_{k_{2}}=\lambda\left(\sum_{i=1}^{n} \lambda_{i k_{1}} A\right)+(1-\lambda)\left(\sum_{j=1}^{m} \lambda_{j k_{2}} A\right)
$$

$$
=\lambda \lambda_{1 k_{1}} A+\cdots+\lambda \lambda_{n k_{1}} A+(1-\lambda) \lambda_{1 k_{2}} A+\cdots+(1-\lambda) \lambda_{m k_{2}} A \subset B
$$

Moreover, $\sum_{i=1}^{n} \lambda \lambda_{i k_{1}}+\sum_{j=1}^{m}(1-\lambda) \lambda_{j k_{2}}=1$. It follows that $\lambda B+(1-\lambda) B \subset B$, which complete the proof.

References

[1] A. K. Katsaras and D. B. Liu, Fuzzy Vector Spaces and Fuzzy Topological Vector Spaces, J. Math. Anal. Appl., 58 (1977) 135-146.
[2] N. F. AL-Mayahi, A. H. Battor, Introduction to Functional Analysis, AL-Nebras com., 2005.

