Affine Fuzzy Set

Noori Farhan AL-Mayahi & Salah Mahdi Ali

Department of Mathematics, College of C. Sc. and Math., AL-Qadisiya University nafm2005@yahoo.com & salah x9@yahoo.com

Abstract. In this paper, we introduce a new concept that is the affine fuzzy set and we give some properties of it .

2010 Mathematics Subject Classification : Primary *46S40* Keywords: affine fuzzy set, affine spanned.

1. Introduction

There are many kind of fuzzy sets in a fuzzy vector space. Katsaras in [1] was defined a convex fuzzy set, a balanced fuzzy set and absorbing fuzzy set. In this paper we defined and introduced a new kind of fuzzy sets that is affine fuzzy sets by dependence on a concept of affine set which introduced in [2]. Some properties of affine fuzzy sets was prove it in this paper.

2. Preliminaries

Let X be a non-empty set. A fuzzy set in X is the element of the set I^X of all functions from X into the unit interval I = [0,1]. If $C_{\alpha} : X \to I$ is a function defined by $C_{\alpha}(x) = \alpha$ for all $x \in X$, $\alpha \in I$, then C_{α} is called a constant fuzzy set. Let X be a vector space over a field F, where F is the space of either the real or the complex numbers. If $A_1, A_2, ..., A_n$ are fuzzy sets in X, then the sum $A_1 + A_2 + \cdots + A_n$ (see [1]) is the fuzzy set A in X defined by

$$A(x) = \sup_{x_1 + x_2 + \dots + x_n = x} \min\{A_1(x_1), A_2(x_2), \dots, A_n(x_n)\}.$$
 Also, if A is a fuzzy set in X and

$$\alpha \in F \text{, then } \alpha A \text{ is a fuzzy defined by } \alpha A(x) = \begin{cases} A(x/\alpha) & \text{if } \alpha \neq 0 \text{ for } x \in X \\ 0 & \text{if } \alpha = 0, x \neq 0 \\ \sup_{y \in X} A(y) & \text{if } \alpha = 0, x = 0 \end{cases}$$

Let X, Y be non-empty sets and $f: X \to Y$ be a function. If A_1 and A_2 are fuzzy sets in X, then $f(A_1) \subset f(A_2)$.

Let A be a subset of a vector space X on a field F. Then A is an affine set in X (see [2]) if $\lambda A + (1-\lambda)A \subset A$ for all $\lambda \in F$. The smallest affine set of X which contains a subset A of X is called the affine spanned of A (in simple aff(A)) and

$$aff(A) = \{\sum_{k=1}^{n} \lambda_k x_k : \lambda_k \in F, x_k \in A, \sum_{k=1}^{n} \lambda_k = 1\}$$

3. Main Results

Theorem 3.1. [2]

Let A, B be fuzzy sets in a vector space X over F, and let $\lambda, \alpha \in F$. Then,

- (1) $\alpha(\lambda A) = \lambda(\alpha A) = (\alpha \lambda)A$;
- (2) If $A \subseteq B$, then $\lambda A \subseteq \lambda B$.
- (3) $\alpha(A+B) = \alpha A + \alpha B$

Definition 3.2.

Let X be a vector space over F. A fuzzy set A in X is called an affine fuzzy set if $\lambda A + (1 - \lambda)A \subset A$ for each $\lambda \in F$.

Theorem 3.3.

Let A be a fuzzy set in a vector space X over F and $\lambda \in F$, then the following statement are equivalent.

(1) A is an affine fuzzy set.

(2) for all x, y in X, we have $A(\lambda x + (1 - \lambda)y) \ge \min\{A(x), A(y)\}$.

Proof:

 $(1) \Rightarrow (2)$

Suppose that A is an affine fuzzy set, by (Definition 3.2) we have $\lambda A + (1 - \lambda)A \subset A$ for each $\lambda \in F$. Now, for each $x, y \in X$ $A(\lambda x + (1 - \lambda)y) \ge (\lambda A + (1 - \lambda)A)(\lambda x + (1 - \lambda)y)$ $= \sup_{\lambda x + (1 - \lambda)y = x_1 + y_1} \min\{(\lambda A)(x_1), ((1 - \lambda)A)(y_1)\}$

$$\geq \min\{(\lambda A)(\lambda x),((1-\lambda)A)((1-\lambda)y)\} \geq \min\{A(x),A(y)\}.$$

 $(2) \Rightarrow (1)$

Let
$$x \in X$$
, $(\lambda A + (1 - \lambda)A)(x) = \sup_{x_1 + x_2 = x} \min\{(\lambda A)(x_1), ((1 - \lambda)A)(x_2)\}$

(a) If $\lambda \neq 0$ and $1 - \lambda \neq 0$, then

$$(\lambda A)(x_1) = A(\frac{1}{\lambda}x_1)$$
 and $((1-\lambda)A)(x_2) = A(\frac{1}{(1-\lambda)}x_2)$

Thus, $(\lambda A + (1 - \lambda)A)(x) = \sup_{x_1 + x_2 = x} \min\{A(\frac{1}{\lambda}x_1), A(\frac{1}{(1 - \lambda)}x_2)\}$

But,
$$\min\{A(\frac{1}{\lambda}x_1), A(\frac{1}{(1-\lambda)}x_2)\} \le A(\lambda(\frac{1}{\lambda}x_1) + (1-\lambda)(\frac{1}{(1-\lambda)}x_2)) = A(x_1 + x_2) = A(x).$$

(b) If $\lambda \neq 0$ and $1 - \lambda = 0$, then $(\lambda A)(x_1) = A(x_1)$ and

$$((1-\lambda)A)(x_2) = \begin{cases} 0 & , x_2 \neq 0\\ \sup_{z \in X} A(z) & , x_2 = 0 \end{cases}$$

(*i*) If
$$x_2 \neq 0$$
, then $((1 - \lambda)A)(x_2) = 0$ and
 $(\lambda A + (1 - \lambda)A)(x) = \sup_{x_1 + x_2 = x} \min \{A(x_1), 0\} = 0$
Since $((1 - \lambda)A)(x_2) \ge A(x_2)$, then $A(x_2) = 0$ and we get $\min \{A(x_1), A(x_2)\} = 0$.
(*ii*) If $x_2 = 0$, then $((1 - \lambda)A)(x_2) = \sup_{z \in X} A(z)$ and
 $(\lambda A + (1 - \lambda)A)(x) = \sup_{x_1 = x} \min \{\lambda A(x_1), \sup_{z \in X} A(z)\} \le \sup_{x_1 = x} A(x_1) = A(x)$.

(c) If $\lambda = 0$ and $1 - \lambda \neq 0$, by the same way in (b).

(d) if $\lambda = 0$ and $1 - \lambda = 0$, its impossible.

Theorem 3.4.

Let X be a vector space over a field F and $x_{\circ} \in X$, then

- (1) the constant fuzzy set C_{α} , $\alpha \in I$ is an affine fuzzy set.
- (2) the characteristic function of $\{x_{\circ}\}$ (in symbol $\chi_{\{x_{\circ}\}}$) is an affine fuzzy set.

Proof:

- (1) clear.
- (2) Let $x, y \in X$, $\lambda \in F$ and suppose that $\chi_{\{x_o\}}(\lambda x + (1 \lambda)y) < \min\{\chi_{\{x_o\}}(x), \chi_{\{x_o\}}(y)\}$

Then $\chi_{\{x_o\}}(\lambda x + (1 - \lambda)y) = 0$ and $\min\{\chi_{\{x_o\}}(x), \chi_{\{x_o\}}(y)\} = 1$. Thus, $\lambda x + (1 - \lambda)y \neq x_o$ and $x = y = x_o$ implies that $x_o \neq x_o$ which is impossible. Hence, $\chi_{\{x_o\}}(\lambda x + (1 - \lambda)y) \ge \min\{\chi_{\{x_o\}}(x), \chi_{\{x_o\}}(y)\}$. Using (Theorem 3.3), we get the result.

Theorem 3.5.

Let A be a fuzzy set in a vector space X over F. Then, A is an affine fuzzy set in X if and only if $A_{[\alpha]} = \{x \in X : A(x) \ge \alpha\}$ is an affine set in X for all $0 \le \alpha \le 1$.

Proof:

Suppose that A is an affine fuzzy set in X. Let $x, y \in A_{[\alpha]}$, then $A(x) \ge \alpha$ and $A(y) \ge \alpha$, thus, $\min\{A(x), A(y)\} \ge \alpha$. Since A is an affine fuzzy set in X, then $A(\lambda x + (1-\lambda)y) \ge \min\{A(x), A(y)\} \ge \alpha$, for all $\lambda \in F$. Thus, $\lambda x + (1-\lambda)y \in A_{[\alpha]}$. By other word $A_{[\alpha]}$ is an affine set in X.

The converse :

Suppose that $A_{[\alpha]}$ is an affine set in X for all $\alpha \in [0,1]$ and let $x, y \in X, \lambda \in F$. Let $\alpha = \min\{A(x), A(y)\}$, then $\alpha \in [0,1]$. Now, $A(x) \ge \min\{A(x), A(y)\} = \alpha$ and $A(y) \ge \min\{A(x), A(y)\} = \alpha$

That is mean $x, y \in A_{[\alpha]}$. But $A_{[\alpha]}$ is an affine set, then $\lambda x + (1-\lambda)y \in A_{[\alpha]}$. Thus, $A(\lambda x + (1-\lambda)y) \ge \alpha = \min\{A(x), A(y)\}$. From (Theorem 3.3.), A is an affine fuzzy set in X.

Theorem 3.6.

Let A and B be affine fuzzy sets in a vector space X over F, and let $\alpha \in F$. Then, $\alpha A, A \cap B$ and A + B are affine fuzzy sets in X.

Proof:

(1) <u>To prove</u> αA is an affine fuzzy set in X. From (Theorem 3.1.(1),(3)), for $\lambda \in F$ $\lambda(\alpha A) + (1 - \lambda)(\alpha A) = \alpha(\lambda A) + \alpha((1 - \lambda)A) = \alpha(\lambda A + (1 - \lambda)A) \subset \alpha A$.

(2) <u>To prove</u> $A \cap B$ is an affine fuzzy set in X. Let $\lambda \in F$ and Suppose that for all $x, y \in X$, let

 $g_1: X \to X, g_1(x) = \lambda x;$

$$g_2: X \to X, g_2(x) = (1 - \lambda)x;$$

$$g_3: X \to X, g_3(x) = x;$$

are functions. Since A and B are affine fuzzy sets in X, then $\lambda A + (1-\lambda)A \subset A$ and $\lambda B + (1 - \lambda)B \subset B$. In other words $g_1(A) + g_2(A) \subset g_3(A)$ and $g_1(B) + g_2(B) \subset g_3(B)$. Now, $g_1(A \cap B) \subset g_1(A)$ and $g_2(A \cap B) \subset g_2(A)$. Likewise $g_1(A \cap B) \subset g_1(B)$ and $g_2(A \cap B) \subset g_2(B)$. Thus, $g_1(A \cap B) + g_2(A \cap B) \subset g_1(A) + g_2(A) \subset g_2(A)$ and $g_1(A \cap B) + g_2(A \cap B) \subset g_1(B) + g_2(B) \subset g_3(B)$. Subsequently $\lambda(A \cap B) + (1 - \lambda)(A \cap B) = g_1(A \cap B) + g_2(A \cap B) \subset g_3(A) \cap g_3(B) = A \cap B.$

(3) To prove A + B is an affine fuzzy set in X. By using the same style in (2). For $\lambda \in F$ $\lambda(A+B) + (1-\lambda)(A+B) = \lambda A + (1-\lambda)A + \lambda B + (1-\lambda)B$ $= g_1(A) + g_2(A) + g_1(B) + g_2(B)$ $\subset g_3(A) + g_3(B) = A + B$.

Definition 3.7.

Let A be a fuzzy set in a vector space X over F, then the smallest affine fuzzy set which contains A is called the affine spanned of A (in symbol Span(A)).

Theorem 3.8.

Let A be a fuzzy set of a vector space X over F. Then the affine spanned of A (Span(A)) is the set $B = \bigcup \{ \mu_j = \sum_{i=1}^n \lambda_{ij} A : \lambda_{ij} \in F, \sum_{i=1}^n \lambda_{ij} = 1 \}.$

Proof:

It is clear that $A \subset B \subset Span(A)$. We will finish the proof by showing that B is an affine fuzzy set. Let now $\lambda \in F$, $\mu_{k_1}, \mu_{k_2} \subset B$, then there is $\lambda_{ik_1}, \lambda_{jk_2} \in F$, i = 1, ..., ni = 1, ..., msuch that $\mu_{k_1} = \sum_{i=1}^n \lambda_{ik_1} A$, $\mu_{k_2} = \sum_{i=1}^m \lambda_{jk_2} A$ and $\sum_{i=1}^n \lambda_{ik_1} = 1$, $\sum_{i=1}^m \lambda_{jk_2} = 1$. Now.

$$\lambda \mu_{k_1} + (1-\lambda)\mu_{k_2} = \lambda \left(\sum_{i=1}^n \lambda_{ik_1} A\right) + (1-\lambda) \left(\sum_{j=1}^m \lambda_{jk_2} A\right)$$

 $= \lambda \lambda_{1k_1} A + \dots + \lambda \lambda_{nk_1} A + (1 - \lambda) \lambda_{1k_2} A + \dots + (1 - \lambda) \lambda_{mk_2} A \subset B$ Moreover, $\sum_{i=1}^{n} \lambda \lambda_{ik_1} + \sum_{j=1}^{m} (1 - \lambda) \lambda_{jk_2} = 1$. It follows that $\lambda B + (1 - \lambda) B \subset B$, which complete the proof.

References

[1] A. K. Katsaras and D. B. Liu, Fuzzy Vector Spaces and Fuzzy Topological Vector Spaces, *J. Math. Anal. Appl.*, **58** (1977) 135-146.

[2] N. F. AL-Mayahi, A. H. Battor, Introduction to Functional Analysis, *AL-Nebras com.*, 2005.