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Abstract

The -optimal control problem in infinite dimensional spaces is presented.

Some optimal control problems and solvability, controllability, null controllability,

perturbed Recatti operator equation as well as some of its properties are discussed and

developed via evolution perturbed strongly continuous semigroup generated by the linear

unbounded perturbed generators.

1 Introduction

Stabilization and control for uncertain systems has received considerable

interest in the last decades; see [5,10,11,12,14,16,17,18] and references therein .In

particular , in [16] it has shown that the solution of the control problem for affine

nonlinear systems can be obtained by solving Hamilton-Jacobi equation, which is

nonlinear version of the Riccati equation considered in the corresponding linear

control theory. Furthermore the control problem for more general nonlinear

systems is considered in [6,13], where the sufficient conditions are obtained on the

solution of Riccati-like equations or inequalities. It is well known that the solution of the

control problem for finite-dimensional systems can be obtained by solving either

linear matrix inequalities or algebraic/differential Riccati-like equation. For infinite-

dimensional control systems, the investigation of this problem is more complicated and



requires sophisticated techniques from semigroup theory. The linear time varying case is

considered  in [6], and necessary and sufficient conditions for control problem are

given in terms of two Riccati-like operator equation. The  nonlinear control problem

for infinite-dimensional system is still under active investigation.

In this paper, we suggested the optimal perturbed unbounded control problem

for uncertain nonlinear systems in real Hilbert space. Some controllability concepts ,like

globally null-controllability and solvability semilinear system have been discussed and

developed or some results depending on solvability of differential Perturbed Ricati

Operator Equation corresponding the problem.

Consider a nonlinear uncertain system of the form,[4]:

(t) F(t, x(t), u(t), w(t)), x(0) x0,

z(t)  G(t, x(t), u(t)),

(1)

where x(t)  H is the state, u(t)  U is the control function, w  W is the uncertain input

function, z  Z is the observation output function, H, U, Z, W are real Hilbert spaces,

F : HUW  H, G : HU  Z (where is a positive reals)   are given nonlinear

functions .In the sequel, we say that the uncertainty w(t) is an admissible if w ([0,

):W).

We assume that for every x0 , the admissible control function u ([0, t]: U)

is a Banach space of 2-integrable functions with its domain [0, t) into U and an

admissible uncertainty function w(t), the system (1) in two equations has a unique

solution x(t, x0) given in the integral form:

x(t, x0)  x0 + F(s, x(s), u(s), w(s)) ds, t [0, ).

Definition (1.1), [4]:



The system (1) is robustly stabilizable if there exists a feedback control operator

u(t)  K(x(t)) such that the solution x(t, x0) of the closed loop system(from output z(t)

depend on u(t) and u(t)  K(x(t)))

F(t, x(t), k(x(t)), w(t)),

z(t)  G(t, x(t), u(t)),

belong to ([0, ):H) for all uncertainties w ([0, ): W), where K is a linear bounded

operator.

Remark (1.1), [13]

 The H control problem for the system (1) is considered as follows:

Given the scalar > 0, find a feedback control u(t) k(x(t)), such that:

i. The control system (1) is robustly stabilizable.

ii. There is a number c0 > 0, such that:

,        for all non-zero admissible uncertainties w(t).

 From definition (1.1), one can say that the optimal control problem for system (1)

has a solution and the feedback control u(t)  k(x(t)) is robustly stabilizable.

 If the conditions (i-ii) in (1) hold for all x0 H, u(t)  U, w(t)W, for some neighborhood

of the origin, then we say the H optimal control problem has a local solution.

 The robust stabilizability implies that the closed-loop system can be made L2-stable

for all admissible uncertainties wW.

 The H optimal control condition (ii) in (1), can be guaranteed under non-zero initial

conditions.

Definition (1.2) , [7]:



A set T  {T(t, s)}ts0 L(H) is an evolution semigroup( where L(H) space of linear

bounded operators)  if:

1- T(t, s)  T(t, r)T(r, s), T(s, s)  I, t r  s 0 , where I stands for the identity operator.

2- (t, s)  T(t, s) is strongly continuous,

3- A(t)T(t, s), A(t)T(t, s),   (where A(t) is a generator of  T).

4- ||T(t, s)||  M , for all t  r  s 0 and constants M 1 and , where

stands for the set real numbers.

2. Problem Formulation

We consider the following semilinear system (induced  by linear and nonlinear

parts) :

(t)  [A(t) + A(t)]x(t) + [B(t) + B(t)]u(t) + [B1(t) + B1(t)]w(t) + f(t, x(t), u(t), w(t)),
z(t)  C(t)x(t) + D(t)u(t) + g(t, x(t), u(t)), (2)

satisfies the following assumptions:

 The operator A(t) : D(A(t))  H is unbounded generating Co-evolution semigroup {T(t,

s)}ts0. The operator A(t):D(A(t))  H is a bounded linear operator, such that D(A(t))

D((A(t)), implies that A(t) + A(t) : D(A(t))   H is also unbounded linear operator

generating Co-perturbation evolution semigroup {TA(t, s)}ts0 of  system (2).

 Let , t 0, be a Hilbert space in which H is densely and  continuously embedded in

and let : is a continuously extension Co-evolution perturbation

semigroup of TA(t, s) generated by a linear unbounded operator is the

extension generator of the generator on .

 B(t):UH is unbounded linear control operator and B(t) : U  H, such that



B(t) + B(t) : U  H, is unbounded perturbed linear control operator, where U is a control

space.

B1(t) + B1(t) L(W, H), (The space of all continuous linear operators from W into H).

 such that D(B1(t))  D(B1(t)),where W is the uncertain Hilbert space and

[B1(.)+B1(.)]w, is continuous  function in t for all w  W, C(t) : H  Z and D(t): U  Z

are linear bounded operators, and C(.)x, D(.)u, are continuous functions for t and

all x  H, u  U, w  W.

 The functions, F: HUW  H, G: HU  Z are given nonlinear perturbation functions

and continuous functions for all (x, u, w) they are also satisfying the following growth

conditions:

c1, c2, c3 > 0, such that:

||F(t, x(t), u(t), w(t))||  c1||x(t)|| + c2||u(t)|| + c3||w(t)||, (3)

c4, c5 > 0, such that:

||G(t, x(t), u(t))||  c4||x(t)|| + c5||u(t)||. (4)

We shall make the conditions such that the nonlinear system (2) has a unique solution.

We assume that in addition, we need the following assumptions:

 The functions [B(.) + B(.)]u, [B1(.) + B1(t)]w, C(.)x, D(.)u, A(.)x are bounded such

that:

b1, b2, a, b, , c, d, p > 0, such that:

a ||A(t) || ,b ||B(t)|| , b1 || B1(t)|| ,

b ||B(t)|| , ||B1(t)|| ,c ||C(t)|| ,

d ||D(t)|| ,Q(t)C*(t)C(t)+I (5)
 We assume that:

C*(t)D(t) 0, D*(t)D(t) I, t 0



Note that this assumption is a standard assumption in H control theory.

We are interested in the relation between the evolution semigroup {T(t, s)} ts0 generated

by A(t) and the perturbation evolution semigroup {TA(t, s)}ts0 [see assumption 1]

generated by ,let

G(s, )x  T(t, s)TA(s, )x. (6)

Now

A(t)T(t, s)TA(s, )x + T(t, s)(A(t)+ A(t))TA(s, )x A(t)T(t, s)TA(s, )x + [T(t,

s)A(t) + T(t, s)A(t)TA(s, )x T(t, s)A(t)TA(s, )x. (7)

By integrating both sides of (7) from  to t, we obtain:

G(t, )x  G(, )x T(t, s)A(s)TA(s, )x d.From (4.6), we have:

TA(t, )x  T(t, )x + T(t, s)A(s)TA(s, )x ds (8)

The aim of this section is to find sufficient conditions and construct the feedback

control for solving the H optimal control for nonlinear perturbed system (2).

Definition(2.3):

Let TA be an evolution family on H and let , t 0, be a real Hilbert space in which

H is densely and continuously embedded in .Assume that TA(t, s) has a locally

uniform bounded extension : (which then satisfies (1) in definition

(1.2) and is strongly continuous with respect to s). We call B(t) L(U, ), t 0,

TAadmissible

perturbed control operators if the function



[B(.) + B(.)]u(.) is integrable in and

( B(.)+B(.)u)(t) [B(s)+B(s)]u(s) ds  H, (9)

and there are constants t0,  > 0, such that:

|| B(.)u)(t)||H ||u|| , for all 0  s  t  s + t0 and u  L2([s, t], U). (10)

Remark(2.1)

Consider the linear varying perturbation control system:

\ (t)  [A(t) + A(t)]x(t) + [B(t) + B(t)]u(t), t 0

x(0) x0 . (11)

The operators A(t): D(A(t)) H and A : D(A(t)) H defined as in assumption (1) of

problem formulation .It should be noted that to find the mild solution of problem (11), let

TA(t, s) has a locally uniformly bounded extension, and by definition(1.2), the

perturbation evolution linear operator : is strongly continuous with

respect to s generated

by a linear operator which is the extension generator of the generator

on .Let B(t) L(U: ), t 0, is TA-admissible perturbed control linear

operator defined from U into ,such that [B(.)+B(.)] L(U: ) satisfies the conditions

in (9) and (10) where , t 0 is an extension Hilbert spaces in which H is densely and

continuously embedded in .Let x(.) H be the solution of (11). Then

x(s) x(0) + [B(s) + B(s)]u(s) ds.

Hence the solution is :



x(t) x(0) + [B(s) + B(s)]u(s) ds.

So according to the results above, the following definition will be presented:

Definition (2.4):

A continuous function x  C[[0,t):H), given by:

x(t) x0 + [B(s) + B(s)]u(s) ds , (13)

will be called a mild solution to the linear varying perturbation initial-value control
problem .

The concept of controllability is concerned with the question of existence of an

admissible control, which stress any state to another state of the system in finite time.

Depending on the properties involved on defining different concepts of the controllability

various aspects of controllability results can be found in [2], [3], [8], [9] and the reference

there in.

Definition (2.5):

The system (11) is called globally null-controllable in time t > 0 if for every initial

state x0 there is a admissible control u(t) ([0, t]: U), such that:

x0 + [B(s) + B(s)]u(s) ds 0.

In order  to prove our problem , we need the following remark.

Remark (2.3):

Associated with the system (11), we consider the following Perturbed Ricatti

Operator Equation (PROE):



(t)+[A(t)+A(t)]*p(t)+p(t)[A(t)+A(t)]p(t)[B(t)+B(t)][B(t)+B(t)]*p(t)+Q(t)0,t 0.

(14)

Since A(t) + A(t) is unbounded, it is not clear a priori what a solution of  PROE(14) is.

We will generalize and define as in [1] that an operator p(t) L( ) is a mild solution of

PROE (14) if the scalar function <p(t)x, x> is differentiable for every x  H; and:

< (t)x,x> +<p(t)x,[A(t)+A(t)]x> <p(t)[B(t)+B(t)].[B(t)+B(t)]*p(t)x,x> +

<Q(t)x, x> =0, for all x  D(A(t) + A(t)) and t 0.

Definition (2.6) [42]:

Consider the initial value control system is:

(t) A(t)x(t) +B(t) u(t), t 0

x(0) x0 (15)

where A(t) : H  H is unbounded linear operator and B(t) : U  H is bounded linear

control operator satisfying the conditions in [2], [7] such that the system (15) has a

unique solution for every u(t) .The system (15) is called Q(t)-

stabilizable,[see 13], if for every initial state, there is a control u(t) , such

that the cost function will be

J(u) [<Q(s) x(s), x(s)>H + ||u(s)|| ] ds < ∞ (16)

Assume that the system (15) is Q(t)-stabilizable, where Q(t) is

bounded on ,where (LOC is standard for the set of all linear bounded self-adjoint

non-negative definite operator-valued function in is a positive real Hilbert space).

Then the PROE of the system (15) has a solution P(t) bounded on

.



From the previous remark the following result of globally null-controllable for the

suggested linear perturbed dynamical control system in infinite-dimensional spaces with

unbounded perturbed control operator .

Proposition (2.1):

If the linear varying perturbed unbounded linear control system (11) is globally

null-controllable in some finite time on , then for any Q(t) LCO([0, ]: ) bounded

on [0, ), the PROE (14) has a bounded solution p(t) LCO([0, ): ).

Proof:
Assume that the system (11) is globally null-controllable in some time t1 > 0. Let us take

any operator Q(t) LCO([0, ): ) and consider the cost function (16).Due to the
definition of global null-controllability, for every initial state x0 H, there is a control u(t)

L2([0, t1]: U) such that the solution x(t, t0) of the system, according to the control u(t),
satisfies:

x(t0)  x0, x(t1) 0.

Let us denote by ux(t) an admissible control according the solution x(t) of the system.

Define:

(t) If (.) is the solution corresponding to (.),

(t) x0 + [B() + B()] () d .for t [0, ), then:

(t) x0 + [B() + B()] () d 0.

For t > t1.Therefore, every initial state x0, there is a control (t) ([0, ): U), such that:

J( ) [<Q(s) (s), (s)>H+|| (s)|| ]ds [<Q(s) (s), (s)>H+|| (s)|| ] ds <



which implies that (11) is Q(t)-stabilizable and hence Remark (2.4), implies that the
PROE (14) has a solution.

Theorem (2.1):

Suppose that  assumptions (1)-(7) of problem formulation (2) are held. The
optimal control problem for semi-linear system (2) has a solution if:

 B(t) L(U, ), t 0, is TAadmissible perturbed control linear defined from U into ,

such that [B(.) + B(.)] L(U, ) satisfies the conditions in (9) and (10) where , t
0 is a extension Hilbert spaces in which H is densely and continuously embedded in

.

 System (4.11) is globally null-controllable in finite time and

p ||p(t)||
,

where p(t) is the solution of PROE (14)

 1 2c1p + c2(b + b)p2 + pa + p2(b1 + c3 + )2 + (c4 + c5(b + b)p)(2c4 + 2dp(b + b) +
c4 + c5(b + b)p) > 0. (17)

 The feedback control :

u(t)  [B(t) + B(t)]*p(t)x(t), (18)

robustly stabilizing the system (11).

Proof:

Since the system (11) is a globally null-controllable infinite time.Thus from

proposition (2.1),the PROE (14) has a bounded linear solution p(t) LCO([0, ): ), t 0,
where Q(t) C*(t)C(t) + I 0 is a bounded linear operator on [0, ).

Let us consider the scalar function:

V(t, x(t))  <p(t)x(t), x(t)>

Using the feedback control (18) the derivative of V(.) along the solution x(t) of the closed
loop system is:

(t, x(t))  < (t)x(t), x(t)> + <p(t) (t), x(t)> +<p(t)x(t), (t)>



<p(t)x(t), x(t)> + <p(t) (t), x(t)> + <x(t),p*(t) (t)> .     (19)

Now, since p(t) LCO([0, ), ), implies that p(t) p*(t), t 0, and we have that:

(t, x(t))  < (t)x(t), x(t)> + 2<p(t) (t), x(t)>

By using (14), (12) and (5), we have that:

(t, x(t))  <([A(t) + A(t)]*p(t)  p(t)[A(t) + A(t)] + p(t)[B(t) + B(t)][B(t)

+B(t)]*p(t)  C*(t)C(t)I)x(t),x(t)> + 2p(t)(A(t)x(t) + B(t)u(t) + B1(t)w(t)

+ [A(t)x(t) +B(t)u(t) +B1(t)w(t)] + F(t, x, u, w)), x(t)>

<p(t)x(t), [A(t) + A(t)]x(t)>
<p(t)[A(t) +A(t)]x(t), x(t)> +<p(t)[B(t) +

B(t)][B(t) + B(t)]*p(t)x(t), x(t)> <C*(t)x(t), x(t)> <x(t), x(t)>H +

2<p(t)A(t)x(t), x(t)> +2<p(t)B(t)u(t), x(t)> +2<p(t)B1(t)w(t), x(t)>

+2<p(t)A(t)x(t), x(t)> + 2<p(t)B(t)u(t), x(t)> + 2<p(t) B1(t)w(t),

x(t)> +<p(t)f(t, x, u, w), x(t)> .

From proposition (2.1), we have that p(t) LOC([0, ), ), therefore:

<p(t)x(t), [A(t) + A(t)]x(t)> <x(t), p*(t)[A(t) + A(t)]x(t)>

<x(t), p(t)[A(t) + A(t)]x(t)> <p(t)[A(t) + A(t)]x(t), x(t)> .

Also from (18), we have that:

<p(t)B(t)u(t), x(t)> <p(t)B(t)[B(t) + B(t)]*p(t)x(t), x(t)> .
Hence:

V(t, x(t))  <x(t),x(t)>H

C*(t)C(t)x(t),x(t)>H<p(t)B(t)[B(t)+B(t)]*p(t)x(t),x(t)> +2<p(t)

B1(t)w(t),x(t)>
+ 2<p(t)F(t,x,u,w),x(t)> +2<p(t)A(t)x(t),x(t)>

2<p(t)B(t)[B(t) +B(t)]*p(t)x(t), x(t)> + 2<p(t)B1(t)w(t), x(t)> (20)
Now, since:



<C(t)x(t),C(t)x(t)>H 0, <[B(t)+B(t)]*p(t)x(t), B*(t)p(t)x(t)>U 0,

<p(t)B(t)[B(t) + B(t)]*p(t)x(t), x(t)> 0,
and using  condition (3), the relation (19) becomes:

(t,x(t))||x(t)|| +2<p(t)B1(t)w(t),x(t)> +2<p(t)F(t,x,u,w),x(t)>

+2<p(t)A(t)x(t), x(t)> + 2<p(t)B1(t)w(t), x(t)> ||x(t)||

+2<p(t)B1(t)w(t),x(t)> +2<p(t)F(t,x,u,w),x(t)> +2<p(t)A(t)x(t),x(t)> +<p(

t)B1(t)w(t),x(t)> ||x(t)|| +2||p(t)|| +||B1(t)||H||w(t)||w||x(t)|| +2||p(t)|| ||F(t, x, u,

w)|| ||x(t)||H + 2||p(t)|| ||A(t)||H ||x(t)|| + 2||p(t)|| ||B1(t)||L(W,H) ||w(t)||W ||x(t)||H

||x(t)|| + 2||p(t)|| ||B1(t)||L(W,H)||w(t)||W||x(t)||H + 2||p(t)|| ||F(t, x, u, w)|| ||x(t)||H +

2||p(t)|| ||A(t)||H||x(t)|| + 2||p(t)|| ||B1(t)||L(W,H)||w(t)||W ||x(t)||H

||x(t)|| + 2pb1||w(t)||w||x(t)||H+2p(c1||x(t)||H + c2||u(t)|| + c3||w(t)||W)||x(t)||H +

2pa||x(t)|| + 2p ||w(t)|| ||x(t)||H. (21)

From equation (4.18), we have that:

||u(t)||U ||[B(t) + B(t)]*p(t)x(t)||U (b + b)p||x(t)||H.

Thus, relation (4.21) becomes:

(t,x(t))||x(t)|| +2pb1||w(t)||w.||x(t)||H+2p(c1||x(t)||H+c2(b+b) ||x(t)||H)+c3||w(t)||w)||x(t)||H

+2pa||x(t)|| +2p ||w(t)||w ||x(t)||H. (22)
From condition (6)of problem formulation (4) and assumption (2) of the theorem, we
obtain:

(t, x(t))  (2pc1+ c2(b + b)p +2pa 1)||x(t)|| + (2pb1 + 2pc3 + 2p )||w(t)||w ||x(t)||H, (23)
Integrating both sides of (23) from 0 to t, yields:

<p(t)x(t),x(t)><p(0)x(0),x(0)> 1 || ds + 22 ||w(s)||W|| ds ,
where

1 2pc1 + c2(b + b)p + 2pa 1, 2 2pb1 + 2pc3 + 2p .
Thus:



<p(t)x(t), x(t)> <p(0)x(0), x(0)> 1 || ds + 22 || ds

|| ds.

Therefore:

3 + 24 ,

where 3 , 4 .

By completing the square we obtain:

||x(t)|| ds 4 + ,  t ,

letting t  , the last inequality gives:

ds ds 4 + .

Thus x ([0, ):H+), which implies that the closed loop control is robustly stabilizable

We need to show that the condition (ii) in  remark (1.1) is satisfied

Now, consider the following relation:

[||z(t)||2 ||w(t)||2] dt [|| || ||w(t)||2 + (t, x(t))] dt

(t, x(t)) dt,

for any x(t)  H and nonzero w(t)  L2([0, ), W), we have:



(t, x(t))  ||x(t)|| <C*(t)C(t)x(t), x(t)>H <p(t)B(t)[B(t) + B(t)]*p(t)x(t), x(t)> +

2<p(t)B1(t)w(t),x(t)> + 2<p(t)f(t, x, u, w), x(t)>
+ 2<p(t)A(t)x(t), x(t)>

2<p(t)B(t)B*(t)p(t)x(t), x(t)> + 2<p(t)B1(t)w(t), x(t)>
Moreover, from the proof of proposition (2.1), the solution x(t) 0 when t , we have:

(t, x(t)) dt  V(, x()) V(0, x0) V(0, x0) <p(0)x0, x0>

where the initial condition p(0) 0. Therefore:

[|| || ]dt [|| ||
+ (t, x(t))]dt

By (4.2), we have that:

<z(t),z(t)>Z <C(t)x(t),z(t)>Z + <D(t)u(t),z(t)>Z + <G(t,x,u),z(t)>Z <C(t)x(t), C(t)x(t)>Z +
<C(t)x(t), D(t)x(t)>Z + <C(t)x(t), G(t, x, u)>Z + <D(t)u(t), C(t)x(t)>Z + <D(t)u(t), G(t, x,
u)>Z + <G(t, x, u), C(t)x(t)>Z + <G(t, x, u), D(t)u(t)>Z + <G(t, x, u), g(t, x, u)>Z . (24)

By using condition (6) of problem formulation (4), we have that:

<C(t)x(t), D(t)x(t)>Z <x(t), C*(t)D(t)x(t)>H 0, (25)

<D(t)u(t), C(t)x(t)>Z <C*(t)D(t)u(t), x(t)>H 0, (26)

and

<D(t)u(t), D(t)u(t)>Z <D*(t)D(t)u(t), u(t)>U <u(t), u(t)>U

<[B(t)+B(t)]*p(t)x(t), [B(t) + B(t)]*p(t)x(t)>U (27)

From (25), (26) and (27), equation (24) becomes:

||z(t)|| <C*(t)C(t)x(t), x(t)>H + <G(t, x, u), C(t)x(t)>Z +<[B(t) + B(t)]*p(t)x(t), [B(t) +
B(t)]*p(t)x(t)>U + <G(t, x, u), D(t)u(t)>Z + <G(t, x, u), C(t)x(t)>Z + <G(t, x, u), D(t)u(t)>Z

+ ||G(t, x(t), u(t))|| .

Hence:

||z(t)|| <C*(t)C(t)x(t), x(t)>H + 2<G(t, x(t), u(t)), C(t)x(t) + D(t)u(t)>Z+ <p(t)[B(t) +

B(t)][B(t) + B(t)]*p(t)x(t), x(t)> + ||G(t, x(t), u(t))|| . (26)
From (4.26), we have that:



[||z(t)|| ||w(t)|| ] dt [||z(t)|| ||w(t)|| ]dt+ (t, x(t))+<p(0)x0, x0> dt

[<C*(t)C(t)x(t), x(t)>H + <p(t)[B(t) + B(t)][B(t)+ B(t)]*p(t)x(t), x(t)> + 2<G(t,

x, u),C(t)x(t) D(t)u(t)>Z+||G(t, x(t), u(t))|| <C*(t)C(t)x(t), x(t)>H + 2<p(t).

F(t, x(t),u(t),w(t)),x(t)> + 2<p(t)A(t)x(t), x(t)> 2<p(t)B(t)[B(t) +

B(t)]*p(t)x(t),x(t)> + 2<p(t)B1(t)w(t), x(t)> <w(t), w(t)>W+<p(0)x0, x0>
<x(t), x(t)>H .

[||z(t)|| ||w(t)|| ] dt <x(t), x(t)>H + 2<G(t, x, u), C(t)x(t) + D(t)u(t)>Z

+||g(t, x(t), u(t))|| + 2<p(t)B1(t)w(t), x(t)> 2<p(t)B(t)[B(t) + B(t)]*p(t)x(t),

x(t)> + 2<p(t)B1(t)w(t), x(t)> <w(t), w(t)> + <p(0)x0, x0>

+ 2<p(t)f(t, x(t), u(t), w(t)), x(t)> .

[||z(t)|| ||w(t)|| ] dt ||x(t)|| + 2||G(t, x(t),

u(t))||Z(||C(t)|| ||x(t)||H+||D(t)|| ||u(t)||U)+||G(t, x(t), u(t))|| 2<p(t)B1(t)w(t),

x(t)> +2<p(t)A(t)x(t),x(t)>H 2<p(t)B(t) [B(t) + B(t)]*p(t)x(t), x(t)> +

2<p(t)B1(t)w(t),x(t)> <w(t),w(t)>W<p(0)x0, x0> + 2<p(t)f(t, x(t), u(t),w(t)),

w(t)>

[||z(t)|| ||w(t)|| ] dt ||x(t)|| + 2||G(t, x(t), u(t))||Z(||C(t)|| ||x(t)||

+ ||D(t)|| ||u(t)|| )+ ||g(t, x(t),u(t))|| + 2||p(t)|| ||B1(t)|| ||w(t)|| ||x(t)|| +

2||p(t)|| ||A(t)|| ||x(t)|| 2||p(t)|| ||B(t)|| ||[B(t) + B(t)]*|| ||p(t)|| ||x(t)|| +



2||p(t)|| ||B1|| ||w(t)||W||x(t)||H ||w(t)|| ||p(0)|| ||x0|| + 2||p (t)|| ||F(t, x(t), u(t),

w(t))||

||x(t)||H ||x(t)|| + 2c4C||x(t)|| + 2c4d||x(t)|| + 2c5p(b + b)c||x(t)|| + 2c5p(b +

b)d||x(t)|| + ||x(t)|| + 2c4c5p(b +b)||x(t)|| + p2(b+ b)2 ||x(t)||

+2pb1||w(t)||W||x(t)||H + 2pa||x(t)|| + 2p ||w(t)|| ||x(t)||

||w(t)||2 ||p(0)|| ||x0|| + 2p(c1||x(t)||H + c2p(b + b)||x(t)||H + c3||w(t)||W)||x(t)||

[1 + c4c + 2c4d + 2c5p(b + b)c + 2pa + 2c5p(b + b)d + +2c4c5p(b

+ b) + p2(b + b)2 + 2c1p + c2p2(b + b)]||x(t)|| +[2p +2pb1 + 2pc3]||w(t)|| ||x(t)||

||w(t)|| + ||p(0)|| ||x0||H [2c1p+ c2(b + b)p2 + pa + p2(b1 + c3 + )2 + (c4 + c5(b

+b)p)(2c + 2dp(b +b) + c4 + c5(b + b)p) 1] ||x(t)|| dt +||p(0)|| ||x0||
From (4.17), we obtain:

1 +2c1p + c2(b + b)p2 + pa + p2(b1 + )2 + (c4 + c5(b + b)p)(2c + 2dp(b + b) + c4 + c3(b +
b)p) < 0 .Hence:

[||z(t)|| ||w(t)|| ] dt .

Setting c0 , therefore:

[||z(t)|| ||w(t)|| ] dt < c0||x0||

||z(t)|| dt < c0||w(t)|| + ||w(t)|| dt <



for all w(t) ([0, ), W) and x0 X provided condition(ii) in remark(1.1). This completes
the proof of the theorem.

سمیر قاسم حسن.جھاد رمضان خضر               د. راضي علي زبون                     د.د
قسم الریاضیات                             فرع الریاضیات                    قسم الریاضیات
كلیة العلوم                               الجامعة التكلونوجیة                    كلیة التربیة

الجامعة المستنصریة                                                               الجامعة 
لمستنصریة

المستخلص

ولقد ناقشنا وطورنا قابلیة . والمعرفة على فضاء ذات بعد غیر منتھيتم عرض مسالة سیطرة مثلى من نوع لقد
الحل وقابلیة السیطرة و قابلیة السیطرة الملغیة  و كذلك معادلة ریكاتي ذات مؤثر قلقلة  وبعض الخواص الاخرى 

.متین و مستمر بقوة والذي یتولد بمولد قلقلة غیر مقیدلمسائل سیطرة  مثلى بمنھجیة شبھ الزمرة المقلقلة  ذو المعل
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