Optimal Perturbed H Control Problems with
Unbounded Control Operator

Radhi Ali Zboon Jehad Ramadhan Kider Samir Kasim Hassan
Department of Mathematics Department of Applied science Department of
Mathematics

College of science. (University of Technology) College of Education
AL-Mustansirya University Al-Mustansirya University
Abstract

The H, -optimal control problem in infinite dimensional spaces is presented.
Some optimal control problems and solvability, controllability, null controllability,
perturbed Recatti operator equation as well as some of its properties are discussed and
developed via evolution perturbed strongly continuous semigroup generated by the linear

unbounded perturbed generators.

1 Introduction

Stabilization and H, control for uncertain systems has received considerable

interest in the last decades; see [5,10,11,12,14,16,17,18] and references therein .In

particular , in [16] it has shown that the solution of the H, control problem for affine
nonlinear systems can be obtained by solving Hamilton-Jacobi equation, which is

nonlinear version of the Riccati equation considered in the corresponding linear

H, control theory. Furthermore the H, control problem for more general nonlinear
systems is considered in [6,13], where the sufficient conditions are obtained on the
solution of Riccati-like equations or inequalities. It is well known that the solution of the

H

«:control problem for finite-dimensional systems can be obtained by solving either
linear matrix inequalities or algebraic/differential Riccati-like equation. For infinite-

dimensional control systems, the investigation of this problem is more complicated and



requires sophisticated techniques from semigroup theory. The linear time varying case is

considered in [6], and necessary and sufficient conditions for H, control problem are

H

given in terms of two Riccati-like operator equation. The nonlinear =~ control problem

for infinite-dimensional system is still under active investigation.

In this paper, we suggested the optimal perturbed unbounded H'ﬁ’i'control problem
for uncertain nonlinear systems in real Hilbert space. Some controllability concepts ,like
globally null-controllability and solvability semilinear system have been discussed and
developed or some results depending on solvability of differential Perturbed Ricati

Operator Equation corresponding the problem.

Consider a nonlinear uncertain system of the form,[4]:

X (1) F(t, x(t), u(t), w(t)), x(0) xo,
2(t) G(t, x(1), u(t)),
(1)

where x(t) H is the state, u(t) U is the control function, w W is the uncertain input

function, z Z is the observation output function, H, U, Z, W are real Hilbert spaces,

F:J"HUW H,G:!| "HU Z (where | i is a positive reals) are given nonlinear
functions .In the sequel, we say that the uncertainty w(t) is an admissible if w L2 ([o,

):W).

We assume that for every xo € H, the admissible control function u 5 ([0, t]: U)
is a Banach space of 2-integrable functions with its domain [0, t) into U and an
admissible uncertainty function w(t), the system (1) in two equations has a unique

solution x(t, x¢) given in the integral form:

L

J

x(t, Xo) Xo+ 0 F(s, x(s), u(s), w(s)) ds, t [0,).

Definition (1.1), [4]:




The system (1) is robustly stabilizable if there exists a feedback control operator
u(t) K(x(t)) such that the solution x(t, x¢) of the closed loop system(from output z(t)
depend on u(t) and u(t) K(x(t)))

X F(t, x(1), k(x(1)), w(t)),
2(t) G(t, x(1), u(t)),

belong to L’ ([0, ):H) for all uncertainties w Lz([O, ): W), where K is a linear bounded

operator.

Remark (1.1), [13]

e The H control problem for the system (1) is considered as follows:
Given the scalar > 0, find a feedback control u(t) k(x(t)), such that:
1. The control system (1) is robustly stabilizable.
i1. There is a number ¢y > 0, such that:
j 1 z(t) |7 dit
0

sup
X{)EH

E)
g 2
Co Il xg It + [ 11 w(t) [y dt
0 , for all non-zero admissible uncertainties w(t).

From definition (1.1), one can say that the H, optimal control problem for system (1)

has a solution and the feedback control u(t) k(x(t)) is robustly stabilizable.

If the conditions (i-i1) in (1) hold for all xo H, u(t) U, w(t)W, for some neighborhood

of the origin, then we say the H optimal control problem has a local solution.

The robust stabilizability implies that the closed-loop system can be made L*-stable

for all admissible uncertainties wW.

The H optimal control condition (ii) in (1), can be guaranteed under non-zero initial

conditions.

Definition (1.2) , [7]:




A set T {T(t, s)}so L(H) is an evolution semigroup( where L(H) space of linear

bounded operators) if:

I-T(t,s) T(t, r)T(r, s), T(s,s) L ¢r s o, where I stands for the identity operator.

2-(t,s) T(t, s) is strongly continuous,

3.

{1y
4- | T(t, s)| M©

8T(t,5) 8T (t,s)

ot A@M)T(, s), 0s A@)T(t, s), (where A(t)is a generator of T).

{t—s
), forallt r s 0and constants M 1and © | , where |

stands for the set real numbers.

2. Problem Formulation

We consider the following semilinear system (induced by linear and nonlinear

parts) :

X () [A®) +ADIX() + [B) + BO)Tu(t) + [Bi(t) + Bi(t)w(t) + (t, x(t), u(t), w(b)),
z(t) C(H)x(t) + D(Hu(t) + g(t, x(t), u(t)), 2)

satisfies the following assumptions:

The operator A(t) : D(A(t)) H is unbounded generating C,-evolution semigroup {T(t,
$)}s0- The operator A(t):D(A(t)) H is a bounded linear operator, such that D(A(t))
D((A(t)), implies that A(t) + A(t) : D(A(t)) H is also unbounded linear operator

generating C,-perturbation evolution semigroup {Ta(t, s)}o of system (2).

Let Hl, t 0, be a Hilbert space in which H is densely and continuously embedded in

i, T
and let Ty, (t,3) : H, H, is a continuously extension C,-evolution perturbation

semigroup of Ta(t, s) generated by a linear unbounded operator [A(D)+AAM] §5 the

extension generator of the generator A +AA(Y on kL )

B(t):UH is unbounded linear control operator and B(t) : U H, such that



B(t) + B(t) : U H, is unbounded perturbed linear control operator, where U is a control

space.

Bi(t) + Bi(t) £(W, H), (The space of all continuous linear operators from W into H).

such that D(Bi(t)) D(Bi(t)),where W is the uncertain Hilbert space and
[Bi(.)+B;(.)]w, is continuous functionint - forallw W, C(t): H Zand D(t): U Z

are linear bounded operators, and C(.)x, D(.)u, are continuous functions fort =  and

allx Hyu U,w W.

The functions, F: " HUW H, G:L "HU Z are given nonlinear perturbation functions
and continuous functions for all (x, u, w) they are also satisfying the following growth

conditions:
c1, €2, ¢3 > 0, such that:
[IECt, x(0), u(®), w)l| cilx® + calfu®)]] + cslw(b)ll, 3)
¢4, 5 > 0, such that:
IG(t, x(1), u(t)| calx®)] + cs|ut)]]. 4

We shall make the conditions such that the nonlinear system (2) has a unique solution.
We assume that in addition, we need the following assumptions:

The functions [B(.) + B(.)]Ju, [Bi(.) + Bi(t)]w, C(.)x, D(.)u, A(.)x are bounded such
that:

A
b1, b2, 4 b, by , ¢, d, p> 0, such that:

sup sup sup
ot TIAQ [ Hb = T B A by te T By o) AN,

sup sup sup
, L€ +HB(,[)H£(U_,H)’ Abl i +HB1(t)||‘C(W"H),C tE +||C(t)||£(H=Z'),

sup
a t= 7 Ipo) A Qucrmeo- “

We assume that:

C*()D(t) 0, D*®)D(t) I, t 0



Note that this assumption is a standard assumption in H control theory.

We are interested in the relation between the evolution semigroup {T(t, s)}o generated

by A(t) and the perturbation evolution semigroup {Ta(t, s)}io [see assumption 1]

generated by A(D)+AA(Y) Jlet
G(s, )x T(t, s)Ta(s, )x. (6)
Now
oG(s,T)x
cs A)T(t, s)Ta(s, )x + T(t, s)(A(t)+ A(t))Ta(s, )x A)T(t, s)Ta(s, )x + [T(t,
S)A(t) + T(t, s)A(t)Ta(s, )x T(t, )A(t)Ta(s, )x. (7)

By integrating both sides of (7) from to t, we obtain:

L

J

G(t, )x G(,)x ¥ T(t, s)A(s)Ta(s, )x d.From (4.6), we have:
L

J

Ta(t,)x T(t,)x + ¥ T(t, s)A(s)Ta(s, )x ds (8)
The aim of this section is to find sufficient conditions and construct the feedback

control for solving the H optimal control for nonlinear perturbed system (2).

Definition(2.3):

H

Let T4 be an evolution family on H and let "', t 0, be a real Hilbert space in which

H is densely and continuously embedded in Hl.Assume that Ta(t, s) has a locally

: . s 68)
uniform bounded extension “AA : Hy H, (which then satisfies (1) in definition
(1.2) and is strongly continuous with respect to s). We call B(t) (U, Hl), t 0,
Taadmissible

perturbed control operators if the function



Tpa(t.s) [B(.) + B(.)]u(.) is integrable in Ht and

- ]

(s BOFBOu)(t) * Taa(ts) [B(s)*B(s)]u(s) ds H, ©)

and there are constants ty, > 0, such that:

2
S BOWOI oY Y forallo s ¢ s+toandu LX(s, 1], U). (10)

Remark(2.1)

Consider the linear varying perturbation control system:
\ X (t) [A(t) + A(t)]x(t) + [B(t) + B(t)]u(t), t 0

x(0) xo . (11)

The operators A(t): D(A(t)) H and A : D(A(t)) H defined as in assumption (1) of
problem formulation .It should be noted that to find the mild solution of problem (11), let

Ta(t, s) has a locally uniformly bounded extension, and by definition(1.2), the

perturbation evolution linear operator Taa(t;s) . H

o Mg strongly continuous with

respect to s generated

i [A(D)+AA(D)]
by a linear operator which is the extension generator of the generator

AO+AAL) oy T et B(t) £(U: HT), t 0, is Ta-admissible perturbed control linear

operator defined from U into H; ,such that [B(.)+B(.)] £(U: “l) satisfies the conditions

in (9) and (10) where Hl, t 0 is an extension Hilbert spaces in which H is densely and

continuously embedded in W .Let x(.) H be the solution of (11). Then

t

Taa (L) () Tan (b0 y0y + 0 Tar (6)[B(s) + B(s)Ju(s) ds.

Hence the solution is :



f
x(t) Tan(L0 0y + 0 Taa (S} [B(s) + B(s)Ju(s) ds.

So according to the results above, the following definition will be presented:

Definition (2.4):

A continuous function x C[[0,t):H), given by:
L
x(t) Taalt0x;+ 0 Taal68)[B(s) + B(s)Ju(s) ds , (13)

will be called a mild solution to the linear varying perturbation initial-value control
problem .

The concept of controllability is concerned with the question of existence of an
admissible control, which stress any state to another state of the system in finite time.
Depending on the properties involved on defining different concepts of the controllability
various aspects of controllability results can be found in [2], [3], [8], [9] and the reference

there in.

Definition (2.5):

The system (11) is called globally null-controllable in time t > 0 if for every initial
state X, there is a admissible control u(t) L ([0, t]: U), such that:
t

TAA (t’o)xo + 0 TA/\ (t,8) [B(s) + B(s)]u(s) ds 0.

In order to prove our problem , we need the following remark.

Remark (2.3):

Associated with the system (11), we consider the following Perturbed Ricatti

Operator Equation (PROE):



P OHAO+AOT*p(O)+pOTAMD+AD PO [BOFBOIBO+B®]*p()+Q(1)0,t = 0.
(14)

Since A(t) + A(t) is unbounded, it is not clear a priori what a solution of PROE(14) is.

We will generalize and define as in [1] that an operator p(t) £( kL ) is a mild solution of

I, I

PROE (14) if the scalar function <p(t)x, x> is differentiable for every x H; and:

eI <p(tx [A ) FA D] To <p(BE)BO][BO+BO*p(Hxx> 01T+

=l

<P (x>

<Q(t)x, x>"111=0, for all x D(A(t) + A(t)) and t= 0.

Definition (2.6) [42]:

Consider the initial value control system is:
X (1) A®x(®) +B(®) u(), t 0
x(0) xo (15)

where A(t) : H H is unbounded linear operator and B(t) : U H is bounded linear
control operator satisfying the conditions in [2], [7] such that the system (15) has a

: lution £ e 2([0,): U)
unique solution for every u(t) The system (15) is called Q(t)-

S ,
stabilizable,[see 13], if for every initial state, there is a control u(t) < L([0,00): U ), such
that the cost function will be

20

| )

Jw O [<Q(s) x(s), x(s>n + [[u(s)]| Y] ds < 0 (16)

. o
Assume that the system (15) is Q(t)-stabilizable, where Q(t) < LCO ([0.0):H") g

bounded on [O-"‘x’),where (LOC is standard for the set of all linear bounded self-adjoint

non-negative definite operator-valued function in H" is a positive real Hilbert space).

. +
Then the PROE of the system (15) has a solution P(t) € LCO([0,}: H ) pounded on
[0,0)



From the previous remark the following result of globally null-controllable for the
suggested linear perturbed dynamical control system in infinite-dimensional spaces with

unbounded perturbed control operator .

Proposition (2.1):

If the linear varying perturbed unbounded linear control system (11) is globally

+ +
null-controllable in some finite time on H; , then for any Q(t) LCO(]O0, ]: H ) bounded

on [0, ), the PROE (14) has a bounded solution p(t) LCO(]O0, ): Hy ).

Proof:

Assume that the system (11) is globally null-controllable in some time t; > 0. Let us take
any operator Q(t) LCO([O0, ): H, ) and consider the cost function (16).Due to the
definition of global null-controllability, for every initial state xo H, there is a control u(t)

Ly([0, t;]: U) such that the solution x(t, to) of the system, according to the control u(t),
satisfies:

X(to) X0, X(t1) 0.

Let us denote by uy(t) an admissible control according the solution x(t) of the system.

Define:

{ux (1), te[0,t)
U ()

0, belt e, If % (.) is the solution corresponding to U.(.),

t

J

%) Taat.0y 4 0 Taa(tD gy B T () d fort [0.), then:

L

R a0 v o Taalt®) o+ BT () d 0.

. . ~ 2
For t > t;.Therefore, every initial state X, there is a control ¥(t) L°([0, ): U), such that:

o 1y

J ,

300 [<Q(s) % (5), K (9t T Uds 0 [<Q(s) K (5), K (o)t T ()] U] ds <



which implies that (11) is Q(t)-stabilizable and hence Remark (2.4), implies that the
PROE (14) has a solution.

Theorem (2.1):

H-: 4l

Suppose that assumptions (1)-(7) of problem formulation (2) are held. The
optimal control problem for semi-linear system (2) has a solution if:

e B(t) U, HT), t 0, is Tayadmissible perturbed control linear defined from U into kL ,

such that [B(.) + B(.)] £(U, IIt) satisfies the conditions in (9) and (10) where Bl , t
0 is a extension Hilbert spaces in which H is densely and continuously embedded in
H,

e System (4.11) is globally null-controllable in finite time and
sup
te t

p Pl

where p(t) is the solution of PROE (14)

i

A
o 1 2cip+oa(b+p)p’ +patpi(bytest )+ (cs+ os(b + bYp)(2es + 2dp(b +b) +

cs + os(b +p)p) > 0. (17)
e The feedback control :
u(t) [B® +B®)I*p(t)x(1), (18)
robustly stabilizing the system (11).
Proof:
Since the system (11) is a globally null-controllable infinite time.Thus from
proposition (2.1),the PROE (14) has a bounded linear solution p(t) LCO([O0, ): H:), t 0,

where Q(t) C*(t)C(t) +1 0 is a bounded linear operator on [0, ).

Let us consider the scalar function:

V(t, x(1) <p(Ox(®), x(oy> 111!

Using the feedback control (18) the derivative of V(.) along the solution x(t) of the closed
loop system is:

v (t,x0) <P, x>+ <p % 1), x> T <ponco), * >0



I, 11 I, I

x>0 (19)

<p(Hx(1), x(t)> +<p() X (1), x(t)>

T+
Now, since p(t) LCO(][O0, ), Hy ), implies that p(t) p*(t), t 0, and we have that:

I, 11 I, 11

V(t, x(6) <P (t)x(t), x(t)> +2<p(t) X (t), x(t)>
By using (14), (12) and (5), we have that:
Vi, x(1) <([A®) + A®O]*p(H) POIA®) + A®] + p(O[B(t) + BOI[B(t)

I, 11

+BO]*pt) C*OCODx(1),x(t)> +2p(®O(ADxX(t) + B(u(t) + Bi(t)w(t)

+ [A(®)x(t) +B(t)u(t) +B(H)w(t)] + F(t, x, u, w)), x(t)> e,

I, I
<p(O[AQ) TAD)]x (1), x(t)>
I, 11 I, 11

<p(O)x(1), [A(D) + A(D)]x(t)> 1,1

+<p(H)[B() +

B(H)][B(t) + BOI*p(H)x(1), x(t)>
I, I

<CrOx(), x(0> T <x(t), x>+

2<p(HA(Dx(t), x(t)> i1

1,11

+2<p()B(t)u(t), x()> +2<p()B1()w(t), x(t)>

I, 11

2<pOAWDX®), x(0> 1 + 2<pOBOu®, x> 1 1+ 2ty By tywt)

x(ty> oM eepfit, x, u, w), x> et

H

+
From proposition (2.1), we have that p(t) LOC([0, ), ~°t ), therefore:

I, 11 I, 11

<p(Ox(), [AH) + AD]x(V)> <x(1), p*(O[A) + AD]x(t)>

<x(b), p(OIA(D) + A(D)]x(t)> LI, <p(H[A() + A(t)]x(t), x(t)> i1, ,II.

Also from (18), we have that:

I, 11 I, I

<p(HB(t)u(t), x(t)>
Hence:
V(t, x(1) <x(t),x()>u

<p(HBM[B(1) + BOI*p(H)x(t), x(t)>

C*(t)C(t)x(1),x(t)>u<p(t) B(t)[B(t)+B(t)]*p(t)x(t),x(t)> I, 11

H_{.H —
Bi(H)w(t),x(t)> -1+
HOWDX(W) + 2<p(t)F(t,x,u,w),x(t)> H. H

+2<p(t)

2<pOADXOx(D)> el

I, 11

2<p®BMIB() +BOI*p)x(), x(®> =1+ 2<p(0)B, 0w(), x(p)> 101! (20)

Now, since:



<COx(1),COxM>n 0, <[BHFBO]*pH)x(1), B*(H)p(H)x(H)>u 0,

<POBOIB() + BOF*p®x(®), x>+ 0,

and using condition (3), the relation (19) becomes:

_ 2
V(tx®)Ix®f H+2<p(t)Bi(H)w(t),x(t)>

I, 11

I, I I, I

+F2<p(t)F(t,x,u,w),x(t)>

- 2
+2<p(DADX(L), X(t)> +2<p(®B (WD), x()> e (o) H

2<p(®BOWE.x(0)> T 2<pOF (txuw)x©> 1T 2<pb A0 x> 1 <p(

DB (Hw(Dx(©> T (o) 2” +2lp(oll T B Ollalw IO H 4210l T IR x, v,
W[ H[x@®)ll + 2Hp(t)HﬁtllA(t)llH HX(t)II2H + 2Hp(t)HﬁtIIBl(t)Ilaw,H) [WOllw Xl
IIX(t)II2H + 2[lp(®ll i B3O cow WO lwlix®l + 2[p@) M [P x, u, W) H (@) +
2lp(oy) IIA(t)IIHIIX(t)IIEI +2pp(oy ™ BiOI cow. i [WOllw (X[

Xl %' + 2pby WO lw|[x(®)llir2p(e1 X (Ol + callu®)l| Y + eslwO)]lw)Ix(0)ll +
2IOaIIX(t)II2H +2p " w(v)]] W (). 21)

From equation (4.18), we have that:

[lu®llu [[B®) + BOI*p(Ox(D)lu (b + o)plx(D)][-
Thus, relation (4.21) becomes:

5 2
V (tx@)Ix(0)]| H+2pbi [ w(O) v [x(O)[sr+2p(callx(©)[srtea(b) [l +esl[wOl )X (D)

2
2D (O] H42p 1 WD) XD (22)
From condition (6)of problem formulation (4) and assumption (2) of the theorem, we
obtain:

2
V(t, x(1) (2pert ca(d +p)p +2pa DIx(®)[| H+ (2pbi + 2pes + 2p “D)[w(®)]lw [x(Olls,  (23)
Integrating both sides of (23) from O to t, yields:
4] L

J J

a2
o x0<p x> 110 g +2,0 fucom
where

K(S)HH ds,

1 2pcr +ca(b+p)p+2pa 1,2 2pby +2pes + 2pb'l )
Thus:



4] L

J |

: 2
(%0, x> M <00, x> Bl 0 Ol g 4 2,0
L

J

2
D Y Olgs,

2
|| X(S)HH ds

Therefore:
TIx{ t ¢ S 142
<POX(0,X(1) >, 1 {II x(s) 7 ds}
81 3+ 24 0 ,
o 2142
<p(0)x(0).x(0) >, 52{ £ | wis) lls, ds}
where 3 & » 3,

By completing the square we obtain:

L

[,

0 (O H ds 4+ V470 17

letting t , the last inequality gives:

t oo

ll[Ilvf : 2 .[ : )
e 0 1) llags 0 Xy gg 4+ VO +8s

Thusx L’ ([0, ):H"), which implies that the closed loop control is robustly stabilizable
We need to show that the condition (ii) in remark (1.1) is satisfied

Now, consider the following relation:

TFo o

ot o de o 12z YO RV 6 xo d

[ )

0 Vit x) dt
for any x(t) H and nonzero w(t) L,([0, ), W), we have:



: 2 ~
V(e x(0) [xOIH <C*OCOXM. xO>x <pOBOIB() + BOI*p)x(t), x()>" " +

1,11 I, 11
+ 2<p(HADx(), x(t)>

I, I

2<p(t)Bi(t)w(t),x(t)> + 2<p(Dfit, X, u, w), x(t)>

1,11

2<p(OBOB*OPx(D), x(0)> 1= + 2<p(By(Ow(t), x()>

Moreover, from the proof of proposition (2.1), the solution x(t) 0 whent , we have:

=)

J

0 Vi, x(t) dt V(,x()) V(0,%0) V(0,%0) <p(0)xo, xo>

where the initial condition p(0) 0. Therefore:

I, 11

=)

J

NED A MU RO RO &

w dt |
+ V(t, x(t))]dt

By (4.2), we have that:

<z(t),z(t)>z <C(t)x(t),z(t)>z + <D(t)u(t),z(t)>z + <G(t,x,u),z(t)>z <C(t)x(t), C(t)x(t)>z +
<C(x(t), D(Ox(t)>z + <C(Dx(1), G(t, x, u)>z + <D(tu(t), C(H)x(t)>z + <D(Hu(t), G(t, x,
u)>z + <G(t, x, u), C(t)x(t)>z + <G(t, x, u), D(t)u(t)>z + <G(t, x, v), g(t, x, uy>z . (24)

By using condition (6) of problem formulation (4), we have that:

<C(Ox(t), DOx(t)>z <x(t), C*(H)DOx(t)>n 0, (25)
<D(t)u(t), C(Ox(t)>z <CH*OD(t)u(t), x(t)>n 0, (26)
and
<D(tu(t), D(Hu(t)>z <D*O)D(tu(t), ut)>u <u(t), u(t)>y
<[B()+*B®]*p(Hx(t), [B(t) + B(H)]*p(t)x(t)>u (27)
From (25), (26) and (27), equation (24) becomes:

2
Iz Z <C*O)CO)x(), x(t)>n + <G(t, x, u), C()x(ty>z +<[B(t) + BO)]*p(t)x(t), [B(t) +
BOI*POX(>U + <Gt X, ), DOU®>2 +<G(t, X, w), COXW>2 + <Gt x, ), DOU()>2
2
Gt x(0), u®) Z.

Hence:

2
(Ol 2 <C*HOCHX(D), x(O>n + 2<G(t, x(1), u(®)), C(Ox(t) + D(Hu(t)>>z+ <p(HB(?) +
2

ey GG, x(), u®)) Z. (26)

B®1[B() + B{O*p(Hx(t), x(t)>
From (4.26), we have that:
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J 2 2 j 2 2 _ _
0 [zl Z [we| W1dt® [zl Z|we)] W Ide+ V (t, x()+<p(0)xo, xo> =1 dt

20

I

0 [<CHB)C(OX(1), X(O)>n + <p(O[B(L) + B(t)] B(®+ BOT*pvx(t), x(t> 1! +2<Gt,

X, w),C(Ox(t) DOut)>z+|G(t, x(t), u(t))llZ<C"‘(t)C(t)X(t) X(t)>n + 2<p(t).

Ft, x(®.u0.w)x®> 1! +2<pmAmx(), x> 11 2<pmBOBE®) +

BOT*p(O)x(0),x(ty> """ + 2<p(0)B 1 (Hw(D), x(t)> "1 <w(t), w(t)>w+<p(0)xo, x> "
<x(t), x(t)>y .

o oL

o, ]

O [lz®lZ w@Wldt O <x(t), x(t)>n + 2<G(t, x, w), COX(t) + D(B)u(t)>z

I, 11

2
Hlg(t, x(t), u(®))[| 2 + 2<p(t)B1(HHw(t), x(t)> 2<p()BO[B(t) + BOT*p(H)x(1),

X(t)> ].It 111 + 2<p(t)B1(t)W(t)’ X(t)> ]..[t -,II <W(t), W(t)> w + <p(O)X(), X()> Ilt .,.”.

+ 2<p(Oft, x(), u(t), wt)), x(ty> el

20 20

I 2 2 I 2

O [z 2wl W1dt O Jxf H +2||G(t, x(v),
2
uO)Z(ICOI Z RO HIDOI Z u®)lo)HIGE x(0), u@)l| Z T 2<p®)Bie)wit),

I, 11

x(t)> +2<p(H)A(t)x(t),x(t)>n 2<p(t)B(t) [B(t) + B(t)]*p(t)x(t), x(t)> 1,11 n

2<p®BOWOxO> T <w(t) w(yw<p(O)xo, x> 1M+ 2<p()ft, x(1), (). w(b)),

20 20

T

O [zl Z Iwel Wde O k@) B +2|IG, x(v), u©)ICOI 2] H

FIDONZ u@) Y )+ llgtt, x@u))1Z + 2@l 2 By H [wol k@l H +
_ 2 — 2
20p® MA@ H Ix@H 20po) Mt BOH B +Bm1*| Y (@) [x@) H +



— 2 — 2 —
2p@) M By H W Olwlix@fl WO o) ixoll H + 2llp Il [F(t, (1), uo),

w(t)[ H
20
I 2 2 2 2
@l O @ H + 2c,Cllx@IH + 2cad]x(t)| H + 205p(b + b)CHX(t)II H +2csp(b +
. 2 2
C
DX H + Z4 O H + 2csesp(b +o)lx ()| H + s p’(b+ )’ IIX(t)II
2 2
#2pby [WO IOl + 2pafx()]| H+2p ° Jw(o)]| ™ [Ix(p)| H

- 2
IwIP PO ixoll H -+ 2p(ealx()lln + cap(d + )l + 3wt w)Ix(V)]

20

| :

0 [1+ cac+2csd + 2¢sp(b + p)c + 2pa + 2¢sp(b + p)d + Cq +2c4¢5p(b

2 4
C ; .
)+ TS pAb )2+ 2e1p + eap’(b + )][X(O)] H+[2p °L+2pby + 2pes]w()]| ¥ [[x(t)] H

]

2 s
WO w ooy xoln O 1201 catb + 9p? + pa+ pP(br + 5+ 21 + (g + s
- 2
#p)(2e + 2dp(b ) + ey +es(b-+p)p) 11 ]| H dt +ip() ' fxal | H

From (4.17), we obtain:

1 +2¢ip + ca(b + p)p” + pa + (b + o )> + (ca + cs(b + p)p)(2c + 2dp(b +b) + ¢4 + c3(b +
b)p) < 0 .Hence:

20

I 2 2

o
0 [lzollz [weol ¥ de PO [0l

Ip(O)|
Settingcy ¥, therefore: I 3 5 5
O [zl z W)l ™ ] dt < coljxol| H
[z} dt
o0 - . 0
I 2 | 2 Jlw@ s dt+cylixg Il

0 Jlzllz dt<colw®II™ + O [w(o)|¥ dt 0 <



for all w(t) Lg([O, ), W) and xo X provided condition(ii) in remark(1.1). This completes
the proof of the theorem.
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