b-ind and b-Ind

Raad Aziz Hussain Al-Abdulla

&

Sema Kadhim Gaber

Al-Qadissiya University College of Science Dept. of Mathematics

Abstract

We study some functions by using b-open set which are small and large inductive dimension (*ind* and *Ind*) and called by b-ind and b-Ind. Also we study some relations between them.

Introduction

The concept of b-open set in topological space was introduced in [2]. We recall the definition of *ind* and *Ind* in [7]. In this paper we study similar definitions using b-open sets which are called b-ind and b-Ind and we study some relations between them .

Section one : On *b*-open sets

1.1.Definition [2]

Let *x* be a topological space and $A \subseteq X$. *A* is called *b*-*open* set in *x* if $A \subseteq A \cup A$. The complement of *b*-*open* set is called *b*-*closed* set ,that is , *A* is *b*-*closed* set if $A \cap A \subseteq A$

It is clear that every open set is b-open and every closed set is b-closed, but the converse may be not true in general .As the following example .

1.2.Example

Let $X = \{a, b, c\}$, $T = \{\{a\}, X, \phi\}$. The *b*-open sets are :- $\{a\}, \{a, b\}, \{a, c\}, \phi, X$. Then $\{a, b\}$ is *b*-open set but not open.

1.3.Proposition [4]

Let *x* be topological space then *G* is an open set in *x* iff $\overline{G \cap \overline{A}} = \overline{G \cap A} \text{ for each } A \subset X.$

1.4.Remark [6]

The intersection of an b-open set and an open set is b-open.

1.5.Example

The intersection of two b - open sets may be not b - open in general. Example let $X = \{a, b, c\}, T = \{\{a\}, \{b\}, \{a, b\}, X, \phi\}$. Then each of $\{a, c\}, \{b, c\}$ is an b - open set, where as $\{a, c\} \cap \{b, c\} = \{c\}$ is not b - open.

1.6.Proposition [6]

Let $\{A_{\lambda}\}_{_{\lambda \in \Lambda}}$ be a collection of b – open set in a topological space X, then $\bigcup_{_{\lambda \in \Lambda}} A_{\lambda}$ is b – open.

1.7.Definition [3]

Let *X* be a topological space and $A \subseteq X$. *A* is called semiopen (s-open) set in *X* if $A \subseteq \overline{A}$. The complement of s-open set is called semi-closed (s-closed) that is, *A* is s-closed set if $\overline{A} \subseteq A$. The intersection of all s-closed subsets of *X* containing *A* is called semi-closur (s-closur) of *A* and the union of all s-opensubsets of *X* contained in *A* is called semi- interior (s-interior)of *A*, and are denoted by \overline{A}^s , $A^{\circ s}$ respectively.

1.8.Definition [5]

Let X be a topological space and $A \subseteq X$. A is called pre-open set in X if $A \subseteq \overset{\circ}{A}$. The complement of *pre-open* set is called

pre-closed that is A is pre-closed set if $A \subseteq A$. The intersection of all pre-closed subsets of X containing A is called pre-closur of A and the union of all pre-open subsets of

X contained in *A* is called *pre* – int *erior* of *A* , and denoted by \overline{A}^{p} , $A^{\circ p}$ respectively.

1.9.Proposition [1]

Let *X* be a topological space and $A \subseteq B \subseteq X$, then :

(i) $\overline{A}^{p} \subseteq \overline{B}^{p}$ (ii) $A^{\circ p} \subseteq B^{\circ p}$

1.10.Proposition [2]

For any subset *A* of a space *X* the following statements are equivalent:-

(i) A is b – open set (ii) $A \subseteq A^{\circ p} \cup A^{\circ s}$ (iii) $A \subseteq (A^{\circ p})^{-p}$

1.11.Proposition

For any subset *A* of a space *X*, the following statements are equivalent :-

- (i) A is b open set
- (ii) $\overline{A}^{p} = \overline{A^{\circ p}}^{p}$

(iii) There exists an *pre – open* set *G* in *X* such that $G \subseteq A \subseteq \overline{G}^{p}$.

Proof :

 $(i) \to (ii)$ since $A \subseteq \overline{A^{\circ p}}^p$ by proposition 1.10 , then $\overline{A}^p \subseteq \overline{A^{\circ p}}^p$ and since $\overline{A^{\circ p}}^p \subseteq \overline{A}^p$, then $\overline{A}^p = \overline{A^{\circ p}}^p$. $(ii) \to (iii) \text{ let } G = A^{\circ p} \text{ .Since } \overline{A}^{p} = \overline{A^{\circ p}}^{p} \text{ and } A^{\circ p} \subseteq A \subseteq \overline{A^{\circ p}}^{p}.$ Then $G \subseteq A \subseteq \overline{G}^{p}.$

(*iii*) \rightarrow (*i*) Suppose that there exists *pre - open* set *G* such that $G \subseteq A \subseteq \overline{G}^{p}$. Then $G = G^{\circ p}$ and since $A \subseteq \overline{G}^{p} = \overline{G^{\circ p}}^{p} \subseteq \overline{A^{\circ p}}^{p}$, then *A* is *b* - open set by proposition 1.10.

1.12.Proposition

For any subset *A* of a space *X*, the following statements are equivalent :-

(i) A is b – open set

(ii) There exists an open set *G* in *X* such that $G \subseteq A \subseteq \overline{G} \cup \overset{\circ}{\overline{A}}$.

Proof:

(i)
$$\rightarrow$$
 (ii) suppose that A is b – open set . Let $G = \overset{\circ}{A}$, then
 $\overset{\circ}{A} = G \subseteq A \subseteq \overline{A^{\circ}} \cup \overset{\circ}{\overline{A}} = \overline{G} \cup \overset{\circ}{\overline{A}}$. Hence $G \subseteq A \subseteq \overline{G} \cup \overset{\circ}{\overline{A}}$.

(ii) \rightarrow (i) Suppose that there exists an open set G in X such that $G \subseteq A \subseteq \overline{G} \cup \overset{\circ}{\overline{A}}$. Then $A \subseteq \overline{G} \cup \overset{\circ}{\overline{A}} = \overset{\circ}{\overline{G}} \cup \overset{\circ}{\overline{A}} \subseteq \overset{\circ}{\overline{A}} \cup \overset{\circ}{\overline{A}}$ by definition 1.1. Hence $A \subseteq \overset{\circ}{\overline{A}} \cup \overset{\circ}{\overline{A}}$, therefore A is b – open set.

1.13.Proposition

Let *X* be a topological space . let *Y* be an open subset of *X* and *A* is *b* – *open* set in *Y*. Then there exists a *b* – *open* set *B* in *X* such that $A = B \cap Y$.

Proof:

Let *A* is *b* – *open* set in *Y*, then by proposition 1.12 there exists an open set *U* in *Y* such that $U \subseteq A \subseteq \overline{U}^Y \cup \overline{A}^{Y'}$, then there exists an open set *W* in *X* such that $W \cap Y = U$. Let $B = A \cup W$, then $B \cap Y = (A \cup W) \cap Y = (A \cap Y) \cup (W \cap Y) = A \cup U = A$ to prove $W \subset B \subset \overline{W} \cap \overset{\circ}{B}$, since $W \subset A \cup W = B$, then $W \subset B$, since $B = AUW \subset \overline{W} \cup A$ $\subset \overline{W} \cup \overline{U}^Y \cup \overset{\circ Y}{\overline{A}}^Y \subseteq \overline{W} \cup (\overline{U} \cap Y) \cup \overset{\circ Y}{\overline{A}}^Y \subset \overline{W} \cup (\overline{W} \cap Y) \cup \overset{\circ Y}{\overline{A}}^Y \subset \overline{W} \cup \overline{A}^{Y \circ Y} =$ $\overline{W} \cup (\overline{A} \cap Y)^{\circ Y} = \overline{W} \cup (\overset{\circ Y}{\overline{A}} \cap \overset{\circ Y}{Y}) = \overline{W} \cup (\overset{\circ Y}{\overline{A}} \cap Y) = \overline{W} \cup (\overset{\circ Y}{\overline{A}} \cap \overset{\circ Y}{Y})$ (since $Y = \overset{\circ}{Y} = \overline{W} \cup \overset{\circ}{\overline{A}} \subset \overline{W} \cup \overset{\circ}{\overline{B}}$ (since $A \subset A \cup W = B$). Therefore $W \subseteq B \subseteq \overline{W} \cup \overset{\circ}{\overline{B}}$.

1.14.Proposition

Let *X* be a topological space and $Y \subseteq X$. If *G* is a *b*-open set in *X* and *Y* is an open set in *X*, then $G \cap Y$ is *b*-open set in *Y*.

Proof:

Since *G* is a *b*-open set in *X*, then $G \subseteq \overline{G} \cup \overline{G}$. But $\overline{(G \cap Y)}^{Y^{\circ Y}} \cup (\overline{G \cap Y})^{\circ Y} \supseteq (\overline{G \cap Y})^{Y^{\circ}} \cup (\overline{G \cap Y})^{\circ Y} = (\overline{G \cap Y} \cap Y) \cup (\overline{G \cap Y} \cap Y) =$ $(\overline{(G \cap Y)} \cap Y) \cup (\overline{(\overline{G} \cap Y)} \cap Y)$ by proposition 1.3 $\supseteq ((\overline{G \cap Y})^{\circ} \cap Y) \cup (\overline{(\overline{G} \cap Y)} \cap Y) \cup (\overline{(\overline{G} \cap Y)} \cap Y) =$

$$=(\overset{\circ}{\overline{G}}\cup \overline{G^{\circ}})\cap Y^{\circ}=(\overset{\circ}{\overline{G}}\cup \overline{G^{\circ}})\cap Y \supseteq G\cap Y \text{ .Then } G\cap Y \text{ is}$$

a

b - open in Y

1.15.Proposition

Let x be a topological space.Let y be an open subset of x and A is b – open set in y.Then A is b – open in X.

Proof:

Let *A* is *b* – open set in *Y*, then by proposition 1.12 there exist an open set *G* in *Y* such that $G \subseteq A \subseteq \overline{G}^Y \cup \overline{A}^{Y^{\circ Y}}$, then there exist an open set *W* in *X* such that $W \cap Y = G$, $A \subset \overline{A}^{Y^{\circ Y}} \cup \overline{A^{\circ Y}}^Y = (\overline{A}^{\circ Y} \cap Y^{\circ Y}) \cup (\overline{A^{\circ Y}} \cap Y) \subseteq$ $\overline{A}^{\circ \cup \cup} (\overline{A^{\circ Y}} \cap X) = \overline{A}^{\circ \cup \cup} (\overline{A^{\circ Y}} \cap X) = \overline{A}^{\circ \cup \cup} (\overline{A^{\circ Y}} \cap X)$. Then $A \subseteq \overline{A}^{\circ \cup \cup} (\overline{A^{\circ Y}} \cap X)$.

 $\overline{A}^{\circ} \cup (\overline{\overline{A^{\circ Y}} \cap Y}) = \overline{A}^{\circ} \cup (\overline{A^{\circ Y} \cap Y^{\circ}}) = \overline{A}^{\circ} \cup \overline{A^{\circ}}.$ Then $A \subseteq \overline{A}^{\circ} \cup \overline{A^{\circ}}.$ Hence A is b - open in X.

1.16.Proposition

For any subset *A* of a space *X*, the following statements are equivalent :

(i) A is b - closed set in X.

(ii) There exist a closed set *C* in *X* such that $C \circ \cap \overline{A} \odot \subseteq A \subseteq C$.

Proof:

(i) \rightarrow (ii) Suppose that *A* is *b*-closed set, then *A^c* is *b*-open set. By proposition 1.12 there exists an open set *G* such that

$$G \subseteq A^c \subseteq \overline{G} \cup \overline{A^c}^c, \ (\overline{G} \cup \overline{A^c})^c \subseteq A \subseteq G$$

$$(\overline{G} \bigcup \overline{A^{c}})^{c} = \overline{G} \cap \overline{A^{c}}^{c}$$
$$= \overline{G}^{c^{\circ}} \cap \overline{A}^{c^{c^{\circ}}} = \overline{G}^{c^{\circ}} \cap \overline{A^{\circ}}$$

Then $G \cup A \subseteq A \subseteq G$, let $C = G^c$. Then $C^\circ \cap \overline{A^\circ} \subseteq A \subseteq C$. (ii) \rightarrow (i) Suppose that there exists a closed set C such that $C^\circ \cap \overline{A^\circ} \subseteq A \subseteq C$, then $C^c \subseteq A^c \subseteq (C^\circ \cup \overline{A^\circ})^c$, $(C^\circ \cup \overline{A^\circ})^c = C^{\circ^c} \cup \overline{A^\circ}^c = \overline{C^c} \cup \overline{A^c}^{c^{\circ^{c^c}}}$, let $C^c = G$, $G \subseteq A^c \subseteq \overline{G} \cup \overline{A^c}$, then by proposition 1.12 A^c is b-open set. Therefore A is b-closed set.

1.17.Proposition [8]

A space X is *regular* space iff for every $x \in X$ and each open set U in X such that $x \in U$ there exists an *open* set W such that $x \in W \subseteq \overline{W} \subseteq U$.

1.18.Proposition[8]

A space *X* is normal space iff for every closed set $C \subseteq X$ and each open set *U* in *X* such that $C \subseteq U$ there exists an open set *W* such that $C \subseteq W \subseteq \overline{W} \subseteq U$.

Section TWO On ind and b-ind

2.1.Definition [7]

Let *X* be a topological space then ind X = -1 iff $X = \phi$, and if *n* is a positive integer or 0 then it is said that $ind X \le n$ iff the following satisfied :

For each $x \in X$ and for each open set *G* containing *x*, there exists an open set *U* such that $x \in U \subseteq G$ and $ind b(U) \le n-1$. If there exists no integer *n* for which $ind X \le n$ then we put $ind X = \infty$

This suggests the following :-

2.2. Definition

Let *X* be a topological space. we say that b - ind X = -1 iff $X = \phi$, and if *n* is a positive integer or 0 then we say that $b - ind X \le n$ iff the following satisfied:

For each $x \in X$ and for each open set *G* containing *x*, there exists an *b*-*open* set *U* such that $x \in U \subseteq G$ and $b-ind b(U) \leq n-1$. If there exists no integer *n* for which $b-ind X \leq n$ then we put $b-ind X = \infty$.

To find $b - ind b(U) \le n - 1$ we have to know the topology on b(U), then we have to get b - ind of the boundary of open set in the topology of b(U).

2.3.Example

The following example of a space X with ind X = b - ind X = 0. Let $X = \{a, b, c\}, T = \{ \{c\}, \{a, b\}, \phi, X\}$ the *b*-open sets are $\{c\}, \{a, b\}, \phi, X, \{a\}, \{b\}, \{b, c\}, \{a, c\}$. Since $\{a, b\}$ is an open and closed then $b\{a, b\} = \phi$, $indb\{a, b\} = -1$ hence $indX \le 0$ and since $X \ne \phi$ then indX = 0. And by theorem 2.6 then b - indX = 0.

2.4.Example

Example 1.5 gives ind X = b - ind X = 1. Since $a \in \{a\} \subseteq X$ such that $b\{a\} = \overline{\{a\}} - \{a\}^\circ = \{a,c\} - \{a\} = \{c\}$. The topology on $\{c\}$ is indiscrete then $ind b\{a\} = -1$ if $b\{a\} = \phi$ or $indb\{a\} = 0$ if $b\{a\} \neq \phi$ since X is not regular then $ind X \neq 0$ and since $indb\{a\} = 0$ then ind X = 1. Since e $\{a\}$ is b-open then b-ind X = 1

2.5.Proposition

Let X be a topological space .If indX is exist then $b-ind X \le indX$

Proof:

By induction on *n*. It is clear n = -1. Suppose that it is true for n-1. Now suppose that $ind X \le n$, to prove $b-ind X \le n$, let $x \in X$ and *G* is an open set in *X* such that $x \in G$ since $ind X \le n$, then there exists an open set *V* in *X* such that $x \in U \subseteq G$ and $ind b(U) \le n-1$ and since each open set is b-open then *U* is an *b*-open set such that $x \in U \subseteq G$ and $b-ind b(U) \le n-1$. Hence $b-ind X \le n$.

2.6.Theorem

Let X be a topological space, then ind X = 0 iff b - ind X = 0.

Proof:

By 2.5 if ind X = 0 then $b - ind X \le 0$ and since $X \ne \phi$, then b - ind X = 0. Now let b - ind X = 0, let $x \in X$ and G an open set in Xsuch that $x \in G$. Since b - ind X = 0 then there exists an b - open set U such that $x \in U \subseteq G$ and $b - ind b(U) \le -1$. Then $b(U) = \phi$, and thus ind b(U) = -1, so that $indX \le 0$, and since $X \ne \phi$, then indX = 0.

It is known that if X is a topological space with ind X = 0 then X is a regular space (see [7])

Then we have the following :

2.7.Corollary

Let X be a topological space, if b - ind X = 0 then X is a regular space.

Proof:

Let $x \in X$ and *G* an open set such that $x \in G$. Since b - ind X = 0then there exists an b - open set *V* such that $x \in V \subseteq G$ and b - ind b(V) = -1 then $b(V) = \phi$ hence *V* is an open and closed set .Therefore $x \in V \subseteq \overline{V} \subseteq G$ by proposition 1.17 Then *X* is a regular space. It is known that a space X satisfies ind X = 0 iff it is not empty and has a base for its topology which consists of open and closed sets. (see[7])

Similarity, we have :

2.8.Corollary

A space *X* satisfies b - ind X = 0 iff it is not empty and has a base for its topology which consists of open and closed sets.

2.9.Theorem

If *A* is an open subspace of a space *X*, then $b - ind A \le b - ind X$.

Proof:

By induction on *n*. It is clear n = -1. Suppose that it is true for n-1. Now suppose that $b - ind X \le n$, to prove $b - ind A \le n$, let $x \in A$ and *G* is an open subset in *A* such that $x \in G$, since *G* is an open in *A*, then there exists *U* open set in *X* such that $U \cap A = G$. Since $x \in U$ and $b - ind X \le n$, then there exist an b - open set *W* in *X* such that $x \in W \subseteq U$ and $b - ind b(W) \le n-1$, then $V = W \cap A$ is b - open in *A* by proposition 1.14.

$$\begin{aligned} x \in V &= W \cap A \subset U \cap A = G \\ b_A(V) \subseteq b(V) \cap A &= (V - \mathring{V}) \cap A \subset (\overline{W} - \mathring{V}) \cap A) \\ &= (W \cap \mathring{V} \cap A \\ &= \left[\overline{W} \cap (\mathring{W} \cup \mathring{A})\right] \cap A \\ &= \left[(\overline{W} \cap (\mathring{W} \cup A)\right] \cap A \subseteq \left[b(W) \cup A^c\right] \cap A \\ &= \left(b(W) \cap A\right) \cup (A^c \cap A) \\ &= b(W) \cap A \subseteq b(W) \end{aligned}$$

Since $b - ind b(w) \le n - 1$, then $b - ind b_A(v) \le n - 1$, therefore $b - ind A \le n$.

Section Three : On Ind and b-Ind

3.1.Definition [7]

Let *X* be a topological space . It is said that Ind X = -1 iff $X = \phi$ and if *n* is a positive integer or 0 then we say that $Ind X \le n$ iff the following is satisfied :

For each closed set *C* in *X* and each open set *G*, $C \subseteq G$, there exists an open set *U* such that $C \subseteq U \subseteq G$ and $Ind b(U) \le n-1$. If there exists no integer *n* for which $Ind X \le n$ then we put $Ind X = \infty$

This suggest the following :

3.2.Definition

Let *X* be a topological space . we say that b - Ind X = -1 iff $X = \phi$, and if *n* is a positive integer or 0 then we say that $b - Ind X \le n$ iff the following is satisfied :

For each closed set *C* in *X* and each open set *G*, such that $C \subseteq G$, there exists an b-open set *U* such that $C \subseteq U \subseteq G$ and $b-Ind b(U) \le n-1$. If there exists no integer *n* for which $b-Ind X \le n$ then we put $b-Ind X = \infty$. To find $b-Ind b(U) \le n-1$ we have to know the topology on b(U), then we have to get b-Ind of the boundary of open set in the topology of b(U).

3.3.Example

The following example of a space X with b-Ind X = Ind X = 0. Let $X = \{a, b, c, d\}$, $T = \{\{d\}, \{b, c\}, \{b, c, d\}, \phi, X\}$. The b-open sets are $\{b\}, \{c\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{d\}, \{b, c\}, \{b, c, d\}, \{a, d\}, \{a, b, c\}, \phi, X$. Since $\{a, b. c\} \subseteq X \subseteq X$, $b(X) = \phi$ then Indb(X) = -1 hence IndX = 0 and since X is an b-open then b-Ind X = 0.

3.4.Example

The following example of a space X with Ind X = b - Ind X = 1. Let $X = \{a, b, c, d, e\}, T = \{\{a\}, \{c, d\}, \{a, c, d\}, \{a, b, d, e\}, \{d\}, \{a, d\}, X, \phi\}.$ The b – open sets are:- $\{a\}, \{c, d\}, \{a, c, d\}, \{a, b, d, e\}, \{d\}, \{a, d\}, \{a, b, d\}, \{a, d, e\}, \{a, d, e\}, \{a, d, e\}, \{a, b, d\}, \{a, d, e\}, \{a, b, d\}, \{a, d, e\}, \{a, b, d\}, \{a, b, d\}, \{a, d, e\}, \{a, b, d\}, \{a$ $\{a,b,c,d\},\{a,c,d,e\},\{b,d,e\},\{b,c,d,e\},\{a,e\},\{b,d\},\{d,e\},\{c,d,e\},\{b,c,d\},\{a,b,e\},\{a,b\},\phi,X$..Since $\{c\} \subset \{c, d\} \subset X$ such that $b\{c,d\} = \overline{\{c,d\}} - \{c,d\}^\circ = \{b,c,d,e\} - \{a,c,d\} = \{b,e\}$. The topology on $\{b,e\}$ is an indiscrete then Ind $b\{c,d\} = -1$ if $b\{c,d\} = \phi$ or $Indb\{c,d\} = 0$ if $b\{c,d\} \neq \phi$ since X İS not normal then Ind $X \neq 0$ and since Ind $b\{c, d\} = 0$ then Ind X = 1. Since $\{c, d\}$ is b-open then b-ind X = 1

3.5.Proposition[7]

Let X be a topological space, if Ind X = 0 then X is normal space.

3.6.Corollary

Let X be a topological space, if b - Ind X = 0, then X is normal space.

Proof:

Let *C* be a closed set in *X* and *U* an open set such that $C \subseteq U$. Since b - Ind X = 0, then there exist an b - open set *W* such that b - Ind b(W) = -1, hence *W* is an open and closed set. Therefore $C \subseteq W \subseteq \overline{W} \subseteq U$ by proposition 1.18. Then *X* is a normal.

3.7.Proposition:

Let X be a topological space .If IndX is exist then $b-Ind X \le Ind X$.

Proof:

By induction on *n*. It is clear n = -1. Suppose that it is true for n-1. Now suppose that $Ind X \le n$, to prove $b-Ind X \le n$, let *C* be a closed set in *X* and *G* is an open set in *X* such that $C \in G$ since $Ind X \le n$, then there exists an open set *V* in *X* such that $C \in U \subseteq G$ and $Ind b(U) \le n-1$ and since each open set is b-open then *U* is an b-open set such that $C \in U \subseteq G$ and $b-Ind b(U) \le n-1$. Hence $b-Ind X \le n$. The following analogous to theorem 2.6 and its proof is similar and hence is omitted .

3.8.Theorem

Let X be a topological space. Then Ind X = 0 iff b - Ind X = 0.

It is known and easy to see that if *X* is T_1 -space, then ind $X \leq Ind X$ (see[7]).

Similarity we have :

3.9.Proposition

Let X be a topological space. If X is T_1 -space then $b-ind X \le b-Ind X$.

Proof:

Let $x \in X$ and G be an open set such that $x \in G$, since X is $T_1 - space$ then $\{x\} \subseteq G$ and since $b - Ind X \le n$ then there exist an b - open set V such that $\{x\} \subseteq V \subseteq G$ and $Indb(V) \le n-1$. Hence $indb(V) \le n-1$, then $indX \le n$.

It is known and easy to see that if *X* is a regular topological space ,then *ind* $X \le Ind X$. (see[7])

Similarity, we have

3.10.Theorem

Let X be a topological space. If X is regular space then $b-ind X \le b-Ind X$.

Proof:

By induction on *n*. If n = -1 then b - Ind X = -1 and $X = \phi$, so that b - Ind X = -1. Suppose that the statement is true for n-1. Now, let $b - Ind X \le n$. Let $x \in X$ and *G* be an open set such that $x \in G$. Since *X* is regular space then there exists an open set *V* such that $x \in V \subseteq \overline{V} \subseteq G$ by proposition 1.17. Also since $b - Ind X \le n$ and \overline{V} is closed, $\overline{V} \subseteq G$, then there exists an b - open set *U* such that $\overline{V} \subseteq U \subseteq G$ and $b - Ind b(U) \le n-1$, then $b - ind b(U) \le n-1$ [by indication] and $b - ind X \le n$.

3.11.Proposition[7]

If A is a closed subset of a space X, then $Ind A \le Ind X$

We have the following :

3.12.Theorem

If A is an open and closed subspace of a space X, then $b-Ind A \le b-Ind X$.

Proof:

By induction on *n*. It is clear if n=-1, suppose that it is true for n-1. Now suppose that $b-Ind X \le n$, to prove $b-Ind A \le n$, let *C* is a closed subset of *A* and *G* is an open subset in *A* such that $C \subseteq G$, since *C* is closed in *A* and *A* is closed in *X*, then *C* is closed in *X*. Since *G* is an open in *A*, then there exists *U* open set in *X* such that $U \cap A = G$. Since $C \subset U$ and $b - Ind X \leq n$, then there exists an b - open set *W* in *X* such that $C \subseteq W \subseteq U$ and $b - Ind b(W) \leq n-1$, since *A* is an open set then $V = W \cap A$ is b - openset in *A* by proposition 1.14,

 $C \subset V = W \cap A \subset U \cap A = G$

$$b_{A}(V) \subseteq b(V) \cap A = (\overline{V} - V^{\circ}) \cap A \subset (\overline{W} - V^{\circ}) \cap A = (\overline{W} \cap \overset{\circ}{V}) \cap A$$
$$= \left[\overline{W} \cap (W^{\circ} \cup A^{\circ}) \right] \cap A$$
$$= \left[(\overline{W} \cap W^{\circ}) \cup (\overline{W} \cap A^{\circ}) \right] \cap A$$
$$\subseteq \left[b(W) \cup A^{c} \right] \cap A$$
$$= (b(W) \cap A) \cup (A^{c} \cap A) = b(W) \cap A \subseteq b(W)$$

Since $b - Ind b(W) \le n-1$, then $b - Ind b_A(V) \le n-1$, therefore $b - Ind A \le n$.

References

- [1] Najla Jabbar kaisam Al-Malaki, "Some Kinds of Weakly Connected and Pair wise Connected Space", M.Sc. Thesis University of Baghdad, College of Education \ Abn AL-Haitham ,2005.
- [2] D. Andrijevic, "On *b-open* sets", Mat. Vesnik, 48(1996), 59
 -64.
- [3] P. Das, "Note on Some Applications on Semi Open sets", Progress of Mathematics, 7(1973).
- [4] J. Dugundji, Topology, Allyn and Bacon Boston, 1966.

[5] A.S. Mashhour, M.E. Abd-El-Mansef and S.N. El-Deeb, "On Pre-continuous and Weak Pre-continuous Mappings" ,Proc.Math. and Phys. Egypt 53(1982),47-53.

[6] A.AL-Omari and M.S. Noorani, "Decomposition of Continuity Via *b-open* set", Bol. Soc. Paran. Math. V. 26(1-2)(2008):53-64.

- [7] A.P. Pears, "On Dimension Theory of General Spaces", Cambridge University press ,1975.
- [8] N.J. Pervin, "Foundation of General Topology" A cadmic press, New York, 1964.