
1

ON JACKSON'S THEOREM

Eman Samir Abed-Ali

Department of Mathematics, College of Education, Babylon University,

Hilla, Babil, Iraq.

Abstract
We prove that for a function  ,1,11  pWf 10  p and n,r in
N( the set of natural numbers ) , we have
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where 11 1  nxx  the roots of Legendre polynomial,

and  pm g  , , is the Ditzian-Totik mth modulus of smoothness
of g in pL .

1.Introduction

Let pL ,  p0 be the set of all functions, which are

measurable on  ba, , such that
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And let  ,,baW rp be the space of functions that    baLf p
r , and

 1rf is absolutely continuous in  ba, .

We believe that for approximation in 1, pLp the measure of

smoothness  pr f  , introduced by Ditzian and Totik [1] is the

appropriate tool. Recall that
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For    1,1:, ba for simplicity we write  ,,baLp p
 and

     .,,,:, p
r

p
r baff   

Recall that the rate of best nth degree polynomial

approximation is given by

  pnppn pffE
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where n denote the set of all algebraic polynomials of degree not

exceeding n.

To prove our theorem we need the following direct result

given by:

Theorem 1.1.[2] For n,r in N and  1,1 pLf

   pr
pn nfcfE 1,   (1)
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where c is a constant depending on r and p (if p<1). For  p1 (1)

was proved by Ditzian and Totik [1] and for 0<p<1, it has been

proved by DeVore, Leviatan and Yu [2].

Now, consider the Gaussian Quadrature process [3]
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based on the roots 11 1  nxx  of the nth Legendre

polynomial. Since this exact polynomial of degree less than 2n, we

get for the error
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in (2) by the definition of the degree of best approximation we have
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 ). The crude method of estimating

 fen consists of applying Jackson estimate on the right of (3) from

(1) we get the sharp inequality
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which already takes in to account the possibly less smooth behavior

of f at 1 . However the supremum norm in (5) is still too rough, and

the natural question is whether for smooth functions one can get

upper bounds for  fen using certain 1, pLp quasi-norm.
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R. A. DeVore and L. R. Scott [3] found such estimates, they proved
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first for s=1 which obviously implies
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where   pn fE , means the best weighted approximation with

weight  x of f in pL defined by
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They then proceeded to estimate  pn fE  , 1p , using higher

derivatives of f which finally yielded (5) for any 1s .

2. The main result

In this section we introduce our main result. Using (6) we

obtain the following theorem

Theorem 2.1. For   10,1,11  pWf p we have
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Of course the convergence of the integral on the right implies

that f is pL equivalent of a locally absolutely continuous function.

We use this equivalent representative of f in the quadrature formula

( Otherwise, we don’t have even    1ofen  )
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Proof. Let nnp  be the best approximating polynomial for f in

  1,1,1  pLp . Then  
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in  1,1pL (i.e. the expression in the right is the pL equivalent of f

which we need ). From (6) and Markov-Bernstein type inequality

(see for example [4])
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Then using the fact that any two quasi norms are equivalent

on the space of algebraic polynomials of a fixed degree we have
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Now since   10,1,11  pWf p , so that
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Provided the last integral convergence♦



6

As a final remark, we mention that similar bounds holds for

many other systems of nodes and in (7) the right hand side has the

order
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for any f constructed from analytic functions, sx 1 and iterated

logarithms of these, which means that (7) is the best possible

estimate for such functions.
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