ON JACKSON'S THEOREM

Eman Samir Abed-Ali
Department of Mathematics, College of Education, Babylon University, Hilla, Babil, Iraq.

$$
\begin{aligned}
& \text { Abstract } \\
& \text { We prove that for a function } f \in W_{p}^{1}[-1,1], 0<p<1 \text { and } n, r \text { in } \\
& N(\text { the set of natural numbers), we have } \\
& \qquad\left(\int_{-1}^{1} f(x) d x-\sum_{j=1}^{n} \omega_{j} f\left(x_{j}\right)\right) \leq c(r) n^{-1} \int_{0}^{1 / n} \frac{\omega_{\varphi}^{r-1}\left(f^{\prime}, u\right)_{p}}{u^{2}} d u \\
& \text { where }-1<x_{1}<\ldots<x_{n}<1 \text { the roots of Legendre polynomial, } \\
& \text { and } \omega_{\varphi}^{m}(g, \delta)_{p} \text {, is the Ditzian-Totik mth modulus of smoothness } \\
& \text { of } g \text { in } L_{p} \text {. }
\end{aligned}
$$

1.Introduction

Let $L_{p}, 0<p<\infty$ be the set of all functions, which are measurable on $[a, b]$, such that

$$
\|f\|_{L_{p}[a, b]}:=\left(\begin{array}{l}
b \\
\left.j_{a}|f(x)|^{p} d x\right)^{1 / p}<\infty . . ~
\end{array}\right.
$$

And let $W_{p}^{r}[a, b]$, be the space of functions that $f^{(r)} \in L_{p}[a, b]$ and $f^{(r-1)}$ is absolutely continuous in $[a, b]$.

We believe that for approximation in $L_{p}, p<1$ the measure of smoothness $\omega_{\varphi}^{r}(f, \delta)_{p}$ introduced by Ditzian and Totik [1] is the appropriate tool. Recall that

$$
\omega_{\varphi}^{r}(f, \delta,[a, b])_{p}=\sup _{0<h \leq \delta}\left(\left.\left.\int_{a}^{b}\right|_{a} ^{r} \Delta_{h \varphi(x)}(f, x,[a, b])\right|^{p} d x\right)^{1 / p},
$$

where
$\Delta_{h \varphi(x)}^{r}(f, x,[a, b]):= \begin{cases}\sum_{k=0}^{r}\binom{r}{k=}(-1)^{r-k} f\left(x-\frac{r h}{2}+k h\right), & \text { if } \quad x \pm \frac{r h}{2} \in[a, b] \\ 0, & \text { o.w. }\end{cases}$

For $[a, b]:=[-1,1]$ for simplicity we write $\|\cdot\|_{p}=\|\cdot\|_{L_{p}[a, b]}$, and $\omega_{\varphi}^{r}(f, \delta)_{p}:=\omega_{\varphi}^{r}(f, \delta,[a, b])_{p}$.

Recall that the rate of best nth degree polynomial approximation is given by

$$
E_{n}(f)_{p}:=\inf _{p_{n} \in \Pi_{n}}\left\|f-p_{n}\right\|_{p}
$$

where Π_{n} denote the set of all algebraic polynomials of degree not exceeding n.

To prove our theorem we need the following direct result given by:
Theorem 1.1.[2] For n, r in N and $f \in L_{p}[-1,1]$

$$
\begin{equation*}
E_{n}(f)_{p} \leq c \omega_{\varphi}^{r}\left(f, n^{-1}\right)_{p} \tag{1}
\end{equation*}
$$

where c is a constant depending on r and p (if $p<1$). For $1 \leq p \leq \infty$ (1) was proved by Ditzian and Totik [1] and for $0<p<1$, it has been proved by DeVore, Leviatan and Yu [2].

Now, consider the Gaussian Quadrature process [3]

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x \approx \sum_{j=1}^{n} \omega_{j} f\left(x_{j}\right)=: I_{n}(f) \tag{2}
\end{equation*}
$$

based on the roots $-1<x_{1}<\ldots<x_{n}<1$ of the nth Legendre polynomial. Since this exact polynomial of degree less than $2 n$, we get for the error

$$
e_{n}(f)=\int_{-1}^{1} f(x) d x-I_{n}(f)
$$

in (2) by the definition of the degree of best approximation we have

$$
\begin{equation*}
e_{n}(f) \leq 2 E_{2 n-1}(f)_{\infty} \tag{3}
\end{equation*}
$$

where

$$
\|f\|_{\infty}:=\sup _{x \in[-1,1]}|f(x)|
$$

(note that $\omega_{j} \geq 0$ and $\left.\sum_{j=1}^{n} \omega_{j}\right)$. The crude method of estimating $e_{n}(f)$ consists of applying Jackson estimate on the right of (3) from (1) we get the sharp inequality

$$
\begin{equation*}
e_{n}(f) \leq c \omega_{\varphi}^{r}\left(f, n^{-1}\right)_{\infty} \tag{4}
\end{equation*}
$$

which already takes in to account the possibly less smooth behavior of f at ± 1. However the supremum norm in (5) is still too rough, and the natural question is whether for smooth functions one can get upper bounds for $e_{n}(f)$ using certain $L_{p}, p<1$ quasi-norm.
R. A. DeVore and L. R. Scott [3] found such estimates, they proved

$$
\begin{equation*}
e_{n}(f) \leq c(s) n^{-s} \int_{-1}^{1}\left|f^{(s)}(x)\right|\left(1-x^{2}\right)^{5 / 2} d x \tag{5}
\end{equation*}
$$

first for $s=1$ which obviously implies

$$
\begin{equation*}
e_{n}(f) \leq c n^{-1} E_{2 n-2}\left(f^{\prime}\right)_{\varphi, p} \quad p \geq 1 \tag{6}
\end{equation*}
$$

where $E_{n}(f)_{\varphi, p}$ means the best weighted approximation with weight $\varphi(x)$ of f in L_{p} defined by

$$
E_{n}(f)_{\varphi, p}:=\inf _{p_{n} \in \Pi_{n}}\left\|\varphi\left(f-p_{n}\right)\right\|_{p}
$$

They then proceeded to estimate $E_{n}\left(f^{\prime}\right)_{p}, p \geq 1$, using higher derivatives of f which finally yielded (5) for any $s \geq 1$.

2. The main result

In this section we introduce our main result. Using (6) we obtain the following theorem

Theorem 2.1. For $f \in W_{p}^{1}[-1,1], 0<p<1$ we have

$$
\begin{equation*}
e_{n}(f) \leq c(r) n^{-1} \int_{0}^{1 / n} \frac{\omega_{\varphi}^{r-1}\left(f^{\prime}, u\right)_{p}}{u^{2}} d u \tag{7}
\end{equation*}
$$

Of course the convergence of the integral on the right implies that f is L_{p} equivalent of a locally absolutely continuous function. We use this equivalent representative of f in the quadrature formula (Otherwise, we don't have even $e_{n}(f)=o(1)$)

Proof. Let $p_{n} \in \Pi_{n}$ be the best approximating polynomial for f in $L_{p}[-1,1], p<1$. Then $f=p_{n}+\sum_{k=0}^{\infty}\left(p_{2^{k+1} n}-p_{2^{k}{ }_{n}}\right)$
in $L_{p}[-1,1]$ (i.e. the expression in the right is the L_{p} equivalent of f which we need). From (6) and Markov-Bernstein type inequality (see for example [4])

$$
\begin{aligned}
e_{n}(f) & \leq c n^{-1} E_{2 n-2}\left(f^{\prime}\right)_{q, \varphi} \quad q \geq 1 \\
& \leq c n^{-1} E_{n}\left(f^{\prime}\right)_{q, \varphi} \\
& \leq c n^{-1}\left\|\varphi\left(f^{\prime}-p_{n}^{\prime}\right)\right\|_{q} \\
& \leq c n^{-1} \sum_{k=0}^{\infty} 2^{k+1} n\left\|\varphi\left(p_{2^{k+1} n}-p_{2^{k} n}\right)\right\|_{q} .
\end{aligned}
$$

Then using the fact that any two quasi norms are equivalent on the space of algebraic polynomials of a fixed degree we have

$$
e_{n}(f) \leq c(p) \sum_{k=0}^{\infty} 2^{k+1} n E_{2^{k} n}(f)_{p} \quad p<1 .
$$

In view of (1) we get

$$
e_{n}(f) \leq c(p) \sum_{k=0}^{\infty} 2^{k} n \omega_{\varphi}^{r}\left(f, 2^{-k} n^{-1}\right)_{p}
$$

Now since $f \in W_{p}^{1}[-1,1], 0<p<1$, so that

$$
\begin{aligned}
e_{n}(f) & \leq c(p) n^{-1} \sum_{k=0}^{\infty} 2^{k} n \omega_{\varphi}^{r}\left(f, 2^{-k} n^{-1}\right)_{p} \\
& \leq c(p) n^{-1} \int_{0}^{1 / n} \frac{\omega_{\varphi}^{r-1}\left(f^{\prime}, u\right)_{p}}{u^{2}} d u
\end{aligned}
$$

Provided the last integral convergence

As a final remark, we mention that similar bounds holds for many other systems of nodes and in (7) the right hand side has the order

$$
\left(\int_{-1}^{x_{n}}|f|^{p}+\int_{x_{n}}^{1}|f|^{p}\right)^{1 / p},
$$

for any f constructed from analytic functions, $\quad|x \pm 1|^{S}$ and iterated logarithms of these, which means that (7) is the best possible estimate for such functions.

References

[1] Z. Ditzian and V. Totik (1987): Moduli of smoothness. SpringerVerlag, Berlin.
[2] R. A. DeVore, D. Leviatan and X. M. Yu (1992): Polynomial approximation in $L_{p}(0<p<1)$. Constr.approx. 8,187-201.
[3] R. A. DeVore, and L. R. Scott (1984): Error bounds for Gaussian quadrature and weighted L^{1} polynomial approximation. SIAM, J. Numer. Anal, 2, 400-412.
[4] K. Kopotun and A. Shadrin (2003): On k-monotone approximation by free knots splines. J. Math. Analysis, 34, 901924.

