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Abstract
The main goal of this work is to create a special type of proper mappings namely,
strongly regular proper mappings and we introduce the definition of a new type of
compact and coercive mappings and give some properties and some equivalent

statements of these concepts , as well as explain the relationship among them .

Introduction

One of the very important concepts in topology is the concept of mapping . There are
several types of mappings , in this work we study an important class of mappings ,
namely , strongly regular proper mappings .

Proper mapping was introduced by Bourbaki in [1] .

Let A be a subset of topological space X . We denote to the closure and interior of A
by A and Ao respectively .

James Dugundji in [2] defined the regular open set as a subset A of a space X , such

—o
that A = A . Stephen Willard in [8] defined the regular open set similarly with
Dugundji’s definition .

This work consists of three sections .

Section one includes the fundamental concepts in general topology , and the proves of
some related results which are needed in the next section .

Section two contains the definitions of strongly regular compact mapping and
strongly regular coercive mapping . Also the relationship among these concepts is
introduced and some of its related results are proved .

Section three introduces the definition of strongly regular proper mapping and some

of its related are proved .



1- Basic concepts

Definition 1.1 , [2] : A subset B of a space X is called regular open (r- open) set if

—O0

B = B . The complement of a regular open set is defined to be a regular closed (r-

closed) set.

Proposition 1.2 , [2] : A subset B of a space X is r- closed if and only if B= B .

Its clearly that every r- open set is an open set and every r- closed set is closed set , but the
converse is not true in general as the following example shows :

Example 1.3 : Let X = {a, b, c, d} beasetand T = {0, X, {a}, {a, b}, {a, c, d}} be a

topology on X . Notice that {a, b} is an open set in X , but its not r- open set , and {b} is a
closed set in X , but its not r- closed set .

Corollary 1.4 : A subset B of a space X is clopen (open and closed) if and only if B is

r- clopen (r- open and r- closed ) .

Proposition 1.5 : Let AcY = X . Then:

(1) If Aisanr- opensetin Y and Y is an r- open set in X , then A is an r- open set in X .

(i) If A is an r- closed set in Y and Y is an r- closed set in X, then A is an r- closed set in X .
Remark 1.6 : If A is an r- closed set in X and B is a clopen set in X , then ANB is r- closed
inB.

Definition 1.7 : Let A be a subset of a space X . A point x€A is called r- interior point of A

if there exists an r- open set U in X such that x e UcC A..
The set of all r- interior points of A is called r- interior set of A and its denoted by Aor

Proposition 1.8 : Let (X, T) be a space and A < X . Then :

. or o
DA <A -

o or
. or. — o
W@ = @) -
or
(iii) A isr- open ifand only if A = A .

Definition 1.9 : Let A be a subset of a space X . A point x in X is said to be r- limit point of

A if for each r- open set U contains x implies that UNA\ {x} #O .

The set of all r- limit points of A is called r- derived set of A and its denoted by A "

Definition 1.10 : Let X be a space and B < X . The intersection of all r- closed sets

containing B is called the r- closure of B and denotes by Xr



Proposition 1.11 : Let X be a space and A, B < X . Then :

(1) Xr is an 1- closed set .
—r
(i)Ac A
—r
(iii) A is r- closed if and only if A =A..
—r
(iv)x € A ifand only if ANU # @, for any r- open set U containing X .

Proposition 1.12: Let X and Y be two spaces ,and Ac X,Bc Y . Then:

(i) A, B are r- open subsets of X and Y respectively if and only if AXB is r- open subset in
XxY .

(i1) A , B are r- closed subsets of X and Y respectively if and only if AxB is r- closed subset
in XxY .

(iii) A , B are clopen subsets of X and Y respectively if and only if AxB is clopen subset in
XxY .

(iv) A, B are r- clopen subsets of X and Y respectively if and only if AxB is r- clopen subset
in XxY .

Definition 1.13 . [3] : Let X be a space and B be any subset of X . A neighborhood of B is

any subset of X which containing an open set containing B .

The neighborhoods of a subset {x} , consisting of a single point are also called
neighborhood of a point x .

The collection of all neighborhoods of the subset B is denoted by N(B) . In particular the
collection of all neighborhoods of x is denoted by N(x) .

Proposition 1.14 , [1] : Let X be a set . If to each element x of X , there corresponds a

collection B(x) of subsets of X , satisfying the properties :

(1) Every subset of X which contains a set belongs to B(x) , itself belongs to B(X) .

(i1) Every finite intersection of sets of B(x) belongs to B(x) .

(ii1) The element x is in every set of B(x) .

(iv) If V belongs to B(x) , then there is a set W belonging to B(x) such that foreachy e W,V
belongs to B(y) .

Then there is a unique topological structure on X such that , for each x €X , B(x) is the

collection of neighborhoods of x in this topology .



Definition 1.15 : Let X be a space and B < X . An r- neighborhood of B is any subset of X

which contains an r- open set containing B . The r- neighborhoods of a subset {x} consisting
of a single point are also called r- neighborhoods of the point x .

Let us denote the collection of all r- neighborhoods of the subset B of X by Nr(B) . In
particular , we denote the collection of all r- neighborhoods of x by Nr(x) .

Definition 1.16, [1] : Let f : X — Y be a mapping of spaces .Then :

(i) f is called continuous mapping if /'(A) is an open set in X for every open set A in Y .

(i1) f is called open mapping if f(A) is an open set in Y for every open set A in X .

(ii1) f is called closed mapping if f(A) is a closed set in Y for every closed set A in X .
Definition 1.17 : A mapping f : X — Y is called r- irresolute if /'(A) is an - open set in X

for every r- openset Ain Y .

Definition 1.18 : Let X and Y be spaces and f : X — Y be a mapping . Then :

(1) f is called a strongly r- open (st- r- open) mapping if the image of each r- open subset of
Xisanr-opensetinY .

(i1) f is called a strongly r- closed (st- r- closed) mapping if the image of each r- closed
subset of X is an r- closed setin Y .

Definition 1.19 : Let X and Y be spaces . Then the mapping f : X — Y is called st- r-

homeomorphism if
(1) f 1s bijective .
(i) f is continuous .

(iii) f is st- r- open (or st- r- closed) .
—r

—7
Proposition 1.20 : A mapping f : X — Y is st- r- closed if and only if f(A) S f(A ),

VAcX .
—r
Proof : — ) Let f: X — Y be a st- r- closed mapping and A < X . Since A is an r- closed
—r —r r

setin X, then f(A )is an r- closed subset of Y , and since A < A , then f(A) < f(A ).

7 r

Thus f(A) < f(a) = f(A

r r

. _

), hence f(A) c f(A ).

r —r -r

«—)Let f(A) < f(A ), forall Ac X.LetF beanr- closed subset of X ,i.e, F=F | thus
—r r —r —r

by hypothesis f(F) < f(l_: )= f(F) . But f(F) c f(F) , then f(F) =/f(F) .Hence f(F) is an

r- closed set in Y , thus f : X — Y is a st- r- closed mapping .



Proposition 1.21 : Let X and Y be spaces . If f : X — Y is a st- r- closed , continuous

mapping . Then for each clopen subset T of Y, f1: f(T) — T is a st- r- closed mapping .
Proof : Let T be a clopen subset of Y . Since f is continuous , then f™(T) is a clopen set in X
. Let F be an r- closed set in /'(T) , by Corollary (1.4) , and Proposition (1.5) , F is r- closed
in X . Since f is a st- r- closed mapping , then f(F) is r- closed in Y , hence by Remark
(1.6) , TNf(F) is r- closed in T . But fr(F) = TNf(F) , then fr(F) is an r- closed set in T .
Therefore fr is a st- r- closed mapping .

Proposition 1.22: L.et X, Y and Z be spaces and f : X — Y , g: Y — Z be mappings .
Then :

(1) If f and g are st- - closed , then gof : X — Z is st- r- closed mapping .

(i1) If gof is a st- r- closed mapping and f is onto , r- irresolute , then g is st- r- closed .

(iii) If gof is a st- r- closed mapping and g is one to one , r- irresolute , then f is st- r-
closed .

Proof :

(1) Let F be an r- closed subset of X , then f(F) is an r- closed set in Y and then
g(f(F)) = (gof)(F) is an r- closed set in Z . Hence (gof) is a st- r- closed mapping .

(ii) Let F be an r- closed subset of Y , since f is r- irresolute , then f'(F) is - closed in X .
Since gof is a st- 1- closed mapping , then (gof)( f(F)) is an r- closed set in Z . But f is
onto , then (gof)( f'l(F)) = g(F) , thus g(F) is an r- closed set in Z . Hence g is st- r- closed .
(ii1) Let F be an r- closed subset of X , then (gof)(F) is an r- closed set in Z . Since g is one to
one , r- irresolute , then g”'((gof)(F) = f(F) is an r- closed set in Y . Hence f is a st- 1- closed
mapping .

Proposition 1.23 : Let X be a space . If A is an r- closed subset of X , then the inclusion

mapping i,: A — X is st-r- closed .
Proof : Let F be an r- closed set in A , since A is r- closed in X , then by Proposition (1.5), F
is r- closed in X . But is(F) = F , then is(F) is an r- closed set in X . Hence the inclusion
mapping i : A — X is st-r- closed .

Proposition 1.24 : Let X and Y be spaces , f : X — Y be a st- r- closed mapping . If F is an

r- closed subset of X , then the restriction mapping fr : F — Y is st- r- closed .

Proof : Since F is an r- closed set in X , then by Proposition (1.23) , the inclusion mapping
in : F — X is st- - closed . Since f is st- r- closed mapping , then by Proposition (1.22) ,
foin : F — Y is a st- r- closed mapping . But foix = f , then the restriction mapping

fiF: F— Y is st-r- closed .



Proposition 1.25 : A bijective mapping f : X — Y is st- r- closed if and only if is st- r- open .

Proof : — ) Let f : X — Y be a bijective, st- r- closed mapping and U be an r- open subset
c c
of X , thus U is r- closed . Since f is st- - closed then f(U ) is r- closed in Y , thus

c c
FW") s r- open . Since f is bijective mapping , then (f W) - f(U) , hence f(U) is r-

open in Y , therefore f is a st- r- open mapping .

«— ) Let f: X — Y be a bijective , st- r- open mapping and F be an r- closed subset of X ,

C C c. ©
thus F is r- open . Since f is st- - open then f(F )isr- openin Y , thus(f(F)) isr-

c
closed . Since f is a bijective mapping , then (f (F) = f(F) , hence f(F) is r- closed in Y .

So f is st- r- closed mapping .

Theorem 1.26 , [8] : Let X be a space and A be a subset of X , x € X .Then x € A if and

only if there is a net in A which converges to x .

Lemma 1.27 , [5] : If ()4) is a net in a space X and for eachd, € D, Ago = {Ya | d = do} ,

then x € X is a cluster point of () 4) if and only if x € A_d ,foralld e D.

Definition 1.28 : Let ()(4)dep be a net in a space X , x € X . Then (Y4)aep I- converges to x

[written ¥ q ., x], if (%a)dep 1s eventually in every r- nbd of x . The point x is called an r-
limit point of (Y d)dep -

Definition 1. 29 : Let (%(4)dep be a net in a space X , x € X . Then (% q)dep 18 said to have x as

,
an r- cluster point [written ¥g oC X] if (X4)dep is frequently in every r- nbd of x .

—r
Proposition 1.30 : Let (X, T) be a space and A < X, x € X .Then x € A if and only if

there exists a net (Y q)dep In A and Yy OrC X .

Proof : —) Let x € Xr, then UNA # @ , for every r- open set U, x € U . Notice that
(Nr(x) , ©) is a directed set , such that for all U;,U, € Nr(x), U; > U, ifand only if U; c U, .
Since for all U € Nr(x) , UNA # @ , then we can define a net ) : Nr(x) — X as follows :
X(U)=7%uv € UNA , U e Nr(x) . To prove that Yy OrC x . Let B € Nr(x) , thus BNU € Nr(x) .

,
Since BNU c U, then BNU > U, y(BNU) = Ysnu € BNU < B . Hence ¥y o€ x .



,
<) Let ((a)dep be a net in A , such that ¥4 oC x, and let U be an r- open set, x € U . Since
r
Xa € X, then (Yq)dep 1s frequently in U . Thus UNA # @ , for all r- open set U, x € U .
—r

Hencex € A

Proposition 1.31 : Let X be a space and ()(4)dep be a net in X , for each d, € D, such that

r
Ago = {Ya | d > d,}, then a point x of X is r- cluster point of ()Y 4)¢ep if and only if x € Ado

foralld, € D.
Proof : —) Let x be an r- cluster point of (¥ 4)dep and let N be an r- open set contain x , then

(Xa)dep 1s frequently in N , thus A4\N # @ , V d, € D, then by Proposition (1.11) ,

r
X€AY, -

r
<) Letx e A do V d, € D, and suppose that x is not r- cluster point of (¥ q4)dep , then

there exists r- nbd N of x , such that A(;\IN=0 ,Vd, e D, a¢ D,d>d,d>d,, then

r
X A do This is contradiction . Hence x is - cluster point of (¥ q)dep -

2- Certain types of strongly regular proper mappings

Definition 2.1, [6] : A space X is called Hausdorff (T,) if for any two distinct points x , y

of X there exists disjoint open subsets U and V of X suchthatx e U,y € V..
Proposition 2.2 : Let (X,T) is a T,- space , then the set {x} is an r- closed in X , for all
x e X.

—7

Proof : To prove that {x} = {X} ,lety e X, such thatx #y . Since X is a T,- space, then , X
C C

isant- T, , so there is an r- open set Uin X ,suchthaty e U, x ¢ U— {x} c U .But U

—r C —r
is an r- closed set , then {X} — U | therefore y ¢ X} , forally € X and y # x . Then
—r —r
{x} =1{x} ,(i.e), {X} isanr- closed setin X .

Definition 2.3 , [7] : A space X is called compact if every open cover of X has a finite

subcover .

Theorem 2.4 . [7] :

(1) A closed subset of compact space is compact .

(i1) In any space , the intersection of a compact set with a closed set is compact .



(i11) Every compact subset of T»- space is closed .

Theorem 2.5, [6] : A space X is compact if and only if every net in X has a cluster point in
X.

Definition 2.6 : A space X is called r- compact if every r- open cover of X has a finite

subcover .

Proposition 2.7 : Every compact space is r- compact space .

The converse of Proposition (2.7) , is not true in general as the following example shows :

Example 2.8 : Let T={A c R|Z c A} U{@} . be a topology on R . Notice that the

topological space (R,T) is r- compact , but its not compact .

Theorem 2.9 : A space X is an r- compact if and only if every net in X has r- cluster point in
X.

Theorem 2.10 :

(1) An r- closed subset of compact space is r- compact .

(i1) Every r- compact subset of T,- space is r- closed .

(ii1) In any space , the intersection of an r- compact set with an r- closed set is r- compact .
(iv) In a T,- space , the intersection of two r- compact sets is r- compact .

Proposition 2.11 : Let X be a space and Y be an r- open subspace of X, K < Y . Then K is

an r- compact set in Y if and only if K is an r- compact set in X .
Proof : —) Let K be an r- compact set in Y . To prove that K is an r- compact set in X . Let
{Uy}rea be an - open cover in X of K, let V;,, = UyNY , VAeA . Then V, is r- open in X,

VieA .ButV, c Y, thus Vyisr-openin Y, VAeA . Since K< U V

%o then {Vi}ica 1s
reA

an r- open cover in Y of K, and by hypothesis this cover has finite subcover {VX Vo men,
1 2

V7L + of K, thus the cover {U;},ca has a finite subcover of K . Hence K is an r- compact
n

setin X.
«) Let K be an r- compact set in X . To prove that K is an r- compact set in Y. Let {Uj }jca
be an r- open cover in Y of K . Since Y is an r- open subspace of X, then by Proposition

(1.5) , {Uj}rea is an r- open cover in X of K . Then by hypothesis there exists

m
{A, A2, ..., Am} ,such that K< (U Uk , thus the cover {Uj},ca has a finite subcover of
=

K . Hence K is an r- compact setin Y .



Definition 2.12 : Let X be a space and W < X . We say that W is compactly r- closed set if

WNK is r- compact , for every r- compact set K in X .

Proposition 2.13 : Every r- closed subset of a space X is compactly r- closed .

The converse of Proposition (2.13), is not true in general as the following example shows :

Example 2.14 : Let X = {a, b, ¢} be a space and T = {X, O, {a, b}} be a topology on X .

Notice that the set A = {a, b} is compactly r- closed , but its not r- closed set .

Theorem 2.15 : Let X be a T, - space .A subset A of X is compactly r- closed if and only if

A is r- closed .

Remark 2.16 : Let X be a compact, T, - space and A < X . Then :

(1) A is closed if and only if A is r- closed .
(i1) A is compact if and only if A is r- compact .

Definition 2.17 [6]: Let X and Y be spaces . We say that the mapping f : X — Y is a

compact mapping if the inverse image of each compact set in Y , is an compact set in X .

Definition 2.18 : Let X and Y be spaces . We say that the mapping f : X — Y is a st- r-

compact mapping if the inverse image of each r- compact set in Y , is an r- compact set in
X.
Examples 2.19 :

(1) The identity mapping is st- r- compact .
(i))Any mapping from a finite topological space into any topological space is st- r- compact .

Proposition 2.20 : Let X and Y be spaces , and f : X — Y be a st- r- compact , r- irresolute ,

mapping . If T is an 1- clopen subset of Y, then f1: f(T) — T is a st- r- compact mapping .
Proof : Let K be an r- compact subset of T . Since T is an r- open set in Y, then by
Proposition (2.11) , K is an r- compact set in Y . Since f is a st- r- compact mapping , then
1K) is r-compact in X .

Now , since T is an r- closed set in Y , and f is an r- irresolute mapping , then f™(T) is an

r- closed set in X , thus by Proposition (2.10) , f(T)Nf'(K) is an r- compact set . But
-1 -1
f T K) = F(MNFYK) , then f T (K) is an 1- compact set in f(T) . Therefore is a st- -

compact mapping .
Proposition 2.21 : Let X, Y and Z be spaces , and f : X — Y , g:Y — Z be mappings .
Then :

(1) If f and g are st- r- compact mapping , then gof : X — Z is a st-r- compact mapping .

(1) If gof is a st- r- compact mapping and f is r- irresolute , onto , then g is st- r- compact .



(i11) If gof is a st- r- compact mapping and g is r- irresolute , one to one , then f is st- r-
compact .

Proof :

(1) Let K be an r- compact set in Z . Then g'l(K) is an r- compact set in Y , and then
F(g'(K)) = (gof)(K) is an r- compact set in X . Hence gof : X — Z is a st- r- compact
mapping .

(i1) Let K be an r- compact set in Z . Then (go f)'l(K) is an r- compact set in X , and then
f((gof)'l)(K) is r- compact in Y . Now , since f is onto , then f((gof)'l)(K) = g'l(K) ,
hence g”'(K) is an r- compact set in Y . Therefore g is a st- r- compact mapping .

(i11) Let K be an r- compact set in Y . Since g is an r- irresolute , then g(K) is an r- compact
set in Z , thus (gof)'l(g(K)) is an r- compact set in X . Since g is one to one , then
(gof)'l(g(K)) = f'l(K) , hence f'l(K) is an r- compact set in X . Thus f is a st- r- compact
mapping .

Proposition 2.22 : For any r- closed subset F of a space X , the inclusion mapping

ir : F — X is a st- r-compact mapping .

Proof : Let K be an r- compact set in X , then by Proposition (2.10) , FNK is an r- compact
. —1 —1 . . . .
setin F.But J. (K)=FNK, then Ir (K) is an r- compact set in F . Therefore the inclusion

mapping Ir : F — X is st- r- compact .

Proposition 2.23 : Let X and Y be spaces , and f : X — Y be a st- r- compact mapping . If F

is an r- closed subset of X, then fjr : F— X 1is a st- r- compact mapping .

Proof : Since F is an r- closed subset of X , then by Proposition (2.22) , the inclusion
Ir : F — Xis a st- r- compact mapping . But fr = foir, then by Proposition (2.21) , f is a st-
r- compact mapping .

Definition 2.24 , [4] : Let X and Y be spaces , A mapping f : X — Y is called a coercive if

for every compact set J < Y , there exists a compact set K < X such that f(X\K)c Y \J.
Definition 2.25 : Let X and Y be spaces , the mapping f : X — Y is called a st- r- coercive

if for every r- compact set J < Y , there exists an r- compact set K < X , such that
fX\K) cY\J.
Examples 2.26 :

(1) The identity mapping on any space is st- r- coercive .
(i) If f : (X,T) — (Y, T) is a mapping , such that X is r- compact space , then f is st- r-

coercive .



Proposition 2.27 : Every st- r- compact mapping is a st- r- coercive mapping .

Proof : Let J be an r- compact set in Y . Since f is a st- - compact mapping , then  f'(J) is
an - compact set in X . But /(X \ f'(J)) c Y \J . Hence f : X — Y is a st- r- coercive

mapping .
Proposition 2.28 : Let X and Y be spaces , such that Y is a T, —space , and f : X — Y is an

r- irresolute mapping . Then f is a st- - coercive if and only if f is a st- r- compact .
Proof : —) Let J be an r- compact set in Y . To prove that 7' (J) is an r- compact set in X .
Since Y is a T, — space and f is an r- irresolute mapping , then f'(J) is an r- closed set in X .

Since f is a st- r- coercive mapping , then there exists an r- compact set K in X , such that
FX\VK) S Y\J. Then f(°) < . therefore f'(J) < K . Thus by Proposition (2.10) ,
7'(3) is an 1- compact set in X . Hence f : X — Y is a st- r- compact mapping .

<) By Proposition (2.25) .

Proposition 2.29 : Let X, Y and Zbe spaces . If f : X - Y , g: Y — Z are st- 1- coercive

mapping , then gof : X — Z is a st- r- coercive mapping .
Proof : Let J be an r- compact setin Z . Since g : Y — Z is a st- r- coercive mapping , then
there exists an r- compact set K in Y, such that g(Y \K) c Z\J .
Since f : X — Y is a st- - coercive mapping , then there exists an r- compact set H in X,
such that f(X\H) c Y\K= g(fX\H)cg(Y\K)cZ\J = (gof)(X\H)cZ\]J.

Hence gof is a st- r- coercive mapping .

Proposition 2.30 : Let X and Y be spaces , and f : X — Y be a st- r- coercive mapping . If F

is an r- closed subset of X , then the restriction mapping fr : F — Y is a st- r- coercive
mapping .
Proof : Since F is an r- closed subset of X , then by Proposition (2.22) , and Proposition
(2.27) , the inclusion mapping ir : F — X is a st- r-coercive mapping . But fr = foir , then by
Proposition (2.21) , fr is a st- 1- coercive mapping .

3- Strongly Regular Proper Mapping :
Definition 3.1, [1] : Let X and Y be spaces , and f : X — Y be a mapping . We say that f is

a proper mapping if :

(1) f is continuous .

(i) fxIz: XxZ — YxZis closed , for every space Z .

Definition 3.2 : Let X and Y be spaces , and f : X — Y be a mapping . We say that f is a

strongly regular proper (st-r- proper) mapping if :

(1) f is continuous .



(11) fxIz: XxZ — YXZ 1is st- r- closed , for every space Z .

Example 3.3 : Let X={a,b},Y={x,y} besetsand T = {0, X, {a}, {b}}, T ={9,Y, {x},
{y}} be topologies on X and Y respectively . The mapping f : X — Y which is defined by :
f(a) = f(b) = x is st- r- proper .

Remarks 3.4 :

(1) Every st- r- proper mapping is st- r- closed .

(i1) Every st- r- homeomorphism is st- r- proper .

The converse of Remark (3.4.1) , is not true in general as the following example shows :
Example 3.5 : Let f : (R, U) — (R, U) be the mapping which is defined by f(x) =0, for
every X € R . Notice that f is a st- r- closed mapping but f is not st- r- proper mapping , since
for the usual space (R, U) the mapping fxIz : RxR — RxR , such that (fxIr)(x,y) = (0,y) ,
for every (x,y) € R is not st- r- closed mapping .

The converse of Remarks (3.4.11) , is not true in general as the following example shows :
Example 3.6 : Let X={a,b,c},Y={x,y} besetsand T = {0, X, {a}, {a,b}} , T ={0,Y,
{x}} be topologies on X and Y respectively . Let f : X — Y be a mapping which is defined
by : f(a) = f(b) =x, f(c) =y . Notice that f is a st- r- proper mapping , but f is not one to
one mapping , therefore f is not st- r- homeomorphism .

Proposition 3.7 : Let X and Y be spaces , and f : X — Y be a st- r- proper mapping . [f T is a

clopen subset of Y , then fr: /' (T) — T is a st- - proper mapping .

Proof : Since f : X — Y is a continuous mapping , then fr is a continuous mapping . To
prove that frxIz : f(T)xZ — TxZ is a st- r- closed mapping , for every space Z . Notice that
frxlz = (fxIz)r~z , where fxI; is a st- r- closed mapping , since T is a clopen subset of Y,
then by Proposition (1.12) , TXZ is a clopen subset of YXZ , thus by Proposition (1.21) ,
(fxIx)1t<z = (frxIz) is a st- r- closed mapping , hence fr: f'(T) — T is a st- r- proper
mapping .

Proposition 3.8 : Let X and Y be spaces , and f : X — Y be a st- r- proper mapping . If Y is

a T»- space , then fy, : F'({y}) — {y} is a st- 1- proper mapping , forall y € Y .
Proof : Since f : X — Y is a continuous mapping , then fyy, is a continuous mapping . To

prove that f %Iz : F {yH*Z — {y}*Z is a st- 1- closed mapping , for every space Z . Let

r r 7 e
Fo FIUyD-Z then: (f X1, )(F) S (yx2)N(XI)E) € fyixz [1(x1)E) -

Since Y is a T,- space , then by Proposition (2.2) , {y} is an r- closed set , forally € Y,

r
so {y}*Z is an 1- closed in Y*Z , then (yIxZ = {y}xZ . Since fxlz: XXZ — YXZ 1is a st- 1-



closed mapping and F < f'l({y})XZ c XxZ , then by Proposition (1.20) ,
_r _ _r _
(fx1)(F) SPICE )Thus (,, xI,)(E) S PZNGIE ).

Since  (fe XI5 ) = (Pypdp ) = GyPDNUXN(E ), then

—]/' _
(f iy} x1,)(F) < (fiy¥1z)( Fr) , therefore by Proposition (1.20) , f;xIz 1s a st- r- closed

mapping . Hence fyy; : 4y} — {y} is a st- r- proper mapping .
Theorem 3.9 : Let f : X — P = {w} be a mapping on a space X . If f is a st- r- proper

mapping , then X is an r- compact space , where w is any point which does not belong to X .

Proof : To prove that X is an r- compact space . Let (Ya)dep be a net in X , and let

' '

X =X {w} . Consider: p(x)= {Uc X:x e U} ,x € X.

B(w)={MU{w}|M c X and (%a) 1s eventually in M} .

Clearly that for each x € X, the family B(x) satisfies the conditions of Proposition (1.14) ,

and therefore we can define a topologyon X by: T={Uc X|Vx e U= U € Bx)},
such that the family U {B(x)}xex is the neighborhood system of the space (X , T ).
—r ' "
Now , suppose w € X withrespectto T .LetU €T ,w e U, then U is an r- open set ,

'

and then U is an o- open set , then there exists an open set V e T such that

VcUcV gv, hence w ev, thus for all open set Uje T |, such that w € Uj ,

1

UNV # @ . Since the set U; = XU{W} e T and w € Uy, then UNV # 0 —

XUwHNv£0 > xXNV) U ((winv)#0 .

1

Claim XNV £ @ , if XNV =0 , then {(w)N\V#0 >weVeT->VepWw),thus
vV =MU {w} , where M, c X and a net (yq) is eventually in M, . But XNV = @ , then
XNM,U {w}) = @ , hence XNM, = @ , and this is a contradiction .Thus XNV # @& —

—r

XNU £ (Vc U), thusw € X . Now , let A be the diagonal set of XxX in T , and let

F=A

b



consider the commutative diagram :

1 |
Xx X i > {wixX

Pr, h(E)

Where h : {w}xX — X is the homeomorphism and Pr,: XxX — X is the projection

map . Since f : X — {w} is a st- r- proper mapping , then fxIz: XxX — {w}xX isa st-r-

closed mapping .
—r
Claim X € Prp(F) ,if x €e X - (xx) e Ac A =F — x = Pry(x,x) € Prp(F) —

—r r
X < Pry(F) . Sincew € X < prz(F) = Pry(F) , then w € Pry(F) . Therefore there exists a

—r
point x € X, such that (x,w) € F= A . Let U be an r- open set in X contains x and V be

any subset of X, such that a net ((q) is eventually in V .Thus vU{w} e Bw), w e VU {w}.

'

Thus by Proposition (1.12) , Ux(V U {w}) is an r- open set in Xx X containing (x,w) , since
—r
(x,w) € A , then Ux(VU{wH)NA # @ — UNV # @ . So for all r- open set U in X

containing x and for all subset V of X, such that a net ()4) is eventually in V,, UNV £0.

Since (yq) 1s eventually in Ag = V < X , then A4NU # O , for all d, € D and

r r
all r- open set contains x . Thus x € A do V d, € D, therefore Proposition (1.31), Xd o X -

Hence by Proposition (2.9) , X is an r- compact space .

Theorem 3.10 : Let X and Y be spaces , and f : X — Y be a continuous mapping . If Y is a
T»- space , then the following statements are equivalent :

(1) f 1s a st- r- proper mapping .

(ii) f is a st- r- closed mapping and f'({y}) is r- compact for each y e Y .

(111) If (fa)depis anet in X and y € Y is an r- cluster point of f((q) , then there is an r- cluster

point x € X of (Xa)dep , such that f(x) =y .



Proof :

(i—1i). Let f : X — Y be a st- r- proper mapping , then fxI; : XxZ — YxZ is a st- r- closed
for every space Z . Let Z = {t} , then XxZ =Xx{t} = Xand YXZ=Yx{t} =Y, and we can
replace fxIz by f, thus f is a st- r- closed mapping . Now , let y € Y , then by Proposition
(3.8) , the mapping fyy; : F'({y}) = {y} is a st- 1- proper . Thus by Theorem (3.9), f'({y})

is an r- compact set .

(i1i—fiii). Let ((a)a ep be anet in X and yeY be an r- cluster point of a net f((q) in Y . Assume

c
that f'(y) 20 ,if f'(y) =@, theny ¢ f(x) >y e (f(X)) | since X is an r- closed set in X
c
and f is a st- 1- closed mapping , then f(X) is an r- closed set in Y . Thus (f(X)) is an r-
c
open set in Y . Therefore (f(y4)) is frequently in (f(X))

c
But f(%4) € f(X),V de D, then f(X)N (f(X)) # @, and this is a contradiction . Thus

(y)# @, therefore 3 x € X, such that f(x)=y.
Now , suppose that the statement (iii) , is not true , that means , for all x e f7'(y) there
exists an r- open set Ux in X contains x , such that (y4) is not frequently in Ux . Notice that

iy = UI{X}. Therefore the family {Ux | x € f(y)} is an r-open cover for f'(y) . But
xef (y)

f'l(y) is an r- compact set , thus there exists X, Xz, . . . , X, € f'l(y) , such that
n ¢ n

1y cUxUUx, ... UUx,, then £(y) N[ U Uy =0 - fly) N [ﬂlU;]=®.But
i=1 1=

n n n
(Xiica is not frequently in |J (.. , but |J {y_. is an r- open set in X , then () UC. is an r-
i=1 X! i=1 X i=1 X
) L O )
closed set in X . Thus f( [ Uxi) isanr-closed setinY .
i=1

n n n
Claimy ¢ f() UC.) ,ify € f() UC.) , then there exists x € [) UC. , such that
i=1 X i=1 X i=1 X

n n
fx)=y,thusx ¢ |J Uy but x € f'l(y) , therefore f'l(y) is not a subset of | J Uy and
i=1 i=1

this is a contradiction . Hence there is an r- open set A in Y , such that y € A and

ANAAGE) = 0 = PN L) =0 - F@NE Nyl -0 —
1 =1 i=1



n
f'l(A) c ’Ul Uy - But (f(4)) is frequently in A , then ((q) is frequently in f'l(A) , and then
1=

n
(Xa) is frequently in |J Uyi .This is contradiction , and this is complete the proof .
i=1

(iii — 1). Let Z be any space . To prove that f : X — Y is a st- r- proper mapping , i.e , to
prove that fxIz : XXZ — YxZ is a st- r- closed mapping . Let F be an r- closed set in XxZ .

B m— 4
To prove that (fxIz)(F) is an r- closed set in YXZ . Let (y,z) € (fxI,)(F) > then by

r
Proposition (1.30) , there exists a net {(ya, Za)}dep in (f*Iz)(F) such that (ya, z4) o (¥,2) »

where (yq , z9) = (fxIz)(Xa , va)) , and {(Xa , Yd)ldep 18 a net in F . Thus

r r r r
(f(Xa) > [2(zd)) o (¥,2) , 50 f(Xa) o ¥ and zq o z.Then I x € X, such that x4 o x and
r _ —
fx) =y — (Xa, 2) o (%,2) and {(xa, zo)}aepis anetin F , thus (x,y) € p . Since F= ¢,

then (x.y)<F — (1.2) = (/X1)(3)) = (v:2) € (FXI(F) . and then (71, )(E) = X)) .

thus (fxIz)(F) is an r- closed set in YXZ . Hence fxI; : XXZ — YXZ is a st- r- closed
mapping . Therefore f : X — Y is a st- r- proper mapping .

Proposition 3.11 : If X is an r- compact space , then the mapping f : X — P = {w} on a

space X is st- r- proper , where w is any point which does not belongs to X .

Proof : Let X be an r- compact space . Since P is a single point , then f is a continuous
mapping . To prove that f : X — P = {w} is a st- r- proper mapping :

(i) Since f'(P) = X, then /' (P) is an r- compact set .

(i1) Let F is an r- closed subset of X , then either : f(F) = O or f(F) = {w} . Then f is st- -
closed mapping , hence by Theorem (3.10), f is a st- r- proper mapping .

Proposition 3.12 : Let X, Y and Z be spaces . If f : X — Y and g: Y — Z are st-r- proper

maps , then gof : X — Z is a st- r- proper mapping .

Proof : Since f and g are st- r- proper maps , then fxIy and gxly are st-r- closed , for every
space W , then by Proposition (1.22) , (gxIw)o(fxIw) is st- r- closed mapping . But
(gxIw)o(fxIw) = (gof)xlw , then (gof)xIlw is st- r- closed , and since gof is continuous .

Hence gof is an st- r- proper mapping .

Proposition 3.13 : Let X, Y and Z be spaces ,and f : X - Y , g: Y — Z be continuous
maps , such that gof : X — Z is a st- - proper mapping . If g is one to one , r- irresolute ,

then f is a st- r- proper mapping .



Proof : Let W be any space . To prove that fxIy : XXW — YXW is a st- r- closed mapping .
Since gof : X — Z is a st- r- proper , then (gof)xly : XxW — ZxW is a st- r- closed
mapping , so we can write (gof)xlw = (gxIw)o(f*lw) . Since gxlw is one to one , r-
irresolute mapping , then by Proposition (1.22) , fxIw is a st- r- closed . Hence f : X — Y is
a st- r- proper mapping .

Proposition 3.14 : Let f; : X; — Y, and f, : X, — Y, be maps . Then

f1xf2: XixXy — Y 1XY2 s a st- 1- proper mapping if and only if f; and f, are st- r- proper .
Proof : —) To prove that f, is a st- - proper . Since f;xf, is continuous , then both f, and f>
are continuous . To prove that f,xIz : XoxZ — Y,xZ is st- - closed , for every space Z . Let
F be an r- closed subset of X,xZ , since X is an r- closed set in X; , then by Proposition
(1.12) , X;xF is an r- closed set in X;xX,xZ . Since f;xf, is st- r- proper , then
(f1xf2xIz) (X xF) is an 1- closed set in Y XY,xZ .But (f1xf2xIz)(X1XF) = f1(X1)*(f2xIz)(F),
thus f1(X;)*x(f2xIz)(F) is an - closed set in Y xY,xZ , then by Proposition (1.12) , (f2xIz)(F)
is an r- closed set in Y,xZ , then f,xIz : XoXZ — Y,xZ is a st- r- closed mapping . Therefore
f2: X5 — Y2 is a st- - proper mapping .

Similarly , we can prove that f; : X; — Y| is a st- r- proper mapping .
«) To prove that f1xf; : X;xX; — Y XY, is a st- r- proper . Since f; and f, are continuous ,
then f1xf, 1is continuous mapping . Let Z be any space . Notice that
f1xfaxlz = (Iy;x foxIz)o(f1xIx,x1z) , since f; and f, are st- r- proper maps , then (Iy;x f,xIz)
and (fxIxpxIz) = fiXIxaxz are st- r- closed maps . Therefore by Proposition (1.22) , the
mapping f1%f,xIz is a st- r- closed . Hence f1xf, is a st- r- proper mapping .

Proposition 3.15 : Let X be an r- compact space , and Y any space , then the projection

Pr; : XXY — Y is a st- r- proper mapping .
Proof : Consider the commutative diagram :

fxly
XxY > (pIxY

Pr h(z)
Y

Where h : {p}*xY — Y is the homeomorphism of {p}*Y onto Y and Pr, : XxY — Y is the
projection of XxY into Y . Since X an is r- compact space , then by Proposition (3.11) ,

f: X — {p}isast-r-properand Iy : Y — Y is a st- r- proper , then fxI, is a st- r- proper .



Therefore ho(fxly) is a st- r- proper mapping . But Pr, = ho(fxIy) , then Pr; is a st- r- proper

mapping .
Proposition 3.16 : Let X and Y be spaces , and f : X — Y be a st- r- proper mapping . If F is

a clopen subset of X , then the restriction map f|r: F — Y is a st- r- proper mapping .
Proof : To prove that f|pxIz : FXZ — YxZ is a st- r- closed mapping for every space Z .
Since F is an clopen subset of X , then by Proposition (1.12) , FXZ is a clopen subset of
XxZ . Since fxIy is a st- - closed mapping , then by Proposition (1.21) , (fxIz)g«z is a st- 1-
closed mapping . But f|gxIz = (f*Iz)r«z , thus f|pxIz is a st- 1- closed mapping . Since f | is
continuous , hence f|r: F — Y is a st- r- proper mapping .

Proposition 3.17 : Let X and Y be spaces . If f : X — Y is a st- r- proper mapping , then f is

a st- r- compact mapping .
Proof : Let A be an r- compact subset of Y . To prove that f"(A) is an r- compact set in X ,

let (X4)dep be a net in Y(A), then f(xa) 1s anet in A . Since A is an r- compact setin Y ,

then by Proposition (2.9) , there exists y € A, such that y is an r- cluster point of f(¥a) -
Since f is st- r- proper , then by Theorem (3.10) , there exists x € X, such that x is an r-

cluster point of (}q4) , and f(x) =y . Thus every net in f(A) has - cluster point in itself , then
by Proposition (2.9) , f'l(A) is an r- compact set in X .Therefore f : X — Y is a st- r-
compact mapping .

The converse of Proposition (3.17) , is not true in general as the following example

shows :

Example 3.18 : Let X = {a,b,c,d} , Y = {x,y,z} besetsand T = {@, X, {a, b}, {c,d}},

T ={0,Y, {z}} be topologies on X and Y respectively . Let f : X — Y be a mapping which
is defined by : f(a) = f(b)=f(c)=y, f(d)=z.

Notice that f is a st- r- compact mapping , but f is not st- r- proper mapping . Since {c,d}
is an r- closed set in X , but f({c,d}) = {y,z} which is not r- closed set in Y , then f is not st-
r- closed mapping .

Theorem 3.19 : Let X and Y be spaces , such that Y isa T, - space ,and f : X — Y is a

continuous , r- irresolute mapping . Then f is a st-r- proper mapping if and only if f is a st- r-
compact mapping .

Proof : —) By Proposition (3.17) .

«) To prove that f is a st- r- proper mapping :

(1) Let F be an r- closed subset of X . To prove that f(F) is an r- closed set in Y , let K be an
r- compact set in Y , then f'(K) is an r- compact set in X , then by Theorem (2.10) ,



FN7'(K) is r- compact in X . Since f is 1- irresolute , then f(FNf"'(K)) is r- compact set in
Y . But f(ENf(K)) = f(F)NK , then f(F)NK is r- compact , thus f(F) is compactly r- closed
setin Y . Since Y is T,- space , then by Theorem (2.15) , f(F) is r- closed set in Y. Hence
f is a st- r- closed mapping .

(i1) Let yeY , then {y} is r- compact in Y . Since f is a st- r- compact mapping , then
F'({y}) is r- compact in X . Therefore by (i) , (ii) and using Theorem (3.10) , f is a st- r-
proper mapping .

Theorem 3.20 : Let X and Y be spaces , such that Y is a T, - space and f : X — Y is a

continuous , r- irresolute , mapping . Then the following statements are equivalent :
(1) f 1s a st- r- coercive mapping .

(1) f is a st- r- compact mapping .

(iii) f is a st- r- proper mapping .

Proof :

(1 — 11). By Proposition (2.28) .

(i1 — ii1). By Theorem (3.19) .

(iii — 1). Let J be an r- compact set in Y . Since f is a st- r- proper , then by Proposition
(3.17), f is a st- - compact mapping , then f™'(J) is an r- compact set in X . Thus

FXN\ ') 2 Y \J . Hence f : X — Y is a st- 1- coercive mapping .
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