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Abstract
The main goal of this work is to create a special type of proper mappings namely,

strongly regular proper mappings and we introduce the definition of a new type of

compact and coercive mappings and give some properties and some equivalent

statements of these concepts , as well as explain the relationship among them .

Introduction
One of the very important concepts in topology is the concept of mapping . There are

several types of mappings , in this work we study an important class of mappings ,

namely , strongly regular proper mappings .

Proper mapping was introduced by Bourbaki in [1] .

Let A be a subset of topological space X . We denote to the closure and interior of A

by A and A
 respectively .

James Dugundji in [2] defined the regular open set as a subset A of a space X , such

that A = A


. Stephen Willard in [8] defined the regular open set similarly with

Dugundji,s definition .

This work consists of three sections .

Section one includes the fundamental concepts in general topology , and the proves of

some related results which are needed in the next section .

Section two contains the definitions of strongly regular compact mapping and

strongly regular coercive mapping . Also the relationship among these concepts is

introduced and some of its related results are proved .

Section three introduces the definition of strongly regular proper mapping and some

of its related are proved .
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1- Basic concepts
Definition 1.1 , [2] : A subset B of a space X is called regular open (r- open) set if

B = B


. The complement of a regular open set is defined to be a regular closed (r-

closed) set .

Proposition 1.2 , [2] : A subset B of a space X is r- closed if and only if B = B


.

Its clearly that every r- open set is an open set and every r- closed set is closed set , but the

converse is not true in general as the following example shows :

Example 1.3 : Let X = {a, b, c, d} be a set and T = {Ø, X, {a}, {a, b}, {a, c, d}} be a

topology on X . Notice that {a, b} is an open set in X , but its not r- open set , and {b} is a

closed set in X , but its not r- closed set .

Corollary 1.4 : A subset B of a space X is clopen (open and closed) if and only if B is

r- clopen (r- open and r- closed ) .

Proposition 1.5 : Let A  Y  X . Then :

(i) If A is an r- open set in Y and Y is an r- open set in X , then A is an r- open set in X .

(ii) If A is an r- closed set in Y and Y is an r- closed set in X, then A is an r- closed set in X .

Remark 1.6 : If A is an r- closed set in X and B is a clopen set in X , then A∩B is r- closed

in B .

Definition 1.7 : Let A be a subset of a space X . A point xA is called r- interior point of A

if there exists an r- open set U in X such that  x  U  A .

The set of all r- interior points of A is called r- interior set of A and its denoted by A
r .

Proposition 1.8 : Let (X , T) be a space and A  X . Then :

(i) A
r  A

 .

(ii) )A(
r = )A(


r

.

(iii) A is r- open if and only if A
r

=  A  .

Definition 1.9 : Let A be a subset of a space X . A point x in X is said to be r- limit point of

A if for each r- open set U contains x implies that U∩A \ {x} ≠ Ø .

The set of all r- limit points of A is called r- derived set of A and its denoted by A
'r .

Definition 1.10 : Let X be a space and B  X . The intersection of all r- closed sets

containing B is called the r- closure of B and denotes by A
r .
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Proposition 1.11 : Let X be a space and A , B  X . Then :

(i) A
r

is an r- closed set .

(ii) A  A
r

.

(iii) A is r- closed if and only if A
r

= A .

(iv) x  A
r

if and only if A∩U ≠ Ø , for any r- open set U containing x .

Proposition 1.12: Let X and Y be two spaces , and A  X , B  Y . Then :

(i) A , B are r- open subsets of X and Y respectively if and only if A×B is r- open subset in

X×Y .

(ii) A , B are r- closed subsets of X and Y respectively if and only if A×B is r- closed subset

in X×Y .

(iii) A , B are clopen subsets of X and Y respectively if and only if A×B is clopen subset in

X×Y .

(iv) A , B are r- clopen subsets of X and Y respectively if and only if A×B is r- clopen subset

in X×Y .

Definition 1.13 , [3] : Let X be a space and B be any subset of X . A neighborhood of B is

any subset of X which containing an open set containing B .

The neighborhoods of a subset {x} , consisting of a single point are also called

neighborhood of a point x .

The collection of all neighborhoods of the subset B is denoted by N(B) . In particular the

collection of all neighborhoods of x is denoted by N(x) .

Proposition 1.14 , [1] : Let X be a set . If to each  element x of X , there corresponds a

collection (x) of subsets of X , satisfying the properties :

(i) Every subset of X which contains a set belongs to (x) , itself belongs to (x) .

(ii) Every finite intersection of sets of (x) belongs to (x) .

(iii) The element x is in every set of (x) .

(iv) If V belongs to (x) , then there is a set W belonging to (x) such that for each y W , V

belongs to (y) .

Then there is a unique topological structure on X such that , for each x X , (x) is the

collection of neighborhoods of x in this topology .
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Definition 1.15 : Let X be a space and B  X . An r- neighborhood of B is any subset of X

which contains an r- open set containing B . The r- neighborhoods of a subset {x} consisting

of a single point are also called r- neighborhoods of the point   x .

Let us denote the collection of all r- neighborhoods of the subset B of X by Nr(B) . In

particular , we denote the collection of all r- neighborhoods of x by Nr(x) .

Definition 1.16 , [1] : Let ƒ : X → Y be a mapping of spaces .Then :

(i) ƒ is called continuous mapping if ƒ-1(A) is an open set in X for every open set A in Y .

(ii) ƒ is called open mapping if ƒ(A) is an open set in Y for every open set A in X .

(iii) ƒ is called closed mapping if ƒ(A) is a closed set in Y for every closed set A in X .

Definition 1.17 : A mapping ƒ : X → Y is called r- irresolute if ƒ-1(A) is an r- open set in X

for every r- open set A in Y .

Definition 1.18 : Let X and Y be spaces and ƒ : X → Y be a mapping . Then :

(i) ƒ is called a strongly r- open (st- r- open) mapping if the image of each r- open subset of

X is an r- open set in Y .

(ii) ƒ is called a strongly r- closed (st- r- closed) mapping if the image of each r- closed

subset of X is an r- closed set in Y .

Definition 1.19 : Let X and Y be spaces . Then the mapping ƒ : X → Y is called st- r-

homeomorphism if

(i) ƒ is bijective .

(ii) ƒ is continuous .

(iii) ƒ is st- r- open (or st- r- closed) .

Proposition 1.20 : A mapping  ƒ : X → Y is st- r- closed if and only if ƒ(A)
r
 ƒ( A

r
) ,

 A  X .

Proof : → ) Let ƒ : X → Y be a st- r- closed mapping and A  X . Since A
r

is an r- closed

set in X , then ƒ( A
r

) is an r- closed subset of Y , and since A  A
r

, then ƒ(A)  ƒ( A
r

) .

Thus ƒ(A)
r
 )A(ƒ

r
r

= ƒ( A
r

) , hence ƒ(A)
r
 ƒ( A

r
) .

← ) Let ƒ(A)
r
 ƒ( A

r
) , for all A  X . Let F be an r- closed subset of X , i.e , F = F

r
, thus

by hypothesis ƒ(F)
r
 ƒ( F

r
) = ƒ(F) . But ƒ(F)  ƒ(F)

r
, then ƒ(F) = ƒ(F)

r
. Hence ƒ(F) is an

r- closed set in Y , thus ƒ : X → Y is a st- r- closed mapping .
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Proposition 1.21 : Let X and Y be spaces . If ƒ : X → Y is a st- r- closed , continuous

mapping . Then for each clopen subset T of Y , ƒT : ƒ-1(T) → T is a st- r- closed mapping .

Proof : Let T be a clopen subset of Y . Since ƒ is continuous , then ƒ-1(T) is a clopen set in X

. Let F be an r- closed set in ƒ-1(T) , by Corollary (1.4) , and Proposition (1.5) , F is r- closed

in X . Since ƒ is a  st- r- closed mapping , then ƒ(F) is r- closed in Y , hence by Remark

(1.6) , T∩ƒ(F) is r- closed in T . But ƒT(F) = T∩ƒ(F) , then ƒT(F) is an r- closed set in T .

Therefore ƒT is a st- r- closed mapping .

Proposition 1.22: Let X , Y and Z be spaces and ƒ : X → Y , g : Y → Z be  mappings .

Then :

(i) If ƒ and g are st- r- closed , then goƒ :X → Z is st- r- closed mapping .

(ii) If  goƒ is a st- r- closed mapping and ƒ is onto , r- irresolute , then g is st- r- closed .

(iii) If  goƒ is a st- r- closed mapping and g is one to one , r- irresolute , then ƒ is st- r-

closed .

Proof :

(i) Let F be an r- closed subset of X , then ƒ(F) is an r- closed set in Y and then

g(ƒ(F)) = (goƒ)(F) is an r- closed set in Z . Hence (goƒ) is a st- r- closed mapping .

(ii) Let F be an r- closed subset of Y , since ƒ is r- irresolute , then ƒ-1(F) is r- closed in X .

Since  goƒ is a st- r- closed mapping , then (goƒ)( ƒ-1(F)) is an r- closed set in Z . But ƒ is

onto , then (goƒ)( ƒ-1(F)) = g(F) , thus g(F) is an r- closed set in Z . Hence g is st- r- closed .

(iii) Let F be an r- closed subset of X , then (goƒ)(F) is an r- closed set in Z . Since g is one to

one , r- irresolute , then  g-1((goƒ)(F) = ƒ(F) is an r- closed set in Y . Hence ƒ is a st- r- closed

mapping .

Proposition 1.23 : Let X be a space . If A is an r- closed subset of X , then the inclusion

mapping iA : A → X is st- r- closed .

Proof : Let F be an r- closed set in A , since A is r- closed in X , then by Proposition (1.5), F

is r- closed in X . But iA(F) = F , then iA(F) is an r- closed set in  X . Hence the inclusion

mapping iA : A → X is st- r- closed .

Proposition 1.24 : Let X and Y be spaces , ƒ : X → Y be a st- r- closed mapping . If F is an

r- closed subset of X , then the restriction mapping ƒ|F : F → Y is st- r- closed .

Proof : Since F is an r- closed set in X , then by Proposition (1.23) , the inclusion mapping

iA : F → X is st- r- closed . Since ƒ is st- r- closed mapping , then by Proposition (1.22) ,

ƒoiA : F → Y is a st- r- closed mapping . But ƒoiA = ƒ|F , then the restriction mapping

ƒ|F : F → Y is st- r- closed .
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Proposition 1.25 : A bijective mapping ƒ : X → Y is st- r- closed if and only if is st- r- open .

Proof : → ) Let ƒ : X → Y be a bijective , st- r- closed mapping and U  be an r- open subset

of X  , thus U
c

is r- closed . Since ƒ is st- r- closed then ƒ( U
c

) is r- closed in Y , thus

))U
c(ƒ(

c
is r- open . Since ƒ is bijective mapping , then ))U

c(ƒ(
c

= ƒ(U) , hence ƒ(U) is r-

open in Y , therefore ƒ is a st- r- open mapping .

← ) Let ƒ : X → Y be a bijective , st- r- open mapping and F be an r- closed subset of X ,

thus F
c

is r- open . Since ƒ is st- r- open then ƒ( F
c

) is r- open in  Y , thus ))F
c(ƒ(

c
is r-

closed . Since ƒ is a bijective mapping , then ))F
c(ƒ(

c
= ƒ(F) , hence ƒ(F) is r- closed in Y .

So ƒ is st- r- closed mapping .

Theorem 1.26 , [8] : Let X be a space and A be a subset of X , x  X .Then x A if and

only if there is a net in A which converges to x .

Lemma 1.27 , [5] : If (d) is a net in a space X and for each do  D , Ado = {d | d  do} ,

then x  X is a cluster point of (d) if and only if x  dA , for all d  D .

Definition 1.28 : Let (d)dD be a net in a space X , x  X . Then (d)dD r- converges to x

[written d r x], if (d)dD is eventually in every r- nbd of x . The point x is called an r-

limit point of  (d)dD .

Definition 1. 29 : Let (d)dD be a net in a space X , x  X .Then (d)dD is said to have x as

an r- cluster point [written χd
r
 x] if (d)dD is frequently in every r- nbd of  x .

Proposition 1.30 : Let (X , T) be a space and A  X , x  X .Then x  A
r

if and only if

there exists a net (d)dD in A and χd
r
 x .

Proof : →) Let x  A
r

, then U∩A  Ø , for every r- open set U , x  U . Notice that

(Nr(x) , ) is a directed set , such that for all U1,U2  Nr(x) , U1  U2 if and only if U1  U2 .

Since for all U  Nr(x) , U∩A  Ø , then we can define a net χ : Nr(x) → X as follows :

χ(U) = χU  U∩A , U  Nr(x) . To prove that χU
r
 x . Let B  Nr(x) , thus B∩U  Nr(x) .

Since B∩U  U , then B∩U  U , χ(B∩U) = χB∩U  B∩U  B . Hence χU
r
 x .
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←)  Let (d)dD be a net in A , such that χd
r
 x , and let U be an r- open set ,  x  U . Since

χd
r
 x , then (d)dD is frequently in U . Thus U∩A  Ø , for all r- open set U , x  U .

Hence x  A
r

.

Proposition 1.31 : Let X be a space and (d)dD be a net in X , for each do  D, such that

Ado = {χd | d ≥ do}, then a point x of X is r- cluster point of (d)dD if and only if  x  doA
r

,

for all do  D .

Proof : →) Let x be an r- cluster point of (d)dD and let N be an r- open set contain x , then

(d)dD is frequently in N , thus Ado∩N  Ø ,  do  D , then by Proposition (1.11) ,

x  doA
r

.

) Let x  doA
r

,  do  D , and suppose that x is not r- cluster point of   (d)dD , then

there exists r- nbd N of x , such that Ado∩N = Ø ,  do  D , d  D , d ≥ do d ≥ do , then

x  doA
r

. This is contradiction . Hence x is r- cluster point of (d)dD .

2- Certain types of strongly regular proper mappings
Definition 2.1 , [6] : A space X is called Hausdorff (T2) if for any two distinct points  x , y

of X there exists disjoint open subsets U and V of X such that x  U , y  V .

Proposition 2.2 : Let (X,T) is a T2- space , then the set {x} is an r- closed in X , for all

x  X .

Proof : To prove that {x} = }x{
r

, let y  X , such that x ≠ y . Since X is a T2- space, then , X

is an r- T2 , so there is an r- open set U in X , such that y  U , x  U → {x}  U
c

. But U
c

is an r- closed set , then }x{
r
 U

c
, therefore y  }x{

r
, for all y  X and y  x . Then

{x} = }x{
r

, (i.e) , }x{
r

is an r- closed set in X .

Definition 2.3 , [7] : A space X is called compact if every open cover of X has a finite

subcover .

Theorem 2.4 , [7] :

(i) A closed subset of compact space is compact .

(ii) In any space , the intersection of a compact set with a closed set is compact .
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(iii) Every compact subset of T2- space is closed .

Theorem 2.5 , [6] : A space X is compact if and only if every net in X has a cluster point in

X .

Definition 2.6 : A space X is called r- compact if every r- open cover of X has a finite

subcover .

Proposition 2.7 : Every compact space is r- compact space .

The converse of Proposition (2.7) , is not true in general as the following example shows :

Example 2.8 : Let T = {A  R | Z  A}  {Ø} , be a topology on R . Notice that the

topological  space (R,T) is r- compact , but its not compact .

Theorem 2.9 : A space X is an r- compact if and only if every net in X has r- cluster point in

X .

Theorem 2.10 :

(i) An r- closed subset of compact space is r- compact .

(ii) Every r- compact subset of T2- space is r- closed .

(iii) In any space , the intersection of an r- compact set with an r- closed set is r- compact .

(iv) In a T2- space , the intersection of two r- compact sets is r- compact .

Proposition 2.11 : Let X be a space and Y be an r- open subspace of X , K  Y . Then K is

an r- compact set in Y if and only if K is an r- compact set in X .

Proof : →) Let K be an r- compact set in Y . To prove that K is an r- compact set in X . Let

{Uλ}λΛ be an r- open cover in X of K , let Vλ = Uλ∩Y , λΛ . Then Vλ is r- open in X ,

λΛ . But Vλ  Y , thus Vλ is r- open in Y, λΛ . Since K  
Λλ λV


, then {Vλ}λΛ is

an r- open cover in Y of K, and by hypothesis this cover has finite subcover {
1λV ,

2λV , . . . ,

nλV } of  K , thus the cover {U} has a finite subcover of K . Hence K is an r- compact

set in X .

←) Let K be an r- compact set in X . To prove that K is an r- compact set in Y. Let {U}
be an r- open cover in Y of K . Since Y is an r- open subspace of  X , then by Proposition

(1.5) , {U} is an r- open cover in X of K . Then by hypothesis there exists

{1 , 2 , … , m} , such that  K  
m

1λ λU


, thus the cover {U} has a finite subcover of

K . Hence K is an r- compact set in Y .
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Definition 2.12 : Let X be a space and W  X . We say that W is compactly r- closed set if

W∩K is r- compact , for every r- compact set K in X .

Proposition 2.13 : Every r- closed subset of a space X is compactly r- closed .

The converse of Proposition (2.13), is not true in general as the following example shows :

Example 2.14 : Let X = {a, b, c} be a space and T = {X, Ø, {a, b}} be a topology on X .

Notice that the set A = {a, b} is compactly r- closed , but its not r- closed set .

Theorem 2.15 : Let X be a T2 - space .A subset A of X is compactly r- closed if and only if

A is r- closed .

Remark 2.16 : Let X be a compact , T2 - space and A  X . Then :

(i) A is closed  if and only if A is r- closed .

(ii) A is compact if and only if A is r- compact .

Definition 2.17 [6]: Let X and Y be spaces . We say that the mapping ƒ : X → Y is a

compact mapping if the inverse image of each compact set in Y , is an compact set in X .

Definition 2.18 : Let X and Y be spaces . We say that the mapping ƒ : X → Y is a st- r-

compact mapping if the inverse image of each r- compact set in Y , is an r- compact set in

X .

Examples 2.19 :

(i) The identity mapping is st- r- compact .

(ii)Any mapping from a finite topological space into any topological space is st- r- compact .

Proposition 2.20 : Let X and Y be spaces , and ƒ : X → Y be a st- r- compact , r- irresolute ,

mapping . If T is an r- clopen subset of Y , then ƒT : ƒ-1(T) → T is a st- r- compact mapping .

Proof : Let K be an r- compact subset of T . Since T is an r- open set in Y, then by

Proposition (2.11) , K is an r- compact set in Y . Since  ƒ is a st- r- compact mapping , then

ƒ-1(K) is r-compact in X .

Now , since T is an r- closed set in Y , and ƒ is an r- irresolute  mapping , then ƒ-1(T) is an

r- closed set in X , thus by Proposition (2.10) , ƒ-1(T)∩ƒ-1(K) is an r- compact set . But

ƒ
-1
T (K) = ƒ-1(T)∩ƒ-1(K) , then ƒ

-1
T (K) is an r- compact set in  ƒ-1(T) . Therefore is a st- r-

compact mapping .

Proposition 2.21 : Let X , Y and Z be spaces , and ƒ : X → Y , g :Y → Z  be  mappings .

Then :

(i) If ƒ and g are st- r- compact mapping , then goƒ : X → Z is a st-r- compact mapping .

(ii) If goƒ is a st- r- compact mapping and ƒ is r- irresolute , onto , then g is st- r- compact .
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(iii) If goƒ is a st- r- compact mapping and g is r- irresolute , one to one , then ƒ is st- r-

compact .

Proof :

(i) Let K be an r- compact set in Z . Then g-1(K) is an r- compact set in Y , and then

ƒ-1(g-1(K)) = (goƒ)-1(K) is an r- compact set in X . Hence goƒ : X → Z is a st- r- compact

mapping .

(ii) Let K be an r- compact set in Z . Then (goƒ)-1(K) is an r- compact  set in X , and then

ƒ((goƒ)-1)(K) is r- compact in Y . Now , since ƒ is onto , then     ƒ((goƒ)-1)(K) = g-1(K) ,

hence g-1(K) is an r- compact set in Y . Therefore g is a st- r- compact mapping .

(iii) Let K be an r- compact set in Y . Since g is an r- irresolute , then g(K) is an r- compact

set in Z , thus (goƒ)-1(g(K)) is an r- compact set in X . Since g is one to one , then

(goƒ)-1(g(K)) = ƒ-1(K) , hence ƒ-1(K) is an r- compact set in X . Thus ƒ is a st- r- compact

mapping .

Proposition 2.22 : For any r- closed subset F of a space X , the inclusion mapping

iF : F → X  is a st- r-compact mapping .

Proof : Let K be an r- compact set in X , then by Proposition (2.10) , F∩K is an r- compact

set in F . But i 1
F
 (K) = F∩K , then i 1

F
 (K) is an r- compact set in F . Therefore the inclusion

mapping iF : F → X is st- r- compact .

Proposition 2.23 : Let X and Y be spaces , and ƒ : X → Y be a st- r- compact mapping . If F

is an r- closed subset of X , then ƒ|F : F→ X  is a st- r- compact mapping .

Proof : Since F is an r- closed subset of X , then by Proposition (2.22) , the inclusion

iF : F → X is a st- r- compact mapping . But ƒ|F ≡ ƒoiF , then by Proposition (2.21) , ƒ|F is a st-

r- compact mapping .

Definition 2.24 , [4] : Let X and Y be spaces , A mapping ƒ : X → Y is called a coercive if

for every compact set  J  Y , there exists a compact set K  X such that ƒ(X \ K)  Y \ J .

Definition 2.25 : Let X and Y be spaces , the mapping ƒ : X → Y is called a st- r- coercive

if for every r- compact set J  Y , there exists an r- compact set   K  X ,  such that

ƒ(X \ K)  Y \ J .

Examples 2.26 :

(i) The identity mapping on any space is st- r- coercive .

(ii) If ƒ : (X,T) → (Y, τ ) is a mapping , such that X is r- compact space , then ƒ is st- r-

coercive .
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Proposition 2.27 : Every st- r- compact mapping is a st- r- coercive mapping .

Proof : Let J be an r- compact set in Y . Since ƒ is a st- r- compact mapping , then    ƒ-1(J) is

an r- compact set in X . But ƒ(X \ ƒ-1(J))  Y \ J . Hence ƒ : X → Y is a st- r- coercive

mapping .

Proposition 2.28 : Let X and Y be spaces , such that Y is a T2 – space , and ƒ : X → Y is an

r- irresolute mapping . Then ƒ is a st- r- coercive if and only if ƒ is a st- r- compact .

Proof : →) Let J be an r- compact set in Y . To prove that ƒ-1(J) is an r- compact set in X .

Since Y is a T2 – space and ƒ is an r- irresolute mapping , then ƒ-1(J) is an r- closed set in X .

Since ƒ is a st- r- coercive mapping , then there exists an r- compact set K in X , such that

ƒ(X \ K)  Y \ J . Then ƒ( K
c )  J

c , therefore   ƒ-1(J)  K . Thus by Proposition (2.10) ,

ƒ-1(J) is an r- compact set in X . Hence ƒ : X → Y is a st- r- compact mapping .

←) By Proposition (2.25) .

Proposition 2.29 : Let X , Y and Z be spaces . If ƒ : X → Y , g : Y → Z are st- r- coercive

mapping , then goƒ : X → Z is a st- r- coercive mapping .

Proof : Let J be an r- compact set in Z . Since g : Y → Z is a st- r- coercive   mapping , then

there exists an r- compact set K in Y, such that g(Y \ K)  Z \ J .

Since ƒ : X → Y is a st- r- coercive mapping , then there exists an r- compact set H in X ,

such that ƒ(X \ H)  Y \ K g(ƒ(X \ H)  g(Y \ K)  Z \ J (goƒ)(X \ H)  Z \ J .

Hence goƒ is a st- r- coercive mapping .

Proposition 2.30 : Let X and Y be spaces , and ƒ : X → Y be a st- r- coercive  mapping . If F

is an r- closed subset of X , then the restriction mapping ƒ|F : F → Y is a st- r- coercive

mapping .

Proof : Since F is an r- closed subset of X , then by Proposition (2.22) , and Proposition

(2.27) , the inclusion mapping iF : F → X is a st- r-coercive mapping . But ƒ|F ≡ ƒoiF , then by

Proposition (2.21) , ƒ|F is a st- r- coercive mapping .

3- Strongly Regular Proper Mapping :
Definition 3.1 , [1] : Let X and Y be spaces , and ƒ : X → Y be a mapping . We say that ƒ is

a proper mapping if :

(i) ƒ is continuous .

(ii) ƒ×IZ : X×Z → Y×Z is closed , for every space Z .

Definition 3.2 : Let X and Y be spaces , and ƒ : X → Y be a mapping . We say that ƒ is a

strongly regular proper (st-r- proper) mapping if :

(i) ƒ is continuous .
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(ii) ƒ×IZ : X×Z → Y×Z is st- r- closed , for every space Z .

Example 3.3 : Let X = {a, b} , Y = {x, y} be sets and T = {Ø, X, {a}, {b}} , τ = {Ø, Y, {x},

{y}} be topologies on X and Y respectively . The mapping ƒ : X → Y which is defined by :

ƒ(a) = ƒ(b) = x is st- r- proper .

Remarks 3.4 :

(i) Every st- r- proper mapping is st- r- closed .

(ii) Every st- r- homeomorphism is st- r- proper .

The converse of Remark (3.4.i) , is not true in general as the following example shows :

Example 3.5 : Let ƒ : (R , U) → (R , U) be the mapping which is defined by ƒ(x) = 0 , for

every x  R . Notice that ƒ is a st- r- closed mapping but ƒ is not st- r- proper mapping , since

for the usual space (R , U) the mapping  ƒ×IZ : R×R → R×R , such that (ƒ×IR)(x,y) = (0,y) ,

for every (x,y)  R is not st- r- closed mapping .

The converse of Remarks (3.4.ii) , is not true in general as the following example shows :

Example 3.6 : Let X = {a, b, c} , Y = {x, y} be sets and T = {Ø, X, {a}, {a, b}} , τ = {Ø, Y,

{x}} be topologies on X and Y respectively . Let ƒ : X → Y be a mapping which is defined

by : ƒ(a) = ƒ(b) = x , ƒ(c) = y . Notice that ƒ is a st- r- proper mapping , but ƒ is not one to

one mapping , therefore ƒ is not st- r- homeomorphism .

Proposition 3.7 : Let X and Y be spaces , and ƒ : X → Y be a st- r- proper mapping . If T is a

clopen subset of Y , then   ƒT : ƒ-1(T) → T is a st- r- proper mapping .

Proof : Since ƒ : X → Y is a continuous mapping , then ƒT is a continuous mapping . To

prove that ƒT×IZ : ƒ-1(T)×Z → T×Z is a st- r- closed mapping , for every space Z . Notice that

ƒT ×IZ ≡ (ƒ×IZ)T×Z , where ƒ×IZ is a st- r- closed mapping , since T is a clopen subset of Y,

then by Proposition (1.12) , T×Z is a clopen subset of Y×Z , thus by Proposition (1.21) ,

(ƒ×IZ)T×Z ≡ (ƒT×IZ) is a st- r- closed mapping , hence ƒT : ƒ-1(T) → T is a st- r- proper

mapping .

Proposition 3.8 : Let X and Y be spaces , and ƒ : X → Y be a st- r- proper mapping . If Y is

a T2- space , then ƒ{y} : ƒ-1({y}) → {y} is a st- r- proper mapping , for all y  Y .

Proof : Since ƒ : X → Y is a continuous mapping , then ƒ{y} is a continuous mapping . To

prove that ƒ{y}×IZ : ƒ-1({y})×Z → {y}×Z is a st- r- closed mapping , for every space Z . Let

F  ƒ-1({y})×Z , then : )(F)I(ƒ Z{y}
r
 )(F)ZIƒ()Z{y}(  

r
 Z{y}

r
 )(F)ZI(ƒ

r
.

Since Y is a T2- space , then by Proposition (2.2) , {y} is an r- closed set , for all y  Y ,

so {y}×Z is an r- closed in Y×Z , then Z{y}
r

= {y}×Z . Since ƒ×IZ : X×Z → Y×Z  is a st- r-
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closed mapping and F  ƒ-1({y})×Z  X×Z , then by Proposition (1.20) ,

)(F)ZI(ƒ
r
 (ƒ×IZ)( F

r ) . Thus )(F)I(ƒ Z{y}
r
 {y}×Z∩(ƒ×IZ)( F

r ) .

Since (ƒ{y}×IZ)( F
r ) = (ƒ×IZ){y}×Z( F

r ) = ({y}×Z)∩(ƒ×IZ)( F
r ) , then

)(F)I(ƒ Z{y}
r
 (ƒ{y}×IZ)( F

r ) , therefore by Proposition (1.20) , ƒ{y}×IZ is a st- r- closed

mapping . Hence ƒ{y} : ƒ-1({y}) → {y} is a st- r- proper mapping .

Theorem 3.9 : Let ƒ : X → P = {w} be a mapping on a space X . If ƒ is a st- r- proper

mapping , then X is an r- compact space , where w is any point which does not belong to X .

Proof : To prove that X is an r- compact space . Let (d)dD be a net in X , and let

X
'

= X{w} . Consider : (x) = {U  X
'
: x  U} , x  X .

(w) = {M{w}| M  X and (d) is eventually in M} .

Clearly that for each x  X, the family (x) satisfies the conditions of Proposition (1.14) ,

and therefore we can define a topology on X
'

by : T
'
= {U  X

'
|  x  U  U  (x)} ,

such that the family {(x)}xX' is the neighborhood system of the space ( X
'

, T
'
) .

Now , suppose w  X
r

with respect to T
'
. Let U T

'r
, w  U , then U is an r- open set ,

and then U is an - open set , then there exists an open set V  T
'

such that

V  U  V

V , hence w V , thus for all open set U1T

'
, such that w  U1 ,

U1∩V ≠ Ø . Since the set U1 = X{w}  T
'

and w  U1 , then U1∩V ≠ Ø →

(X{w})∩V ≠ Ø → (X∩V)  ({w}∩V) ≠ Ø .

Claim X∩V ≠ Ø , if X∩V = Ø , then {w}∩V ≠ Ø → w  V  T
'
→ V  (w) , thus

V = M2{w} , where M2  X  and a net (d) is eventually in M2 . But X∩V = Ø , then

X∩(M2{w}) = Ø , hence X∩M2 = Ø , and this is a  contradiction .Thus X∩V ≠ Ø →

X∩U ≠ Ø (V  U) , thus w X
r

. Now , let ∆ be the diagonal set of X×X in T , and let

F = Δ ,
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consider the commutative diagram :

Where h : {w}× X
'

→ X
'

is the homeomorphism and Pr2 : X× X
'

→ X
'

is the projection

map . Since ƒ : X → {w} is a st- r- proper mapping , then ƒ×IZ : X× X
'

→ {w}× X
'

is a st- r-

closed mapping .

Claim X  Pr2(F) , if x  X → (x,x)  ∆  
r

= F → x = Pr2(x,x)  Pr2(F) →

X  Pr2(F) . Since w  X
r
 (F)pr2

r
= Pr2(F) , then w  Pr2(F) . Therefore there exists a

point x  X , such that (x,w)  F = 
r

. Let U be an r- open set in X contains x and V be

any subset of X, such that a net (d) is eventually in V .Thus V{w}  (w) , w  V{w}.

Thus by Proposition (1.12) , U×(V{w}) is an r- open set in X× X
'

containing (x,w) , since

(x,w)  
r

, then U×(V{w})∩∆ ≠ Ø → U∩V ≠ Ø . So for all r- open set U in X

containing x and for all subset V of X , such that a net (d) is eventually in V ,   U∩V ≠ Ø .

Since (d) is eventually in Ado = V  X , then Ado∩U ≠ Ø , for all do  D and

all r- open set contains x . Thus x  doA
r

,  do D , therefore Proposition (1.31) , d
r

x .

Hence by Proposition (2.9) , X is an r- compact space .

Theorem 3.10 : Let X and Y be spaces , and ƒ : X → Y be a continuous mapping . If Y is a

T2- space , then the following statements are equivalent :

(i) ƒ is a st- r- proper mapping .

(ii) ƒ is a st- r- closed mapping and ƒ-1({y}) is r- compact for each   y  Y .

(iii) If (d)dD is a net in X and y  Y is an r- cluster point of ƒ(d) , then there is an r- cluster

point x  X of (d)dD , such that ƒ(x) = y .

X× X
' ƒ×I X

'

{w}× X
'

X
'

Pr2 h()
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Proof :

(i→ii). Let ƒ : X → Y be a st- r- proper mapping , then ƒ×IZ : X×Z → Y×Z is a st- r- closed

for every space Z . Let Z = {t} , then  X×Z = X×{t}  X and Y×Z = Y×{t}  Y ,  and we can

replace ƒ×IZ by ƒ , thus ƒ is a st- r- closed mapping . Now , let y  Y , then by Proposition

(3.8) , the mapping ƒ{y} : ƒ-1({y}) → {y} is a st- r- proper . Thus by Theorem (3.9) , ƒ-1({y})

is an r- compact set .

(ii→iii). Let (d)dD be a net in X and yY be an r- cluster point of a net ƒ(d) in Y . Assume

that ƒ-1(y) ≠ Ø , if ƒ-1(y) = Ø , then y  ƒ(x) → y  (ƒ(X))
c

, since X is an r- closed set in X

and ƒ is a st- r- closed mapping , then ƒ(X) is an r- closed set in Y . Thus (ƒ(X))
c

is an r-

open set in Y . Therefore (ƒ(d)) is frequently in (ƒ(X))
c

.

But ƒ(d)  ƒ(X) ,  d D , then ƒ(X)∩ (ƒ(X))
c

≠ Ø , and this is a contradiction . Thus

ƒ-1(y) ≠ Ø , therefore  x  X , such that ƒ(x) = y .

Now , suppose that the statement (iii) , is not true , that  means , for all x  ƒ-1(y) there

exists an r- open set UX in X contains x , such that (d) is not frequently in UX . Notice that

ƒ-1(y) = 
(y)ƒ 1x

{x}


. Therefore the family {UX | x  ƒ-1(y)} is an r-open cover for ƒ-1(y) . But

ƒ-1(y) is an r- compact set , thus there exists  x1, x2, . . . , xn  ƒ-1(y) , such that

ƒ-1(y)  Ux1Ux2 . . . Uxn , then ƒ-1(y)  ]
n

1i
Uxi[

c



= Ø → ƒ-1(y)  [ 
n

1i
U

c
xi

] = Ø . But

(xi)iΛ is not frequently in 
n

1i
Uxi

, but 
n

1i
Uxi

is an r- open set in X , then 
n

1i
U

c
xi

is an r-

closed set in X . Thus ƒ( 
n

1i
U

c
xi

) is an r- closed set in Y .

Claim y  ƒ( 
n

1i
U

c
xi

) , if y  ƒ( 
n

1i
U

c
xi

) , then there exists x  
n

1i
U

c
xi

, such that

ƒ(x) = y , thus x  
n

1i
Uxi

, but  x  ƒ-1(y) , therefore ƒ-1(y) is not a subset of 
n

1i
Uxi

, and

this is a contradiction .  Hence there is an r- open set A in Y , such that y  A and

Aƒ( 
n

1i
U

c
xi

) = Ø → ƒ-1(A)ƒ-1(ƒ( 
n

1i
U

c
xi

)) = Ø → ƒ-1(A) [ 
n

1i
U

c
xi

] = Ø →
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ƒ-1(A)  
n

1i
Uxi

. But (ƒ(d)) is frequently in A , then (d) is frequently in ƒ-1(A) , and then

(d) is  frequently in 
n

1i
Uxi

.This is contradiction , and this is complete the proof .

(iii → i). Let Z be any space . To prove that ƒ : X → Y is a st- r- proper mapping , i.e , to

prove that ƒ×IZ : X×Z → Y×Z is a st- r- closed mapping . Let F be an r- closed set in X×Z .

To prove that (ƒ×IZ)(F) is an r- closed set in Y×Z . Let (y,z)  )(F)I(ƒ Z
r

, then by

Proposition (1.30) , there exists a net {(yd , zd)}dD in (ƒ×IZ)(F) such that (yd , zd) 
r

(y,z) ,

where (yd , zd) = ((ƒ×IZ)(xd , yd)) , and {(xd , yd)}dD is a net in F . Thus

(ƒ(xd) , IZ(zd)) 
r

(y,z) , so ƒ(xd) 
r

y  and zd 
r

z . Then  x  X , such that xd 
r

x and

ƒ(x) = y → (xd , zd) 
r

(x,z) and {(xd , zd)}dD is a net in F , thus (x,y)  F
r . Since F = F

r ,

then (x,y)F → (y,z) = ((ƒ×IZ)(x,y)) → (y,z)  (ƒ×IZ)(F) , and then )(F)I(ƒ Z
r

= (ƒ×IZ)(F) ,

thus (ƒ×IZ)(F) is an r- closed set in Y×Z . Hence ƒ×IZ : X×Z → Y×Z is a st- r- closed

mapping . Therefore ƒ : X → Y is a st- r- proper mapping .

Proposition 3.11 : If X is an r- compact space , then the mapping ƒ : X → P = {w} on a

space X is st- r- proper , where w is any point which does not belongs to X .

Proof : Let X be an r- compact space . Since P is a single point , then ƒ is a continuous

mapping . To prove that ƒ : X → P = {w} is a st- r- proper mapping :

(i) Since ƒ-1(P) = X , then ƒ-1(P) is an r- compact set .

(ii) Let F is an r- closed subset of X , then either : ƒ(F) = Ø or ƒ(F) = {w} . Then ƒ is st- r-

closed mapping , hence by Theorem (3.10) , ƒ is a st- r- proper mapping .

Proposition 3.12 : Let X , Y and Z be spaces . If ƒ : X → Y and g : Y → Z are st-r- proper

maps , then goƒ : X → Z is a st- r- proper mapping .

Proof : Since ƒ and g are st- r- proper maps , then ƒ×IW and g×IW are st-r- closed , for every

space W , then by Proposition (1.22) , (g×IW)o(ƒ×IW) is st- r- closed mapping . But

(g×IW)o(ƒ×IW) = (goƒ)×IW , then (goƒ)×IW is st- r- closed , and since goƒ is continuous .

Hence goƒ is an st- r- proper mapping .

Proposition 3.13 : Let X , Y and Z be spaces , and ƒ : X → Y , g : Y → Z be continuous

maps , such that goƒ : X → Z is a st- r- proper mapping . If g is one to one , r- irresolute ,

then ƒ is a st- r- proper mapping .
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Proof : Let W be any space . To prove that ƒ×IW : X×W → Y×W is a st- r- closed mapping .

Since goƒ : X → Z is a st- r- proper , then (goƒ)×IW : X×W → Z×W is a st- r- closed

mapping , so we can write (goƒ)×IW = (g×IW)o(ƒ×IW) . Since g×IW is one to one , r-

irresolute mapping , then by Proposition (1.22) , ƒ×IW is a st- r- closed . Hence ƒ : X → Y is

a st- r- proper mapping .

Proposition 3.14 : Let ƒ1 : X1 → Y1 and ƒ2 : X2 → Y2 be maps . Then

ƒ1×ƒ2 : X1×X2 → Y1×Y2 is a st- r- proper mapping if and only if  ƒ1 and ƒ2 are st- r- proper .

Proof : →) To prove that ƒ2 is a st- r- proper . Since ƒ1×ƒ2 is continuous , then both ƒ1 and ƒ2

are continuous . To prove that ƒ2×IZ : X2×Z → Y2×Z is st- r- closed , for every space Z . Let

F be an r- closed subset of X2×Z , since X1 is an r- closed set in X1 , then by Proposition

(1.12) , X1×F is an r- closed set in X1×X2×Z . Since ƒ1×ƒ2 is st- r- proper , then

(ƒ1×ƒ2×IZ)(X1×F) is an r- closed set in Y1×Y2×Z .But (ƒ1×ƒ2×IZ)(X1×F) = ƒ1(X1)×(ƒ2×IZ)(F) ,

thus ƒ1(X1)×(ƒ2×IZ)(F) is an r- closed set in Y1×Y2×Z , then by Proposition (1.12) , (ƒ2×IZ)(F)

is an r- closed set in Y2×Z , then ƒ2×IZ : X2×Z → Y2×Z is a st- r- closed mapping . Therefore

ƒ2 : X2 → Y2 is a st- r- proper mapping .

Similarly , we can prove that ƒ1 : X1 → Y1 is a st- r- proper mapping .

←) To prove that ƒ1×ƒ2 : X1×X2 → Y1×Y2 is a st- r- proper . Since ƒ1 and ƒ2 are continuous ,

then ƒ1×ƒ2 is continuous mapping . Let Z be any space . Notice that :

ƒ1×ƒ2×IZ = (Iy1×ƒ2×IZ)o(ƒ1×Ix2×IZ) , since ƒ1 and ƒ2 are st- r- proper  maps , then (Iy1×ƒ2×IZ)

and (ƒ1×Ix2×IZ) = ƒ1×Ix2×Z are st- r- closed maps . Therefore by Proposition (1.22) , the

mapping ƒ1×ƒ2×IZ is a st- r- closed . Hence ƒ1×ƒ2 is a st- r- proper mapping .

Proposition 3.15 : Let X be an r- compact space , and Y any space , then the projection

Pr2 : X×Y → Y is a st- r- proper mapping .

Proof : Consider the commutative diagram :

Where h : {p}×Y → Y is the homeomorphism of {p}×Y onto Y and Pr2 : X×Y → Y is the

projection of X×Y into Y . Since X an is r- compact space , then by Proposition (3.11) ,

ƒ : X → {p} is a st- r- proper and Iy : Y → Y is a st- r- proper , then ƒ×Iy is a st- r- proper .

X×Y
ƒ×IY

{p}×Y

Y

Pr2 h()
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Therefore  ho(ƒ×Iy) is a st- r- proper mapping . But Pr2 = ho(ƒ×Iy) , then Pr2 is a st- r- proper

mapping .

Proposition 3.16 : Let X and Y be spaces , and ƒ : X → Y be a st- r- proper mapping . If F is

a clopen subset of X , then the restriction map ƒ│F : F → Y  is a st- r- proper  mapping .

Proof : To prove that ƒ│F×IZ : F×Z → Y×Z is a st- r- closed mapping for every space   Z .

Since F is an clopen subset of  X , then by Proposition (1.12) , F×Z is a clopen subset of

X×Z . Since ƒ×IZ is a st- r- closed mapping , then by Proposition (1.21) , (ƒ×IZ)F×Z is a st- r-

closed mapping . But ƒ│F×IZ = (ƒ×IZ)F×Z , thus ƒ│F×IZ is a st- r- closed mapping . Since ƒ│F is

continuous , hence ƒ│F : F → Y is a st- r- proper mapping .

Proposition 3.17 : Let X and Y be spaces . If ƒ : X → Y is a st- r- proper mapping , then ƒ is

a st- r- compact mapping .

Proof : Let A be an r- compact subset of Y . To prove that ƒ-1(A) is an r- compact set in X ,

let (d)dD be a net in ƒ-1(A) , then ƒ(d) is a net in A . Since A is an r- compact set in Y ,

then by Proposition (2.9) , there exists y  A , such that y is an r- cluster point of  ƒ(d) .

Since ƒ is st- r- proper , then by Theorem (3.10) , there exists x  X , such that x is an r-

cluster point of (d) , and ƒ(x) = y . Thus every net in ƒ-1(A) has r- cluster point in itself , then

by Proposition (2.9) , ƒ-1(A) is an r- compact set in X .Therefore ƒ : X → Y is a st- r-

compact mapping .

The converse of Proposition (3.17) , is not true in general as the following example

shows :

Example 3.18 : Let X = {a, b, c, d} , Y = {x, y, z} be sets and T = {Ø, X, {a, b}, {c, d}} ,

τ = {Ø, Y, {z}} be topologies on X and Y respectively . Let ƒ : X → Y be a mapping which

is defined by : ƒ(a) = ƒ(b) = ƒ(c) = y , ƒ(d) = z .

Notice that ƒ is a st- r- compact mapping , but ƒ is not st- r- proper mapping . Since {c,d}

is an r- closed set in X , but ƒ({c,d}) = {y,z} which is not r- closed set in Y , then ƒ is not st-

r- closed mapping .

Theorem 3.19 : Let X and Y be spaces , such that Y is a T2 - space , and ƒ : X → Y is a

continuous , r- irresolute mapping . Then ƒ is a st-r- proper mapping if and only if ƒ is a st- r-

compact mapping .

Proof : →) By Proposition (3.17) .

←) To prove that ƒ is a st- r- proper mapping :

(i) Let F be an r- closed subset of X . To prove that ƒ(F) is an r- closed set in Y , let K be an

r- compact set in Y , then ƒ-1(K) is an r- compact set in X , then by Theorem (2.10) ,
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F∩ƒ-1(K) is r- compact in X . Since ƒ is r- irresolute , then ƒ(F∩ƒ-1(K)) is r- compact set in

Y . But ƒ(F∩ƒ-1(K)) = ƒ(F)∩K , then ƒ(F)∩K is r- compact , thus ƒ(F) is compactly r- closed

set in Y . Since Y is T2- space , then by Theorem (2.15) , ƒ(F) is r- closed set in Y. Hence

ƒ is a st- r- closed mapping .

(ii) Let yY , then {y} is r- compact in Y . Since ƒ is a st- r- compact mapping , then

ƒ-1({y}) is r- compact in X . Therefore by (i) , (ii) and using  Theorem (3.10) , ƒ is a st- r-

proper mapping .

Theorem 3.20 : Let X and Y be spaces , such that Y is a T2 - space and ƒ : X → Y is a

continuous , r- irresolute , mapping . Then the following statements are    equivalent :

(i) ƒ is a st- r- coercive mapping .

(ii) ƒ is a st- r- compact mapping .

(iii) ƒ is a st- r- proper mapping .

Proof :

(i → ii). By Proposition (2.28) .

(ii → iii). By Theorem (3.19) .

(iii → i). Let J be an r- compact set in Y . Since ƒ is a st- r- proper , then by Proposition

(3.17) , ƒ is a st- r- compact mapping , then ƒ-1(J) is an r- compact set in X . Thus

ƒ(X \ ƒ-1(J))  Y \ J . Hence ƒ : X → Y is a st- r- coercive mapping .
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