Page 161-184

Regular Proper Mappings

Habeeb Kareem Abdullah Fadhila Kadhum Radhy
Department of Mathematics College of Education for Girls
University of Kufa

Abstract

The main goal of this work is to create a general type of proper mappings namely, regular proper mappings and we introduce the definition of a new type of compact and coercive mappings and give some properties and some equivalent statements of these concepts as well as explain the relationship among them .

Introduction

One of the very important concepts in topology is the concept of mapping . There are several types of mapping , in this work we study an important class of mappings , namely , regular proper mapping .

Proper mapping was introduced by Bourbaki in [1].

Let A be a subset of topological space X . We denote to the closure and interior of A by \overline{A} and \overline{A}° respectively .

James Dugundji in [2] defined the regular open set as , a subset A of a space X such that called regular open set if A = A. Stephen Willard in [8] defined the regular open set similarly with Dugundji's definition .

This work consists of three sections.

Section one includes the fundamental concepts in general topology , and the proves of some related results which are needed in the next section .

Section two contains the definitions of regular compact mapping and regular coercive mapping . So it will introduce the relationship among them and some results about this subjects are proved .

Section three introduces the definition of regular proper mapping and some of its related results are proved .

1- Basic concepts

Definition $\underline{1}$, $\underline{1}$, $\underline{[2]}$: A subset B of a space X is called **regular open** (**r- open**) set if B = B . The complement of regular open set is defined to be a **regular closed** (**r- closed**) set .

Proposition 1.2, [2]: A subset B of a space X is r- closed if and only if B = B

Its clearly that every r- open set is an open set and every r- closed set is closed set, but the converse is not true in general as the following example shows:

Example 1.3: Let $X = \{a, b, c, d\}$ be a set and $T = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c, d\}\}$ be a topology on X. Notice that $\{a, b\}$ is an open set in X, but its not ropen set and $\{b\}$ is a closed set in X, but its not r-closed set.

Corollary 1.4:

- (i) A subset B of a space X is clopen (open and closed) if and only if B is r-clopen (r- open and r- closed).
- (ii) If A is an r- closed set in X and B is a clopen set in X , then $A \cap B$ is r-closed set in B . **Proposition 1.5**: Let $A \subseteq Y \subseteq X$. Then :
- (i) If A is an r- open set in Y and Y is an r- open set in X, then A is an r- open set in X.
- (ii) If A is an r- closed set in Y and Y is an r- closed set in X, then A is an r-closed set in X.

Definition 1.6: Let A be a subset of a space X . A point $x \in A$ is called **r-interior** point of A if there exists an r- open set U in X such that $x \in U \subset A$.

The set of all r- interior points of A is called **r- interior** set of A and its denoted by $_{\rm A}{}^{\circ r}$.

Proposition 1.7: Let (X, T) be a space and $A \subseteq X$. Then:

- (i) $A^{\circ r} \subseteq A^{\circ}$.
- (ii) $(A^{\circ r})^{\circ} = (A^{\circ})^{\circ r}$.
- (iii) A is r- open if and only if $A^{\circ r} = A$.

Definition 1.8 : Let A be a subset of a space X . A point x in X is said to be **r-limit** point of A if for each r- open set U contains x implies that $U \cap A \setminus \{x\} \neq \emptyset$

The set of all r- limit points of A is called **r- derived** set of A and its denoted by $_{A}^{\ \ r}$.

Definition 1.9 : Let X be a space and B \subseteq X . The intersection of all r- closed sets containing B is called the **r- closure** of B and denotes by $_{\Delta}^{-r}$.

Proposition 1.10 : Let X be a space and A, B \subseteq X. Then :

- (i) $\frac{-r}{A}$ is an r-closed set.
- (ii) $A \subseteq A$.
- (iii) A is r-closed if and only if A = A.
- (iv) $x \in A$ if and only if $A \cap U \neq \theta$, for any r- open set U containing x.

Proposition 1.11: Let X and Y be two spaces, and $A \subseteq X$, $B \subseteq Y$. Then:

- (i) A , B are r- open subset of X and Y respectively if and only if $A \times B$ is r-open in $X \times Y$.
- (ii) A , B are r- closed subsets of X and Y respectively if and only if $A \times B$ is r-closed in $X \times Y$.
- (iii) A , B are clopen subsets of X and Y respectively if and only if $A \times B$ is clopen in $X \times Y$.
- (iv) A , B are r- clopen subsets of X and Y respectively if and only if $A \times B$ is r-clopen in $X \times Y$.

Definition 1.12, [3]: Let X be a space and B be any subset of X. A **neighborhood of B** is any subset of X which containing an open set containing B.

The neighborhoods of a subset $\{x\}$, consisting of a single point are also called **neighborhood of a point x**.

The collection of all neighborhoods of the subset B is denoted by N(B). In particular the collection of all neighborhoods of x is denoted by N(x).

Proposition 1.13, [1]: Let X be a set . If to each element x of X, there corresponds a collection $\beta(x)$ of subsets of X, such that the properties :

- (i) Every subset of X which contains a set belongs to $\beta(x)$, itself belongs to $\beta(x)$.
- (ii) Every finite intersection of sets of $\beta(x)$ belongs to $\beta(x)$.
- (iii) The element x is in every set of $\beta(x)$.
- (iv) If V belongs to $\beta(x)$, then there is a set W belonging to $\beta(x)$ such that for each $y\in W$, V belongs to $\beta(y).$

Then there is a unique topological structure on X such that , for each $x \in X$, $\beta(x)$ is the collection of neighborhoods of x in this topology .

Definition 1.14: Let X be a space and $B \subseteq X$. An **r- neighborhood of B** is any subset of X which contains an r- open set containing B. The r-

neighborhoods of a subset $\{x\}$ consisting of a single point are also called **r**-neighborhoods of the point x.

Let us denote the collection of all r- neighborhoods of the subset B of X by Nr(B). In particular, we denote the collection of all r- neighborhoods of x by Nr(x).

Definition 1.15, [1]: Let $f: X \to Y$ be a mapping of spaces . Then:

- (i) f is called continuous mapping if $f^{-1}(A)$ is an open set in X for every open set A in Y.
- (ii) f is called open mapping if f(A) is an open set in Y for every open set A in X.
- (iii) f is called closed mapping if f(A) is a closed set in Y for every closed set A in X .

Definition 1.16: A mapping $f: X \to Y$ is called r- irresolute if $f^{-1}(A)$ is an r-open set in X for every r- open set A in Y.

Definition 1.17, [1]: Let X and Y be spaces. Then the mapping $f: X \to Y$ is called **homeomorphism** if

- (i) f is bijective.
- (ii) f is continuous.
- (iii) f is open (or closed).

Also , X is called **homeomorphic** to the space Y (written $X \cong Y$).

Definition 1.18

- (i) A mapping $f: X \to Y$ is called an **r- open mapping** if the image of each open subset of X is an r- open set in Y.
- (ii) A mapping $f: X \to Y$ is called an **r-closed mapping** if the image of each closed subset of X is an r-closed set in Y.

Remark 1.19: Every r- open (r- closed) mapping is open (closed) mapping.

The converse of Remark (1.19), is not true in general as the following examples show:

Example 1.20 : Let $X = \{a, b, c\}$, $Y = \{x, y, z\}$ and let $T = \{\theta, X, \{a\}, \{a, b\}\}$, $\tau = \{\theta, Y, \{x\}\}$ be topologies on X and Y respectively . Let $f : X \to Y$ be a mapping which is defined by : f(a) = f(b) = x, f(c) = y. Notice that f is an open mapping, but f is not r- open .

Example 1.21 : Let $X = \{a, b, c, d\}$, $Y = \{x, y, z\}$ and let $T = \{\theta, X, \{a\}, \{b, c\}, \{a, b, c\}\}$, $\tau = \{\theta, Y, \{x\}, \{x, z\}\}$ are topologies on X and Y respectively. Let $f: X \to Y$ be a mapping which is defined by: f(a) = f(c) = z, f(b) = x, f(d) = y. Notice that f is closed mapping, but f is not r-closed mapping.

Proposition 1.22: A mapping $f: X \to Y$ is r-closed if and only if $\overline{f(A)}^r \subseteq f(\overline{A})$, $\forall A \subseteq X$.

Proof: \rightarrow) Let $f: X \rightarrow Y$ be an r- closed mapping and $A \subseteq X$. Since \overline{A} is a closed set in X, then $f(\overline{A})$ is an r- closed subset of Y, and since $A \subseteq \overline{A}$ then $f(A) \subseteq f(\overline{A})$. Thus $\overline{f(A)}^r \subseteq \overline{f(A)}^r = f(\overline{A}), \text{ hence } \overline{f(A)}^r \subseteq f(\overline{A}).$ \leftarrow) Let $\overline{f(A)}^r \subseteq f(\overline{A})$, for all $A \subseteq X$. Let F be a closed subset of X, i.e, $F = \overline{F}$, thus by hypothesis $\overline{f(F)}^r \subseteq f(F)$. But $f(F) \subseteq \overline{f(F)}^r$, then $f(F) = \overline{f(F)}^r$. Hence f(F) is an r- closed set in Y, thus $f: X \rightarrow Y$ is an r- closed mapping.

Proposition 1.23 : Let X and Y be spaces , $f: X \to Y$ be an r- closed mapping of X into Y . Then $f_{\{y\}}: f^{-1}(\{y\}) \to \{y\}$ is r- closed mapping , for each $y \in Y$.

Proof : Let F be a closed subset of $f^{-1}(\{y\})$. Then there is a closed subset F_1 of X , such that $F = F_1 \cap f^{-1}(\{y\})$. Since $f_{\{y\}}(F) = f(F_1) \cap \{y\}$, then either $f_{\{y\}}(F) = \emptyset$ or $f_{\{y\}}(F) = \{y\}$, thus $f_{\{y\}}(F)$ is r- closed in $\{y\}$. Therefore $f_{\{y\}}$ is an r- closed mapping .

Proposition 1.24: Let X and Y be spaces, $f: X \to Y$ be an r-closed mapping of X into Y. Then for each clopen subset T of Y, $f_T: f^{-1}(T) \to T$ is an r-closed mapping.

Proof : Let F be a closed subset of $f^{-1}(T)$. Then there is a closed subset F_1 of X , such that $F = F_1 \cap f^{-1}(T)$. Since $f_T(F) = f(F_1) \cap T$, and $f(F_1)$ is r-closed in Y and T is clopen in Y then by Corollary (1.4), $f(F) \cap T$ is r-closed in T. Thus f_T is an r-closed mapping.

Corollary 1.25: Let $f: X \to Y$ be an r- closed mapping of a space X into a discrete space Y. Then for any subset T of Y, $f_T: f^{-1}(T) \to T$ is an r- closed mapping.

Proposition 1.26: Let X, Y and Z be spaces, $f: X \to Y$ be a closed mapping and $g: Y \to Z$ be an r-closed mapping, then $g \circ f: X \to Z$ is an r-closed mapping.

Proof: Let F be a closed subset of X, then f(F) is closed set in Y. But g is an r-closed mapping, then $g(f(F)) = (g \circ f)(F)$ is an r-closed set in Z. Then $g \circ f : X \to Y$ is an r-closed mapping.

Corollary 1.27: Let X, Y and Z be spaces. If $f: X \to Y$, and $g: Y \to Z$ are r-closed mapping, then $g \circ f: X \to Z$ is an r-closed mapping.

Proof: Since f is an r-closed mapping, then f is a closed mapping, thus by Proposition (1.26), go f is an r-closed mapping.

Proposition 1.28 : Let $f: X \to Y$ be an r- closed mapping . If F is a closed subset of X, then the restriction mapping $f_F: F \to Y$ is an r- closed mapping .

Proof: Since F is a closed set in X, then the inclusion mapping $i_F: F \to X$ is a closed. Since f is an r-closed, then by Proposition (1.26), $foi_F: F \to Y$ is an r-closed mapping. But $foi_F \equiv f_{|F|}$, thus the restriction mapping $f_{|F|}: F \to Y$ is an closed mapping.

Proposition 1.29 : A bijective mapping $f: X \to Y$ is r-closed if and only if is r- open .

Proof: \rightarrow) Let $f: X \rightarrow Y$ be a bijective, r-closed mapping and U be an open subset of X_c , thus U is closed. Since f is r-closed then f(U) is r-closed in Y, thus (f(U)) is r-open.

Since f is bijective mapping, then $(f(U^c))^c = f(U)$, hence f(U) is r-open in Y. Therefore f is an r-open mapping.

←) Let $f: X \to Y$ be a bijective, r- open mapping and F be a closed subset of X, thus F is open. Since f is r- open then f(F) is r- open in Y, thus (f(F))

is r-closed. Since f is a bijective mapping, then $(f(F))^c = f(F)$, hence f(F) is an r-closed in Y. Therefore f is an r-closed mapping.

Definition 1.30 : Let X and Y be spaces . Then the mapping $f: X \to Y$ is called **r-homeomorphism** if :

- (i) f is bijective.
- (ii) f is continuous.
- (iii) f is r- open (r- closed).

Remark 1.31: Every r- homeomorphism mapping is homeomorphism.

The converse of Remark (1.31), is not true in general as the following example shows:

Example 1.32 : Let $X = \{a, b, c\}$ be a set and $T = \{\theta, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}$ be a topology on X. Let $f : X \to X$ be the identity mapping. Notice that f is homeomorphism, but its not f-homeomorphism.

Theorem 1.33, [9]: Let X be a space and A be a subset of X, $x \in X$. Then $x \in \overline{A}$ if and only if there is a net in A which converges to x.

Lemma 1.34, **[5]**: If (χ_d) is a net in a space X and for each $d_o \in D$, $A_{do} = \{\chi_d \mid d \geq d_o\}$, then $x \in X$ is a cluster point of (χ_d) if and only if $x \in \overline{A_d}$, for all $d \in D$.

Definition 1. 36: Let $(\chi_d)_{d \in D}$ be a net in a space X, $x \in X$. Then $(\chi_d)_{d \in D}$ is said to have x as **an r-cluster point** [written $\chi_d \propto x$] if $(\chi_d)_{d \in D}$ is frequently in every r-nbd of x.

Proposition 1.37: Let (X,T) be a space and $A\subseteq X$, $x\in X$. Then $x\in \stackrel{-r}{A}$ if and only if there exists a net $(\chi_d)_{d\in D}$ in A and $\chi_d\stackrel{r}{\propto} x$.

 $\begin{array}{lll} \textbf{Proof:} \rightarrow) \text{ Let } x \in \overset{-r}{A}, \text{ then } U \cap A \neq \emptyset \text{ , for every r- open set } U \text{ , } x \in U \text{ .} \\ \text{Notice that} & (Nr(x) \text{ , } \subseteq) \text{ is a directed set , such that for all } U_1 \text{ , } U_2 \in Nr(x) \text{ , } \\ U_1 \geq U_2 \text{ if and only if} & U_1 \subseteq U_2 \text{ . Since for all } U \in Nr(x) \text{ , } U \cap A \neq \emptyset \text{ , } \\ \text{then we can define a net } \chi : Nr(x) \rightarrow X \text{ as follows : } \chi(U) = \chi_U \in U \cap A \text{ , } U \in Nr(x) \text{ . To prove that } \chi_U \overset{r}{\propto} x \text{ . Let } B \in Nr(x) \text{ , thus } B \cap U \in Nr(x) \text{ . Since } B \cap U \subseteq U \text{ , } \\ \text{then } B \cap U \geq U \text{ , } \chi(B \cap U) = \chi_{B \cap U} \in B \cap U \subseteq B \text{ . Hence } \chi_U \overset{r}{\propto} x \text{ .} \\ \end{array}$

 $\leftarrow) \ \ \text{Let} \ (\chi_d)_{d\in D} \ \text{be a net in } A \ , \ \text{such that} \ \chi_d \overset{r}{\propto} x \ , \ \text{and let } U \ \text{be an r- open set },$ $x\in U \ . \ \text{Since} \ \chi_d \overset{r}{\propto} x \ , \ \text{then} \ (\chi_d)_{d\in D} \ \text{is frequently in } U \ . \ \text{Thus} \ U\cap A \neq \theta \ , \ \text{for all}$ $r\text{- open set } U \ , \qquad x\in U \ . \ \text{Hence} \ x\in \overset{-r}{A} \ .$

 $\begin{array}{ll} \textbf{Proposition 1.38:} \ Let \ X \ be \ a \ space \ and \ (\chi_d)_{d \in D} \ be \ a \ net \ in \ X \ , \ for \ each \ d_o \in \\ D, \ such \ that \quad A_{do} = \{\chi_d \mid d \geq d_o\}, \ then \ a \ point \ x \ of \ X \ is \ r\text{- cluster point of } \\ (\chi_d)_{d \in D} \ if \ and \ only \ if \qquad \qquad x \in \overline{A_{do}}^r \ , \ for \ all \ d_o \in D \ . \\ \end{array}$

 $\begin{array}{ll} \textbf{Proof:} \rightarrow) \text{ Let } x \text{ be an } r\text{- cluster point of } (\chi_d)_{d \in D} \text{ and let } N \text{ be an } r\text{- open set} \\ \text{contain } x \text{ , then } (\chi_d)_{d \in D} \text{ is frequently in } N \text{ , thus } A_{do} \cap N \neq \emptyset \text{ , } \forall \ d_o \in D \text{ , then} \\ \text{by Proposition } (1.10) \text{ , } & x \in \overline{A_{do}}^r \text{ .} \\ \leftarrow) \text{ Let } x \in \overline{A_{do}}^r \text{ , } \forall \ d_o \in D \text{ , and suppose that } x \text{ is not } r\text{- cluster point of } \\ (\chi_d)_{d \in D} \text{ , then there exists } r\text{- nbd } N \text{ of } x \text{ , such that } A_{do} \cap N = \emptyset \text{ , } \forall \ d_o \in D \text{ , } \chi_d \\ \not\in D \text{ , } d \geq d_o \text{ d} \geq d_o \text{ , then} & x \not\in \overline{A_{do}}^r \text{ . This is contradiction . Hence } x \\ \text{is } r\text{- cluster point of } (\chi_d)_d \text{ .} \end{array}$

2- Regular compact and regular coercive mappings

Definition 2.1, [6]: A space X is called **Hausdorff** (T_2) if for any two distinct points x, y of X there exists disjoint open subsets U and V of X such that $x \in U$, $y \in V$.

Theorem 2.2, [6]: Each singletion subset of a Hausdorff space is closed. **Definition 2.3**, [7]: A space X is called **compact** if every open cover of X has a finite subcover.

Theorem 2.4, [6]: A space X is compact if and only if every net in X has a cluster point in X.

Theorem 2.5, [7]:

- (i) A closed subset of compact space is compact .
- (ii) In any space, the intersection of a compact set with a closed set is compact.
- (iii) Every compact subset of T₂- space is closed.

Definition 2.6 : A space X is called **r- compact** if every r- open cover of X has a finite subcover .

Proposition 2.7: Every compact space is r- compact space.

The converse of Proposition (2.7), is not true in general as the following example shows:

Example 2.8 : Let $T = \{A \subseteq R \mid Z \subseteq A\} \cup \{\theta\}$, be a topology on R. Notice that the topological space (R,T) is r-compact, but its not compact.

Theorem 2.9:

- (i) An r- closed subset of compact space is r- compact.
- (ii) Every r- compact subset of T₂- space is r- closed.
- (iii) In any space , the intersection of an r- compact set with an r- closed set is r-compact .
- (iv) In a T₂- space, the intersection of two r- compact sets is r- compact.

Theorem 2.10 : A space X is an r- compact if and only if every net in X has r-cluster point in X.

Proposition 2.11 : Let X be a space and Y be an r- open subspace of X , $K \subseteq Y$. Then K is an r- compact set in Y if and only if K is an r- compact set in X .

Proof: \rightarrow) Let K be an r- compact set in Y. To prove that K is an r- compact set in X. Let $\{U\lambda\}\lambda\in\Lambda$ be an r- open cover in X of K, let $V\lambda=U\lambda\cap Y$, $\forall\,\lambda\in\Lambda$. Then $V\lambda$ is r- open in X, $\forall\,\lambda\in\Lambda$. But $V\lambda\subseteq Y$, thus $V\lambda$ is r- open in Y, $\forall\,\lambda\in\Lambda$. Since $K\subseteq\bigcup_{\lambda\in\Lambda}V_\lambda$, then $\{V\lambda\}\lambda\in\Lambda$ is an r- open cover in Y of

K , and by hypothesis this cover has finite subcover { v_{λ_1} , v_{λ_2} , \dots , v_{λ_n} } of K

- , thus the cover $\{U\,\lambda\,\}\,\lambda\in\Lambda$ has a finite subcover of K . Hence K is an r-compact set in X .
- $\leftarrow) \ \text{Let } K \ \text{be an r- compact set in X} \ . \ \text{To prove that K is an r- compact set in Y.}$ Let $\{U\lambda\}\lambda_{\in \Lambda} \ \text{be an r- open cover in Y of K} \ . \ \text{Since Y is an r- open subspace}$ of \$X\$, then by Proposition (1.5), $\{U\lambda\}\lambda_{\in \Lambda} \ \text{is an r- open cover in X of K} \ .$ Then by hypothesis there exists $\{\lambda_1,\lambda_2,\ldots,\lambda_m\} \ , \text{ such that } \ K \subseteq \bigcup_{\lambda=1}^m U_\lambda \ , \text{ thus}$

the cover $\{U\lambda\,\}\lambda\in\Lambda$ has a finite subcover of $\ K$. Hence K is an r- compact set in Y .

Definition 2.12 : Let X be a space and $W \subseteq X$. We say that W is **compactly r-closed set** if $W \cap K$ is r-compact, for every r-compact set K in X.

Proposition 2.13: Every r- closed subset of a space X is compactly r- closed. The converse of Proposition (2.13), is not true in general as the following

The converse of Proposition (2.13), is not true in general as the following example shows.

Example 2.14: Let $X = \{a, b, c\}$ be a space and $T = \{X, \theta, \{a, b\}\}$ be a topology on X. Notice that the set $A = \{a, b\}$ is compactly r- closed, but its not r- closed set.

Theorem 2.15: Let X be a T_2 - space .A subset A of X is compactly r- closed if and only if A is r- closed .

Remark 2.16: Let X be a compact, T_2 - space and $A \subseteq X$. Then:

- (i) A is closed if and only if A is r-closed.
- (ii) A is compact if and only if A is r- compact.

Definition 2.17, [6]: Let X and Y be space. A mapping $f: X \to Y$ is called **compact mapping** if the inverse image of each compact set in Y, is a compact set in X.

Definition 2.18: Let X and Y be space. We say that the mapping $f: X \to Y$ is an **r-compact mapping** if the inverse image of each r-compact set in Y, is a compact set in X.

Example 2.19: Let (X,T) and (Y,τ) be topological spaces, such that X is finite set, then the mapping $f: X \to Y$ is r-compact.

Remark 2.20: Every r- compact mapping is compact mapping.

The converse of Remark (2.20), is not true in general as the following example shows:

Example 2.21 : Let $T = \{A \subseteq R \mid Z \subseteq A\} \cup \{\theta\}$ be a topology on R, and $f: (R,T) \to (R,T)$ be a mapping which is defined as f(x) = x, $\forall x \in R$. Notice that f is a compact mapping, but its not r- compact.

Proposition 2.22: Let X and Y be spaces, and $f: X \to Y$ be an r-compact, continuous, mapping. If T is a clopen subset of Y, then $f_T: f^{-1}(T) \to T$ is an r-compact mapping.

Proof: Let K be an r- compact subset of T. Since T is clopen set in Y then by Corollary (1.4), T is an r- open, and then by Proposition (2.11), K is an r-

compact set in Y . Since f is an r- compact mapping , then $f^{\text{-1}}(K)$ is compact in X .

Now, since T is a closed set in Y, and f is a continuous mapping, then $f^{-1}(T)$ is a closed set in X, thus by Theorem (2.5), $f^{-1}(T) \cap f^{-1}(K)$ is a compact set .But $f_T^{-1}(K) = f^{-1}(T) \cap f^{-1}(K)$, then $f_T^{-1}(K)$ is a compact set in $f^{-1}(T)$. Therefore f_T is an r-compact mapping.

Proposition 2.23 : Let X , Y and Z be spaces . If $f: X \to Y$, $g: Y \to Z$ are continuous mapping . Then :

- (i) If f is a compact mapping and g is an r- compact mapping, then $g \circ f: X \to Z$ is an r-
- compact mapping.
- (ii) If f and g are r- compact mappings, then $g \circ f$ is an r- compact mapping.

Proof:

- (i) Let K be an r- compact set in Z, then $g^{-1}(K)$ is a compact set in Y, and then $f^{-1}(g^{-1}(K)) = (g \circ f)^{-1}(K)$ is a compact set in X. Hence $g \circ f : X \to Z$ is r- compact mapping.
- (ii) By Remark (2.18), and (i).

Proposition 2.24, [2]: For any closed subset of a space X, the inclusion mapping $i_F: F \to X$ is a compact mapping.

Proposition 2.25: Let X and Y be spaces . If $f: X \to Y$ is an r-compact mapping and F is a closed subset of X , then $f_{|F}: F \to X$ is an r-compact mapping .

Proof: Since F is a closed subset of X, then by Proposition (2.24), the inclusion $i_F: F \to X$ is a compact mapping. But $f_{|F} \equiv foi_F$, then by Proposition (2.23), $f_{|F}$ is an r-compact mapping.

Definition 2.26, [4]: Let X and Y be spaces . A mapping $f: X \to Y$ is called **coercive** if for every compact set $J \subseteq Y$, there exists a compact set $K \subseteq X$ such that $f(X \setminus K) \subseteq Y \setminus J$.

Definition 2.27 : Let X and Y be spaces . We say that the mapping $f: X \to Y$ is **r-coercive** if for every r-compact set $J \subseteq Y$, there exists a compact set $K \subseteq X$ such that $f(X \setminus K) \subseteq Y \setminus J$.

Examples 2.28:

(i) If $f:(X,T)\to (Y,\tau)$ is a mapping , such that X is compact space , then f is r-coercive .

(ii) Every identity mapping on regular space is r- coercive.

Proposition 2.29: Every r- coercive mapping is a coercive mapping.

Proof : Let $f: X \to Y$ be an r-coercive mapping, and J be a compact set in Y, so its r-compact, since f is r-coercive, then there exists a compact set K in X, such that $f(X \setminus K) \subset Y \setminus J$. Hence f is a coercive mapping.

The converse of Proposition (2.29) is not true in general as the Example (2.19).

Proposition 2.30: Let X and Y be spaces such that Y is a compact, T_2 - space. Then a mapping $f: X \to Y$ is r-coercive if and only if its a coercive mapping. **Proof:** \to) By Proposition (2.29).

←) Let J is an r- compact set in Y . Since Y is a compact , T_2 - space , then by Proposition (2.16) , J is a compact set in Y , since f is a coercive mapping , then there exists a compact set K in X , such that $f(X \setminus K) \subseteq Y \setminus J$. Hence f is r-coercive .

Proposition 2.31: Every r- compact mapping is an r- coercive.

Proof: Let $f: X \to Y$ be an r- compact mapping. To prove that f is an r-coercive. Let J be an r- compact set in Y. Since f is an r- compact mapping, then $f^{-1}(J)$ is a compact set in X. Thus $f(X \setminus f^{-1}(J)) \subseteq Y \setminus J$. Hence $f: X \to Y$ is an r-coercive mapping.

The converse of Proposition (2.31), is not true in general as the following example shows.

Example 2.32 : Let $Y = \{x, y\}$ be a set and T is the discrete topology on Y. Then a mapping $f: ([0,1],U) \rightarrow (Y,T)$ which is defined by :

$$f(t) = \begin{bmatrix} x & \forall t \in (0,1) \\ y & \forall t \in \{0,1\} \end{bmatrix}$$

is a coercive mapping, but its not compact mapping.

Proposition 2.33: Let X and Y be spaces, such that Y is a T_2 – space, and $f: X \to Y$ is a continuous mapping. Then f is an r-coercive if and only if f is an r-compact.

Proof: \rightarrow) Let J be an r- compact set in Y . To prove that $f^{-1}(J)$ is a compact set in X . Since Y is a T_2 – space , and J is an r- compact set in Y , so it's a closed set , then $f^{-1}(J)$ is a closed set in X . Since f is an r- coercive mapping , then there exists a compact set K in X , such that $f(X \setminus K) \subseteq Y \setminus J$. Then $f(K) \subseteq J^{c}$, therefore $f^{-1}(J) \subseteq K$, and thus $f^{-1}(J)$ is a compact set in X . Hence f is an r- compact mapping .

 \leftarrow) By Proposition (2.31).

Proposition 2.34: Let X , Y and Z be spaces and $f: X \rightarrow Y$, $g: Y \rightarrow Z$ be mappings . Then :

- (i) If f is coercive and g is r- coercive , then $g \circ f: X \to Z$ is an r- coercive mapping .
- (ii) If f and g are r- coercive, then go $f: X \to Z$ is an r- coercive mapping.

Proof:

- (i) Let J be an r- compact set in Z . Since $g: Y \to Z$ is r-coercive mapping, then there exists a compact set K in Y, such that $g(Y \setminus K) \subseteq Z \setminus J$. Since $f: X \to Y$ is a coercive mapping, then there exists a compact set H in X, such that $f(X \setminus H) \subseteq Y \setminus K \to g(f(X \setminus H) \subseteq G(Y \setminus K)) \subseteq Z \setminus J \to (g \circ f)(X \setminus H) \subset Z \setminus J$. Hence $g \circ f$ is an r- coercive mapping.
- (ii) By Proposition (2.29), and (i).

Proposition 2.35: Let X and Y be spaces, and $f: X \to Y$ be an r-coercive mapping. If F is a closed subset of X, then the restriction mapping $f_{\mathbb{F}}: F \to Y$ is an r-coercive mapping.

Proof: Since F is a closed subset of X, then by Proposition (2.24), and Proposition (2.31), the inclusion mapping $i_F: F \to X$ is a coercive mapping. But $f_{\mathbb{F}} \equiv foi_F$, then by Proposition

(2.34), $f_{\mathbb{F}}$ is an r-coercive mapping.

Theorem 2.36: Let X and Y be spaces, such that Y is a compact, T_2 - space, then for a continuous mapping $f: X \to Y$, the following statements are equivalent:

- (i) f is r-coercive.
- (ii) f is r-compact.
- (iii) f is compact.
- (iv) f is coercive.

Proof:

- $(i \rightarrow ii)$. By Proposition (2.33).
- $(ii \rightarrow iii)$. By Remark (2.20).
- (iii \rightarrow iv). Let J be a compact set in Y . Since f is compact mapping, then $f^{-1}(J)$ is compact set in X . Thus $f(X \setminus f^{-1}(J)) \subseteq Y \setminus J$. Hence f is a coercive mapping. (iv \rightarrow i). By Proposition (2.30).

3- Regular Proper Mapping:

Definition 3.1, [1]: Let X and Y be spaces, and $f: X \to Y$ be a mapping. We say that f is a proper mapping if:

- (i) f is continuous.
- (ii) $f \times I_Z \colon X \times Z \to Y \times Z$ is closed , for every space Z .

Definition 3.2: Let X and Y be spaces, and $f: X \to Y$ be a mapping. We say that f is a regular proper (r- proper) mapping if:

(i) f is continuous.

(ii) $f \times I_Z : X \times Z \to Y \times Z$ is r-closed, for every space Z.

Example 3.3 : Let $X = \{a, b, c\}$, $Y = \{x, y\}$ be spaces and $T = \{X, \theta, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}\}$, $\tau = \{Y, \theta, \{x\}, \{y\}\}$ are topologies on X and Y respectively. The mapping $f: X \to Y$ which is defined as f(a) = f(b) = x, f(c) = y is an r- proper mapping.

The following example shows that not every mapping is r- proper.

Example 3.4: Let $f:(R, U) \to (R, U)$ be the mapping which is defined by f(x) = 0, for every $x \square R$. Notice that f is not F proper mapping, since for the usual space (R, U) the mapping $f \times I_R : R \times R \to R \times R$, such that $(f \times I_R)(x,y) = (0,y)$, for every $(x,y) \square R$ is not F closed mapping.

Remarks 3.5:

- (i) Every r- proper mapping is r- closed.
- (ii) Every r- proper mapping is proper.
- (iii) Every r- homeomorphism is r- proper.

The converse of Remark (3.5.i), is not true in general as the Example (3.4). Also the converse of Remark (3.5.ii), is not true as the following example shows:

Example 3.6:

Let T be a cofinite topology on N, and let $f: N \to N$ be a mapping which is defined by : f(x) = x, $x \supseteq N$. Notice that f is a proper mapping, but f is not r-proper mapping, since f is not r-closed mapping.

The converse of Remark (3.5.iii), is not true in general as the following example shows:

Example 3.7: Let $X = \{a, b\}$, $Y = \{x, y\}$ be sets and $T = \{\theta, X, \{a\}, \{b\}\}\}$, $\tau = \{\theta, Y, \{x\}, \{y\}\}$ be topologies on X and Y respectively. Let $f: X \to Y$ be a mapping which is defined by : f(a) = f(b) = x. Notice that f is an r- proper mapping, but f is not r- homeomorphism, since f is not onto.

Proposition 3.8: Let X and Y be spaces, and $f: X \to Y$ be an r- proper mapping. If T is a clopen subset of Y, then $f_T: f^{-1}(T) \to T$ is an r- proper mapping.

Proof : Since $f: X \to Y$ is a continuous mapping, then f_T is a continuous mapping. To prove that $f_{T\times}I_Z: f^{-1}(T)_{\times}Z \to T_{\times}Z$ is an r-closed mapping, for every space Z. Notice that $f_{T\times}I_Z \equiv (f_{\times}I_Z)_{T\times Z}$. Since T is a clopen subset of Y, then by Proposition (1.11), $T_{\times}Z$ is a clopen subset of $Y\times Z$, thus by Proposition (1.24), $(f_{\times}I_Z)_{T\times Z} \equiv (f_{T\times}I_Z)$ is an r-closed mapping, hence $f_T: f^{-1}(T) \to T$ is an r- proper mapping.

Theorem 3.9 : Let $f: X \to P = \{w\}$ be a mapping on a space X . If f is an r-proper mapping, then X is a compact space, where w is any point which does not belong to X.

Proof : Since f is r- proper mapping, then by Remark (3.5.ii), f is proper mapping. Thus by [1.Lemma (2.1) P.101], X is compact space.

Theorem 3.10 : Let X and Y be spaces , and $f: X \to Y$ be a continuous mapping . Then the following statements are equivalent :

- (i) f is an r- proper mapping.
- (ii) f is an r-closed mapping and $f^{-1}(\{y\})$ is compact for each $y \in Y$.
- (iii) If $(\chi_d)_{d \in D}$ is a net in X and $y \in Y$ is an r-cluster point of $f(\chi_d)$, then there is a cluster point $x \in X$ of $(\chi_d)_{d \in D}$, such that f(x) = y.

Proof:

(i \rightarrow ii). Let $f: X \rightarrow Y$ be an r- proper mapping , then $f \times I_Z: X \times Z \rightarrow Y \times Z$ is an r- closed for every space Z. Let $Z = \{t\}$, then $X \times Z = X \times \{t\} \square X$ and $Y \times Z = Y \times \{t\} \square Y$, and we can replace $f \times I_Z$ by f, thus f is r- closed. Now , let $y \in Y$. Since f is an r- proper , then by Remarks (3.5) , f is proper mapping , so by [1, Theorem (3.1.5)], $f^{-1}(\{y\})$ is compact for each $y \square Y$.

(ii \to iii). Let $(\chi_d)_{d \in D}$ be a net in X and $y \in Y$ be an r-cluster point of a net $f(\chi_d)_c$ in Y. Assume that $f^{-1}(y) \neq \theta$, if $f^{-1}(y) = \theta$, then $y \notin f(X) \to y \in (f(X))$, since X is a closed set in X and f is an r-closed mapping, then f(X) is an r-closed set in Y. Thus f(X) is an f(X) is

But $f(\chi_d) \in f(X)$, $d \in D$, then $f(X) \cap (f(X))^c \neq \emptyset$, and this is a contradiction. Thus $f^{-1}(y) \neq \emptyset$.

Now , suppose that the statement (iii) , is not true , that means , for all $x \in f^{-1}(y)$ there exists an open set U_X in X contains x , such that (χ_d) is not frequently in U_X . Notice that $f^{-1}(y) = \bigcup \{x\}.$ Therefore the family $\{U_X \mid x \in f^{-1}(y)\}$ $x \in f^{-1}(y)$

is an open cover for $f^{-1}(y)$. But $f^{-1}(y)$ is a compact set , then there exists $x_1, x_2, \ldots, x_n \in f^{-1}(y)$, such that $f^{-1}(y) \square Ux_i \bigcup Ux_2 \ldots \bigcup Ux_n$, then $f^{-1}(y) \cap \bigcup_{i=1}^n \bigcup_$

, \forall i = 1, ..., n . Thus $(\chi_{\tt d})$ is not frequently in $\bigcup_{i=1}^n U_{xi}$, but $\bigcup_{i=1}^n U_{xi}$ is an open set

in X , then $\bigcap\limits_{i=1}^n U_{xi}^c$ is a closed set in X . Thus $f(\bigcap\limits_{i=1}^n U_{xi}^c)$ is an r- closed set in Y .

Claim $y \notin f(\bigcap_{i=1}^n \bigcup_{xi}^c)$, if $y \in f(\bigcap_{i=1}^n \bigcup_{xi}^c)$, then there exists $x \in \bigcap_{i=1}^n \bigcup_{xi}^c$, such f(x) = y, thus $x \notin \bigcup_{i=1}^{n} U_{Xi}$, but $x \in f^{-1}(y)$, therefore $f^{-1}(y)$ is not that a subset of $\bigcup_{i=1}^{n} U_{Xi}$, and this is a contradiction. Hence there is an r- open set A in Y, such that $y \in A$ and $A \cap f(\bigcap_{i=1}^n U_{xi}^c) = \theta \rightarrow f^{-1}(A) \cap f^{-1}(f(\bigcap_{i=1}^n U_{xi}^c)) = \theta \rightarrow$ $f^{-1}(A) \cap [\bigcap_{i=1}^n \bigcup_{i=1}^c U_{xi}] = \theta \to f^{-1}(A) \subseteq \bigcup_{i=1}^n \bigcup_{i=1}^n U_{xi}$. But $(f(X_d))$ is frequently in A, then $(\chi_{_{d}})$ is frequently in $f^{\text{-1}}(A)$, and then $(\chi_{_{d}})$ is frequently in $\bigcup_{i=1}^{n} U_{Xi}$. This is contradiction, and this is complete the proof. $(iii \rightarrow i)$. Let Z be any space. To prove that $f: X \rightarrow Y$ is an r-proper mapping, i.e , to prove that $f \times I_Z : X \times Z \to Y \times Z$ is an r- closed mapping. Let F be a closed set in $X\times Z$. To prove that $(f\times I_Z)(F)$ is an r-closed set in $Y\times Z$. Let (y,z) $\in \overline{(f \times I_7)(F)}^r$, then by Proposition (1.38), there exists a net $\{(y_d, z_d)\}_{d \in D}$ in $(\mathit{f} \times I_{Z})(F)$ such that $(y_{d}\,,\,z_{d}) \stackrel{\prime}{\propto} (y,z)$, then $(y_d, z_d) =$ $((f \times I_Z)(x_d, y_d))$, where $\{(x_d, y_d)\}_{d \in D}$ is a net in F . Thus $(f(x_d), I_Z(z_d)) \propto (y,z)$, so $f(x_d) \propto y$ and $z_d \propto z$. Then by (iii), $x \in X$, such that $x_d \propto x$ and f(x)= y , Since $(x_d\,,\,z_d) \propto (x,z)$ and $\{(x_d\,,\,z_d)\}_{d\,\square\,\, D} is$ a net in F , thus $(x,y) \in \overline{F}\,$. Since $F = \overline{F}$, then $(x,y) \square F \rightarrow (y,z) = ((f \times I_Z)(x,y)) \rightarrow (y,z) \square (f \times I_Z)(F)$, and then $\overline{(f \times I_Z)(F)}^r = (f \times I_Z)(F)$, thus $(f \times I_Z)(F)$ is an r-closed set in Y×Z. $f \times I_Z : X \times Z \to Y \times Z$ is an r-closed mapping, hence $f : X \times Z \to Y \times Z$ Hence $X \rightarrow Y$ is an r- proper mapping. **Corollary 3.11 :** If X is a compact space, then the mapping $f: X \to P = \{w\}$

Corollary 3.11: If X is a compact space, then the mapping $f: X \to P = \{w\}$ on a space X is r- proper, where w is any point which does not belongs to X.

Proof: Let X be a compact space. Since P is a single point, then f is a continuous mapping. To prove that $f: X \to P = \{w\}$ is an r-proper mapping: (i) Since $f^{-1}(P) = X$, then $f^{-1}(P)$ is a compact set.

(ii) Let F is a closed subset of X , then either : $f(F) = \theta$ or $f(F) = \{w\}$. So f(F) is r-closed in P , then f is r-closed mapping . Thus by Theorem (3.10) , f is an

r- proper mapping.

Proposition 3.12: Let X and Y be spaces . If $f: X \to Y$ is an r- proper mapping, then $f_{\{y\}}: f^{-1}(\{y\}) \to \{y\}$ is an r- proper mapping, for all $y \in Y$.

Proof: Since $f: X \to Y$ is an r- proper mapping, then $f^{-1}(\{y\})$ is compact for each $y \in Y$. Since $\{y\}$ is a single point, then by Corollary (3.11), $f_{\{y\}}: f^{-1}(\{y\}) \to \{y\}$ is an r- proper mapping.

Proposition 3.13: Let X and Y be spaces, such that X is a compact, T_2 -space and $f: X \to Y$ be a homeomorphism mapping, then $f^{-1}: Y \to X$ is an r-proper mapping.

Proof: Since f is an open mapping, then f^{-1} is continuous mapping. To prove that f^{-1} is f^{-1} is

- (i) Let F be a closed subset of Y, since f is continuous, then $f^{-1}(F)$ is closed in X, since X is compact, T_2 space, then by Remark (2.16), $f^{-1}(F)$ is r-closed in X. Hence f^{-1} is an r-closed mapping.
- (ii) Let $x \in X$, then $\{x\}$ is compact set in . Since f is continuous , then $f(\{x\}) = (f^{-1})^{-1}(\{x\})$ is compact set in Y, therefore by Theorem (3.10) , f^{-1} is r- proper mapping .

Proposition 3.14: Let X and Y be spaces, and $f: X \to Y$ be a continuous, one to one, mapping, then the following statements are equivalent:

- (i) f is r- proper mapping.
- (ii) f is r-closed mapping.
- (iii) f is r-homeomorphism of X onto an r-closed subset of Y.

Proof:

 $(i \rightarrow ii)$. By Remark (3.5).

- (ii \rightarrow iii). Let $f: X \rightarrow Y$ be an r- closed mapping. Since X is a closed set in X, then f(X) is an r- closed set in Y. Since f is continuous and one to one, then f is an r- homeomorphism of X onto r- closed subset f(X) of Y.
- (iii \rightarrow i). Let f be an r- homeomorphism of X onto an r- closed subset U of Y. Now, let Z be any space, and W be a basic open set in $X \times Z$, then $W = W_1 \times W_2$, where W_1 is an open set in X and W_2 is an open set in Z. Since $(f \times I_Z)(W_1 \times W_2) = f(W_1) \times W_2$, and $f : X \to U$ is an r- homeomorphism, then $f : X \to U$ is an r- open mapping and then $f(W_1)$ is an r- open set in U, thus $f(W_1) \times W_2$ is r- open in $U \times Z$, so $f \times I_Z$ is an r- open mapping. Since $f \times I_Z : X \times Z \to U \times Z$ is bijective, then by Proposition (1.29), the mapping $f \times I_Z$ is r- closed. Now, let F be a closed subset of $X \times Z$, then $(f \times I_Z)(F)$ is an r- closed set in $U \times Z$, since $U \times Z$ is an r- closed set in $Y \times Z$, then by Proposition (1.5), $(f \times I_Z)(F)$ is r- closed in $Y \times Z$. Hence $f \times I_Z : X \times Z \to Y \times Z$ is an r- closed mapping, thus $f : X \to Y$ is an r- proper mapping.

Proposition 3.15: Let X, Y and Z be spaces. If $f: X \to Y$ is proper and $g: Y \to Z$ is an r- proper mapping, then $g \circ f: X \to Y$ is an r- proper mapping.

Proof: To prove that $g \circ f : X \to Z$ is an r-proper mapping:

- (i) Since $f: X \to Y$ is a proper mapping, then f is closed. Similarly, since $g: Y \to Z$ is an r-proper mapping, then g is r-closed. Thus by Proposition (1.26), $g \circ f: X \to Z$ is an r-closed mapping.
- (ii) Let $z \in Z$, then $g^{-1}(\{z\})$ is a compact set in Y, and then $f^{-1}(g^{-1}(\{z\})) = (g \circ f)^{-1}(\{z\})$ is a compact set in X. Therefore by (i), (ii) and since $g \circ f$ is continuous then by using Theorem (3.10), $g \circ f$ is an r-proper mapping.

Proposition 3.16: Let X, Y and Z be spaces, and $f: X \to Y$ and $g: Y \to Z$ are r-proper maps, then $g \circ f: X \to Z$ is an r-proper mapping.

Proof : Since f and g are r- proper maps , then $f \times I_W$ and $g \times I_W$ are r- closed , for every space W , then by Corollary (1.27) , $(g \times I_W)o(f \times I_W)$ is r- closed mapping . But $(g \times I_W)o(f \times I_W) = (gof) \times I_W$, then $(gof) \times I_W$ is r- closed , and since gof is continuous . Hence gof is an r- proper mapping .

Proposition 3.17: Let X, Y and Z be spaces, and $f: X \to Y$ and $g: Y \to Z$ be continuous maps, such that $g \circ f: X \to Z$ is an r-proper mapping. If f is onto, then g is an r-proper mapping.

Proof:

- (i) Let F be a closed subset of Y, since f is continuous, then $f^{-1}(F)$ is closed in X. Since $g \circ f$ is an r-proper mapping, then $g \circ f(f^{-1}(F))$ is r-closed in Z. But f is onto, then $g \circ f(f^{-1}(F)) = g(F)$. Hence g(F) is an r-closed set in Z. Thus g is r-closed mapping.
- (ii) Let $z \square Z$, since gof is F proper mapping, then by Theorem (3.10), the set $(gof)^{-1}(\{z\}) = f^{-1}(g^{-1}(\{z\}))$ is compact. Now, since f is continuous, then $f(f^{-1}(g^{-1}(\{z\})))$ is compact set, but f is onto, then $f(f^{-1}(g^{-1}(\{z\}))) = g^{-1}(\{z\})$ is compact for every $z \square Z$. So by Theorem (3.10), the mapping gof is F- proper

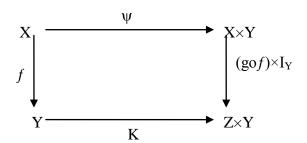
Proposition 3.18: Let X, Y and Z be spaces, and $f: X \to Y$, $g: Y \to Z$ be continuous maps, such that $g \circ f: X \to Z$ is an r-proper mapping. If g is one to one, r-irresolute mapping then f is an r-proper mapping.

Proof:

- (i) Let F be a closed subset of X. Then $(g \circ f)(F)$ is an r-closed set in Z. Since g: $Y \to Z$ is one to one, r-irresolute, mapping, then $g^{-1}(g(f(F))) = f(F)$ is r-closed in Y. Hence the mapping $f: X \to Y$ is r-closed.
- (ii) Let $y \in Y$, then $g(y) \square Z$. Now, since $gof : X \to Z$ is r-proper and g is one to one, then the set $(gof)^{-1}(g(\{y\}) = f^{-1}(g^{-1}(g(\{y\}))) = f^{-1}(\{y\})$ is compact, for every $y \in Y$. Therefore by Theorem (3.10), the mapping $f : X \to Y$ is r-proper.

Proposition 3.19: Let X, Y and Z be spaces, $f: X \to Y$ be a continuous mapping and $g: Y \to Z$ be an r-irresolute mapping, such that $g \circ f: X \to Y$ is an r- proper mapping. If Y is a T_2 -space, then f is r-proper.

Proof: Consider the commutative diagram:



 \square (x) = (x, f(x)) and K(y) = (g(y), y) . Since X is T_2 - space , then the graph of \square is closed in X×Y [1, Proposition .5.P.99] , and since \square is one to one , then by [1, Proposition .2.P.98] , \square is a proper mapping . We have $(g \circ f) \times \not \sqsubseteq$ is r-proper , then by Proposition (3.15) , $((g \circ f) \times I_Z) \circ \square$ is r-proper . But $((g \circ f) \times I_Z) \circ \square = K \circ f$, so that $K \circ f$ is r-proper . Since g is an r-irresolute mapping , then K is r-irresolute . Therefore by Proposition (3.18) , f is an r-proper mapping .

Corollary 3.20 : Every continuous mapping of a compact space X into a T_2 -space Y is r- proper .

Proof : Let $f: X \to Y$ be a continuous mapping .To prove that f is r- proper . Let $g: Y \to P$ be a mapping (where P is a singleton set), since X is a compact space, then $gof: X \to P$ is r- proper . Since Y is a T_2 - space, then by Proposition (3.19), f is r- proper mapping

Proposition 3.21: Let X, Y and Z be spaces. If $f: X \to Y$ is an r- proper mapping and $h: Y \to Z$ is homeomorphism mapping, then ho $f: X \to Z$ is an r- proper mapping.

Proof:

- (i) Let F be a closed subset of X , then f(F) is an r- closed set in Y , since h is homeomorphism , then hof(F) is an r- closed set in Z . Hence the mapping ho $f: X \to Z$ is r- closed .
- (ii) Let $z \in Z$, then $h^{-1}(\{z\})$ is a compact set in Y (since every homeomorphism mapping is proper). So $(f^{-1}(h^{-1}))(\{z\}) = (hof)^{-1}(\{z\})$ is a compact set in X. Therefore by Theorem (3.10), and since hof is continuous, the mapping hof: $X \to Z$ is an r-proper.

Proposition 3.22: Let $f_1: X_1 \rightarrow Y_1$ and $f_2: X_2 \rightarrow Y_2$ be maps. Then $f_1 \times f_2: X_1 \times X_2 \rightarrow Y_1 \times Y_2$ is an r- proper mapping if and only if f_1 and f_2 are r-proper.

Proof: \rightarrow) To prove that f_2 is an r- proper. Since $f_{1\times}f_2$ is continuous, then both f_1 and f_2 are continuous. To prove that $f_{2\times}I_Z: X_{2\times}Z \rightarrow Y_{2\times}Z$ is r- closed, for every space Z. Let F be a closed subset of $X_{2\times}Z$, since X_1 is a closed set

in X_1 , then $X_{1\times}F$ is a closed set in $X_{1\times}X_{2\times}Z$. Since $f_{1\times}f_2$ is r- proper, then $(f_{1\times}f_{2\times}I_Z)(X_{1\times}F)$ is an r- closed set in $Y_{1\times}Y_{2\times}Z$. But $(f_{1\times}f_{2\times}I_Z)(X_{1\times}F)=f_1(X_1)\times (f_{2\times}I_Z)(F)$, thus $(f_{2\times}I_Z)(F)$ is an r- closed set in $Y_{2\times}Z$, then $f_{2\times}I_Z:X_{2\times}Z\to Y_{2\times}Z$ is an r- closed mapping. Therefore $f_2:X_2\to Y_2$ is an r- proper mapping.

Similarly, we can prove that $f_1: X_1 \to Y_1$ is an r-proper mapping.

 \leftarrow) To prove that $f_{1\times}f_{2}:X_{1\times}X_{2}\to Y_{1\times}Y_{2}$ is r- proper . Since f_{1} and f_{2} are continuous, then $f_{1\times}f_{2}$ is a continuous mapping. Let Z be any space. Notice that:

 $f_{1\times}f_{2\times}I_Z = (Iy_{1\times}f_{2\times}I_Z)o(f_{1\times}Ix_{2\times}I_Z)$, since f_1 and f_2 are r-proper maps, then $(Iy_{1\times}f_{2\times}I_Z)$

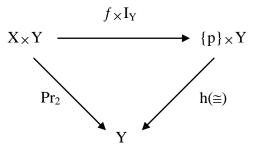
and $(f_1 \times Ix_2 \times I_Z) = f_1 \times Ix_{2 \times Z}$ are r- closed maps. Therefore by Corollary (1.27), the mapping $f_1 \times f_2 \times I_Z$ is an r- closed. Hence $f_1 \times f_2$ is an r- proper mapping.

Proposition 3.23: Let $f: X \to Y$ be an r- proper mapping, then $f_{\times}I_Z: X_{\times}Z \to Y_{\times}Z$ is an r- proper mapping, for every space Z.

Proof : Since f is r- proper , then $f_{\times}I_{W}$ is an r- closed mapping , for every space W. Notice that $f_{\times}I_{Z\times}I_{W}=f_{\times}I_{Z\times W}$, but $f_{\times}I_{Z\times W}$ is an r- closed mapping , then $f_{\times}I_{Z\times}I_{W}$ is r- closed , for every space W. Hence $f_{\times}I_{Z}$ is r- proper .

Proposition 3.24: Let X be a compact space and Y be any topological space, then the projection mapping $Pr_2: X_{\times}Y \to Y$ is r- proper.

Proof : Consider the commutative diagram :



Where $h: \{p\}_{\times}Y \to Y$ is the homeomorphism of $\{p\}_{\times}Y$ onto Y and $Pr_2: X_{\times}Y \to Y$ is the projection of $X_{\times}Y$ into Y. Since X is a compact space, then by Corollary (3.11), $f: X \to \{p\}$ is r- proper and $I_Y: Y \to Y$ is a proper mapping, then $f_{\times}I_Y$ is an r- proper mapping. Hence $ho(f_{\times}I_Y)$ is an r-proper mapping, but $Pr_2 = ho(f_{\times}I_Y)$, then Pr_2 is an r-proper mapping.

Proposition 3.25: Let $f_1: X_1 \to Y_1$ and $f_2: X_2 \to Y_2$ be continuous maps, such that $f_{1\times}f_2$ is a compact mapping and $f_2(f_1)$ is r-closed mapping, then $f_2(f_1)$ is an r-proper.

Proof : Let $y_2
cap Y_2$. Take any compact set K in Y_1 . Then $K_\times\{y_2\}$ is compact in $Y_1 \times Y_2$. So that $(f_1 \times f_2)^{-1}(K_\times\{y_2\})$ is compact in $X_1 \times X_2$. But $(f_1 \times f_2)^{-1}(K_\times\{y_2\}) = f_1^{-1}(K) \times f_2^{-1}(\{y_2\})$, then $f_1^{-1}(K)$ and $f_2^{-1}(\{y_2\})$ are compact in X_1 and X_2 respectively. Since f_2 is an r- closed mapping, then by Theorem (3.10), f_2 is an r- proper.

Proposition 3.26: Let X and Y be spaces, and $f: X \to Y$ be an r-proper mapping. If F is a clopen subset of X, then the restriction map $f|_F: F \to Y$ is an r-proper mapping.

Proof : To prove that $f_{\mid F \times} I_Z : F_{\times} Z \to Y_{\times} Z$ is an r- closed mapping for every space Z. Since F is a clopen subset of X, then $F_{\times} Z$ is a clopen subset of $X_{\times} Z$. Since $f_{\times} I_Z$ is an r- closed mapping, then by Proposition (1.24), $(f_{\times} I_Z)_{F \times Z}$ is an r- closed mapping. But $f_{\mid F \times} I_Z = (f_{\times} I_Z)_{F \times Z}$, thus $f_{\mid F \times} I_Z$ is an r-closed mapping. Hence $f_{\mid F} : F \to Y$ is an r- proper.

Proposition 3.27: Let X and Y be spaces . If $f: X \to Y$ is an r- proper mapping, then f is an r- compact .

Proof: Let A be an r- compact subset of Y . To prove that $f^{-1}(A)$ is a compact set in X , let $(\chi_d)_{d \in D}$ be a net in $f^{-1}(A)$, then $f(\chi_d)$ is a net in A . Since A is an r- compact set in Y , then by Proposition (2.10) , there exists $y \in A$, such that y is an r- cluster point of $f(\chi_d)$. Since f is r- proper , then by Theorem (3.10) , there exists $x \in X$, such that x is a cluster point of (χ_d) , such that f(x) = y. Then $x \in f^{-1}(A)$. Thus every net in $f^{-1}(A)$ has cluster point in itself , then by Proposition (2.4) , $f^{-1}(A)$ is a compact set in X . Therefore $f: X \to Y$ is an r-compact mapping .

The converse of Proposition (3.27), is not true in general as the following example shows:

Example 3.28 : Let $X = \{a, b, c, d\}$, $Y = \{x, y, z\}$ be sets and $T = \{\theta, X, \{a, b\}, \{d\}, \{a, b, d\}\}, \tau = \{\theta, Y, \{z\}\}$ be topologies on X and Y respectively. Let $f : X \to Y$ be a mapping which is defined by : f(a) = f(b) = f(c) = y, f(d) = z.

Notice that f is an r- compact mapping, but f is not r- proper mapping. Since $\{c,d\}$ is a closed set in X, and $f(\{c,d\}) = \{y,z\}$ is not r- closed set in Y, then f is not r- closed mapping. Hence f is not r- proper mapping.

Theorem 3.29: Let X and Y be spaces, such that Y is a T_2 - space. If $f: X \to Y$ is a continuous mapping, then f is an r-proper mapping if and only if f is an r-compact mapping.

Proof: \rightarrow) By Proposition (3.27).

- \leftarrow) To prove that f is an r- proper mapping :
- (i) Let F be a closed subset of X. To prove that f(F) is an r-closed set in Y, let K be an r-compact set in Y, then $f^{-1}(K)$ is a compact set in X, then by Theorem (2.5), $F \cap f^{-1}(K)$ is compact in X. Since f is continuous, then $f(F \cap f^{-1}(K))$

- $^{1}(K)$) is compact set in Y , and then its r- compact . But $f(F \cap f^{-1}(K)) = f(F) \cap K$, then $f(F) \cap K$ is r- compact , thus f(F) is compactly r- closed set in Y . Since Y is a T₂-space , then by Theorem (2.15) , f(F) is an r- closed set in Y . Hence f is an r- closed mapping .
- (ii) Let $y \in Y$, then $\{y\}$ is r- compact in Y. Since f is an r- compact mapping, then $f^{-1}(\{y\})$ is compact in X, therefore by Theorem (3.10), f is an r- proper mapping.

Theorem 3.30 : Let $f: X \to P = \{w\}$ be a mapping on a space X , where w is any point which does not belong to X , then the following statements are equivalent :

- (i) f is an r- compact mapping.
- (ii) f is an r- proper mapping.
- (iii) f is a proper mapping.
- (iv) X is a compact space.

Proof:

 $(i \rightarrow ii)$. By Theorem (3.29).

 $(ii \rightarrow iii)$. By Remark (3.5).

 $(iii \rightarrow iv)$. See [1].

(iv \rightarrow i). Since $f^{-1}(P) = X$ and X is a compact space, then f is an r-compact mapping.

Theorem 3.31: Let X and Y be spaces, such that Y is a compact, T_2 -space and $f: X \to Y$ be a continuous mapping, then the following statements are equivalent:

- (i) f is a proper mapping.
- (ii) f is a compact mapping.
- (iii) f is an r- compact mapping.
- (iv) f is an r- proper mapping.

Proof:

 $(i \rightarrow ii)$. See [1].

(ii \rightarrow iii). Let H be an r- compact set in Y . To prove that $f^{-1}(H)$ is compact in X . Since Y is a compact , T_2 - space , then by Proposition (2.15) , H is a compact set in Y , then by (ii) , $f^{-1}(H)$ is a compact set in X . Hence f is an r-compact mapping .

(iii \rightarrow iv). Theorem (3.29).

(iv \rightarrow i). By Remark (3.5).

Proposition 3.32 : Let X and Y be spaces, such that Y is a T_2 - space and $f: X \to Y$ be a continuous mapping. Then the following statements are equivalent:

- (i) f is an r- coercive mapping.
- (ii) f is an r- compact mapping.
- (iii) f is an r- proper mapping.

Proof:

- $(i \rightarrow ii)$. By Proposition (2.33).
- $(ii \rightarrow iii)$. By Proposition (3.29).
- (iii \rightarrow i). Let J be an r- compact set in Y . Since f is r- proper , then by Proposition (3.29) , f is an r- compact mapping , then $f^{-1}(J)$ is a compact set in X . Since $f(X \setminus f^{-1}(J)) \subseteq Y \setminus J$. Hence $f: X \to Y$ is an r- coercive mapping .

References:

- [1] Bourbaki , N. , Elements of Mathematics , "General Topology" , Chapter 1-4 , Springer Verlog , Berlin , Heidelberg , New York , London , Paris , Tokyo , 2^{nd} Edition (1989) .
- [2] Dugundji, J., "Topology", Allyn and Bacon, Boston, (1966).
- [3] Gemignani , M. C. , "Elementary Topology", Addision Wesley Inc. , Mass. , 2^{nd} Edition (1972) .
- [4] Habeeb K. and Alyaa Y. , " f^* Coercive function" . Appear .
- [5] J. Cao and I. L. Reilly , "Nearly compact spaces and δ^* Continuous Functions" , Bollettino U. M. I. (7) , 10 A (1996) .
- [6] Sharma J. N., "Topology", published by Krishna Prakashan Mandir, Meerut (U. P.), Printed at Manoj printers, Meerut, (1977).
- [7] Taqdir H., "Introduction to Topological Groups", (1966).
- [8] Willard , S. , "General topology" , Addison Wesley Inc. , Mass. , (1970) .

التطبيقات السديدة المنتظمة

الخلاصة

الهدف الأساسي من هذا العمل هو تقديم نوع عام و جديد للتطبيق السديد هو التطبيق السديد المنتظم . كما قدمنا تعريف جديد للتطبيق المتراص و التطبيق الأضطراري . كما تضمن البحث بعض الخواص و العبارات المتكافئة و كذلك شرحنا العلاقة بين هذه التعريفات .