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Abstract
In this paper we prove three theorems to introduce a new method for finding the general
solution (' without using any initial conditions ) of the linear ordinary differential equations

( LODEs ) and for the systems of two linear ordinary differential equations with constant
coefficients using the integral transform Laplace transform with the aid of the residues and then
we prove another two theorems to show that the integral transform Sumudu transform can be
used exactly equivalently to Laplace transform in finding the general solutions for these two
types of differential equations .
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1. Introduction

Laplace transform has played an important role in both pure and applied mathematics see for
example [1] , [2] and [3], it is particularly effective in the study of initial value problems involving
linear differential equations with constant coefficients and has enjoyed much success in this realm .
We know that Laplace transform is defined for a function f(t) by

F(s)=L[f(t)]= j:’e-stf(t)dt . (1.1)

It is known that a lot of work has been done on the theory and applications of Laplace transform
, but very little on Sumudu transform , because it is little known . Our interest with the Sumudu
transform also comes from the fact that this new transform can certainly treat most problems that
are usually treated by Laplace transform , in addition the Sumudu transform may be used to solve
problems without restoring to a new frequency domain , because it preserves scales and units
properties .

The Sumudu transform is introduced in [4] and [5] as follows : Let A is a set of exponential
order functions . Then for a given function f(t) in A , the Sumudu transform is defined by

F=S[fOl=[fue'd , ue(-z,7,) (1.2)

where 7, ,and/or 7z, >0, also 7, and 7, need not simultaneously exist , and each may be infinite .
Or by

F(W=S[fO1= [Ce vt (L3)

provided the integral exists for some u.The connection between Laplace and Sumudu transforms is
deeper , if f(t) € A having F (u) and F(s) for Sumudu and Laplace transforms respectively then
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F = FaY F(J/u)
(1.4)

The pair of relatlons in (1.4) is called the duality relation .
In [5] some fundamental properties of the Sumudu transform are established and an integral
production- depreciation problem solved using the Sumudu transform .

Theorem 1.1 [1] . If f s continuous and f' piecewise continuous on [0,) , with f of
exponential order « on [0,) . If F(s)=L[f(t)] for Re(s)=Re(x+iy)=Xx>«a , also

IF(s)| s%, p>0, (1.5)

for all |s| sufficiently large and some p , M >0 , and if F(s) is analytic in C except for finitely
many poles at s,,s,,..,Sy , then

f(t)=L"[F(s)] :ij‘::ﬁ e®F(s)ds :i Res(e“F(s),s,). (1.6)

For the Sumudu transform there is an analogue argument [6] that is as follows : Let
Fl(u)—S[f(t)] If we can find constants >0,k >0 in I' such that

. R" : (1.7)
ii. EFl(—) is meromorphic (i.e. only singularities are poles)
u u
then
-1 tu N 1 1 tu
f(t)=S"TR(u )]——I —F( )e du=3" ReS(aFl(a)e U, (1.8)
k=1

where R is the radius of the circular region I" while all singularities u,,u,,...u, liein Re(u)<c .

2. The general solution via Laplace transform

In this section we introduce a method for finding the general solution of the LODEs and the
systems of two LODEs of order m with constant coefficients by using Laplace transform and the
residues without any initial conditions via theorem 2.1, theorem 2.2 and theorem 2.4 .

Now , we shall introduce the main theorem in this paper which represents a direct and simple
consequence of a theorem in p. 177 in [7] .

Theorem 2.1. Given a function f(z)=e%g(z) , if there exists a positive integer m such that the
function

¢ (2)=(2-2)" 1 (2)=(z-2,)"e"9(2), (2.1)
is analytic at z, and ¢, (z,) =0 , t isaconstant. Then f has a pole of order m at z, . Its residue
there is given by

m-1
Res(f,z,)= (ml—l)l !anwk (;jzm_l ey (z) ,ifm>1, (2.2)
and
Res(f,z,)=Ae™, if m=1, (2.3)

where , (z) is analytic function at z, and A is a constant .
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Proof . Using relation (3) p. 176 in [7] we have
1 _dmt

Res(f,z,)= = 1)|Hz dzm1¢k(2)

1 d™ m Atz
NCEES dzml(z_z) ¢9(@).

Since the conditions in the theorem are satisfied when g(z) has the form

(2.4)

g(z)=Wk—(Z) , m=12,... (2.5)
(z-z)"
such that

. (2) = "y, (2), (2.6)
where the function y, (z) is analytic at z, and v, (z,) # 0, then
1, d™
lim
(m-1)! >z dz™*
Similarly , if m=1 then by using relation (4) p. 176 in [ 7 ] we get
Res(f,z,) =lim(z-z)e%g(2),

Res(f,z,)= ey, (2) .

] (2.7)
= lime%y, (z) = Ae™,

where A is a constant .

Note 1. If m=1 in theorem 2.1 then the point z, is called a simple pole of the function f (z) .

Note 2 . : Suppose that the notation deg denotes the degree , for example deg(r(s)) is the degree

of the polynomial r(s) .

Theorem 2.2. Let Y(s) and % denote Lapace transforms of the functions y(t) and f(t)
S

respectively and deg(h(s))=d . Also let y,y" and Y satisfy the conditions in theorem 1.1. Then the
general solution of the LODE of order m with constant coefficients

a,y™+a, Y™ . +ay+ay=f(t), (2.8)
where a's are constants and a, =0 , is given by
S
Y=Y Res(— PO ), (2.9)

k=t h(s)Zas

where p(s) isapolynomial of s with degree is less than or equal to d +m-1.

Proof . The differential equation (2.8) can be written as

2y + ay’®=f(). (2.10)
i=1
Taking Laplace transform to both sides of the differential equation (2.10) gives
a,Y (s) +Z aL[y®()]= EES; (2.11)

Applying the formula of Laplace transform of y®(t) where i>1[2] in the differential equation
(2.11) gives
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m m i1
YO as' -3 ay () =K. (212)
i=0 i=1 k=0 h(S)
Hence , the transformed problem becomes
Y (s) = K& ThENE). (2.13)
h(s))_ as'
i=0
where
m i1
r(s)=>.> ay®“©)s v, (2.14)
i=1 k=0

is a polynomial of s its degree is less than or equal to m—1. Since it is known from the tables of
Laplace transforms , see for example [1] , [2], [3] and [5] that deg(k(s)) <deg(h(s)) , therefore we

have deg(k(s)) <deg(h(s)r(s)) . Hence from equations (2.13) and (2.14) we have

Ye)=—PO (2.15)
h(s)> as'
i=0
where p(s) is a polynomial of s its degree is less than or equal to d + m—1 which is less than the

degree of the denominator d +m. Since y,y’ and Y satisfy the conditions in theorem 1.1 then by

taking the inverse Laplace transform L™ of the equation (2.15) and using relation ( 1.6 ) gives the
general solution of the differential equation (2.8) as

y) =3 ResEY(s).s,),
m,sk). (216)
- h(s)zrn:aisi

i=0

Example 2.3. To find the general solution of the third order LODE

y"—y"+4y —4y =68¢e'sin2t (2.17)
using the residues , we find from the differential equation (2.8) that m=3, a,=1,
a,=-1a =4,a,=-4 and f(t)=68¢€'sin2t . Since
136

Therefore h(s) =s®—2s+5 . From equation (2.15) and theorem 2.1 we set
p(s)
=Y (s) = , 2.19
9 =Y() (s> =25 +5)(s—1)(s* +4) (2.19)
and
ts
f(s) = e"Y () = e"p(s) (2.20)

(s? —25+5)(s—1(s*+4)
The function f (s) has simple poles ( m=1) at the points 1+ 2i,1 and F2i . Therefore from
relation (2.3) we get
Res(f,s, =1+2i) = Ae™ = Ae"™". (2.21)
Similarly , from relation (2.3) yields for k =2,3,4,5 that the residues of f are Ag"™, Age',
Age® and Ae™ atthe poles s,=1-2i , s,=1, s,=2i and s, =-2i respectively, A,..., A
are arbitrary constants . From theorem 2.2 we get
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(t):i Res( e"p(s) s)
y = (s> —25+5)(s—1)(s2 +4) " (2.22)
— Alet+2ti +A2et—2ti +A3et +A4e2ti +A5€_2“.
Hence
y(t) =ce' +c,cos2t +c,sin 2t +c,e' cos2t +c.e'sin2t, (2.23)
where

C=A,CG=A+A.C=i(A-A).c,=A+Aand ¢ =i(A-A) .
Since the differential equation (2.17) is of the third order then its general solution must contain
only three arbitrary constants , therefore if we find y',y" and y" from equation (2.23) and

substitution in (2.17) we get ¢, =—2 and c, =—-8 . Hence the general solution of the differential
equation (2.17) is

y(t) =ce' +c,cos 2t +c,sin 2t — 2e" cos 2t —8e' sin 2t (2.24)
where c,,c, and c, are arbitrary constants .

Theorem 2.4. Let X(s),Y(s),kl(S) and Kys) be Laplace transforms of the functions
hy(s) h,(s)

x(t), y(t), f,(t) and f,(t) respectively , deg(h,(s))=d, and deg(h,(s))=d, , also let x,y,x,y’, X
and Y satisfy the conditions in theorem 1.1. Then for the system of two LODEs of order m with
constant coefficients of the form

a,x™ +b,y™ +a, x™ +b Yy +ax+hyy = fi(t),

(2.25)
a x™ b y™pal xMY b yMY L ralx+bly = f,(t),
where a,,a/,b, and b’ are constants for i =0,1,...,m. Then we have

i.  X(s)and Y(s) have the same poles and their orders are the same .
ii.  The general solution of the system (2.25) is given by the pair

X(t) =i Res[ etsp(sm)n ,S;1
T o) es

X ) (2.26)
y©)=> Res[— 29 o1
T hEEY e

where p(s) and q(s) are polynomials of s each with a degree is less than or equal to
d,+d,+2m-1 and

€ = Z [akbi'—k _alibi—k]’ (2-27)

k=0
i=01...2m and a, =b =a’ =b'=0 for i=m+1m+2,...,2m.

Proof . The system (2.25) can be written as

ax(®)+ ax? (1) +hy®+ by ) = f,(1),
= = (2.28)

apx()+ . ax () +biy(®) + Y. by (1) = 1,(0).

By taking Laplace transform to both sides of the two differential equations in the system (2.28) and
using L[x®(t)] and L[y®(t)] for i >1 yields the system
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(3 asHX()+(3 b ()= - 1)

(2.29)
(L @)X +(3 sy (5) =2 2R,
WhereI:0 h 2
r(s) = ii [a,x®(0) +b y® (0)] s"**, (2.30)
and o
r,(s) = ii [a/x™ (0) +b'y® (0)] s ", (2.31)

are polynomials of s each with a degree is less than or equal to m—1. Solving the two equations in
the system (2.29) simultaneously and some simplifications gives the pair

X(8) = H O, (9) + RO OO bis' —{k, () (s)
h,(s)h, (S)Z es' i-0
Fh (S, (OL O bs'T,
L . i (2.32)
Y(s)= [k (8)u(8) + hy (s)h, (s)r; P as' —{k (s)h,(s)
h,(s)h, (S)Z es' =0

FRERELEY] as],

where e, is defined as in equation (2.27) . It is clear from the system (2.32) that X (s) and Y (s)
have the same poles and their orders are the same . Since
deg(k; (s)) <deg(h.(s)), =12, (2.33)
then the system (2.32) can be written , by using relations (2.30) and (2.31) , as
X (s) = PE)_
h(s)h, (S)Zo: &s'

(2.34)

Y(=-—I
JONO)

where p(s) and q(s) are polynomials of s each with degree is less than or equal to d, +d, +2m-1
, because

deg( p(s)) = deg(h,(s)) +deg(h, (s)) +deg(r,(s)) +m
= deg(h, (s)) +deg(h, (s)) +deg(r,(s)) + m (2.35)
<d,+d,+2m-1.
It is clear that deg(q(s)) =deg( p(s)) . Since x,y,x,y’, X and Y satisfy the conditions in theorem

1.1 then by taking L™ to both sides of the two equations in the system (2.34) and using the relation
(1.6) then the general solution of the system (2.25) is the system (2.26) .
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Example 2.5. Suppose we have the system of two LODEs
X" +4x+y =sin’t,
y (2.36)
y"+y—2x=cos’t.
By comparing it with the system (2.25) we find that m=2, a,=1 a,=4 , b,=1 b, =1
a)=-2,b,=Lb,=a =h =a,=a =h/=0, f(t)=sin’(t) and f,(t)=cos*(t) . Since
2

L[f(t)]=L[sin*t]= ———r, 2.37
[f.(0]=L[sin"t] &1 3) (2.37)
and
L] = L[cos’t] =S "2 (2.38)
i s(s*+4)’ |
then h,(s) = h,(s) = s(s*+4) . From relation (2.27) with a, =b, =a/ =b/ =0 for i =3,4 we have
Zes _ZZ [a b —alb  ]s' =s"+55°+6=(s*+2)(s*+3). (2.39)
i=0 k=0
From the first equation of the system (2.34) and theorem 2.1 we set
p(s)
s)=X(s) = : 2.40
9(9) =X () s*(s* +4)*(s* +2)(s* +3) (240
and
ts e"p(s)
f(s)=e*X(s) = (2.41)

S2 (s +4)%(s* +2)(s* +3)

The function f(s) has simple poles ( m=1) at the points V2i, —=/2i ,+/3i and —+/3i and
poles of order m=2 at the points 2i , —2i and 0 . From relation (2.3) yields for k =1,2,3,4 that
the residues of f are Ae'?", Ae 2% Ae”®" and Ae " atthe poles s, =+/2i , s, =—/2i ,
S, =/3i and S, = —/3i respectively . For k =5 then from relation (2.2) yields that

. 1 d
Res(f,55:2|)—ﬂ e *w(S)
= lim[e®y ’(S)+tetsw5 (s)] (2.42)
— ASeZtl +A6te2t|.

Similarly , using relation (2.2) for k =6,7 then the residues of f are Ae™ + Ate™ and

A, + At at the poles s, =-2i and s, =0 respectively . From the first equation of the system
(2.26) we get that

X(t) = 27: Res( e"p(s) s))
= s?(s> +4)* (s’ +2)(s* +3) ! (2.43)
_ Aieﬁti n Azefx/iti 4 Aseﬁti " A4e7«/§ti 4 ASeZti n AeteZti i AYe—Zti n ABte—Zti + A+ AL,
where A,..., A, are arbitrary constants . Thus after simplification we get
x(t):clcos\/§t+czsin\/§t+c3 cos\/§t+c4sin \/§t+c5 COS 2t + C, Sin 2t + ¢, t cos 2t
+Cgtsin2t + ¢y +Ct

(2.44)

where
G=A+A |, szi(Al_A2)1 C;=A+A,, C4:i(A3—A4),C5:A5+A7, Ce:i(As_A7)a
C7:A6+Ah108:i(A6_Aa)1C9:A910102A10 :
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Similarly , from the second equation of the system (2.26) and using (i ) of theorem 2.4 then Y(t)
can be written as

y(t) = d, cos~/2t +d, sin~/2t + d, cos~/3t +d, sin+/3t + d, cos 2t + d,, sin 2t + d, t cos 2t (2.45)
+dgtsin2t+dg +d,t

where
d=A+A , d,=i(A-A), dy=A+A;, d,=i(A-A),d=A+A, d;=i(A-A),
d7:Aé+Aé | ds :i(p‘é_Aé)’dngs;’ d10:A1'0 :

Since the system (2.36) is of the second order then its general solution must contain only four
arbitrary constants , therefore substitution x,y,x" and y”in the system (2.36) yields a system of

equations , that solving it gives values many of the constants c;'s and d,'s . Then the general
solution of the system (2.36) is as follows
. . 1
X(t) = ¢, cos~/2t + ¢, Sin~/2t + ¢, cos /3t + ¢, sin+/3t + = cos 2t,
2 (2.46)
y(t) =—2c, cos V2t - 2c, sin V2t - C, COS Jat- c,sin J3t —%cos 2t +%

where c,,...,C, are arbitrary constants .

3. The general solution via Sumudu transform

In this section we shall show that the Sumudu transform can be used exactly equivalent to
Laplace transform for getting the general solutions of the differential equation (2.8) and the system
(2.25) via theorem 3.1 and theorem 3.3 .

Theorem 3.1. For the LODE (2.8) suppose that Y,(u) is the sumudu transform of the function

y(t) and L[f(1)] =%. Also let EYl(i) is meromorphic ( i.e. only singularities are poles ) [6]
S u-u

and satisfies inequality (1.7) . Then the general solution y(t) of the differential equation (2.8) by
using the Sumudu transform is completely determined via equation (2.9) at the point s=u .

Proof . Since

Y, (u) = S[y(®)], (3.1)
then the general solution y(t) of the LODE (2.8) is gotten by taking the inverse Sumudu transform

S™" to both sides of the equation (3.1) . Since 1Yl(l) is meromorphic and satisfies inequality
u-u

(1.7) then by taking S*and using relation (1.8) we get

} N 1,10 w
y() =SV, (u)]= 2, ReS(aYl(a) e",u,). 3.2)
k=1
From the second relation of the duality relation (1.4) we have
1.1
Y)==Y(=), (3.3)
u-u
where
Y(u)=Lly®l,, . (3.4)

is the Laplace transform of y(t) inthe LODE (2.8) at s=u . Therefore by using relations (3.3)

and (2.15) we get that the general solution (2.9) of the differential equation (2.8) can be written , by
using the Sumudu transform , as
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y(t) = Z Res(Y (u)e“,u,)
= i Re s(L(u) (3-5)

where p(u) is defined as in theorem 2.2 . It is clear that the second equation of (3.5) is equation
(29)at s=u .

Note : According to our method : To find the general solution of any LODE using the Sumudu
transform , theorem 3.1 asserts that we can use the same steps in example 2.3 only by replacing the
variable s by u as shown in the following example :

Example 3.2. To find the general solution of the fourth order LODE

y@p2y® py=t (3.6)
By using theorem 3.1 we have m=4, a,=14a,=0, a,=2,8 =0, a,=1 and f(t)=t by
comparing with the differential equation (2.8) . Since

1
LIf®],, =L, = (3.7)
then h(u)=u® . From equation (2.15) at s=u and theorem 2.1 we set
1,1 p(u)
u)==Y, (=) =L[y(t =YU)=—""5—, 3.8
g(u) . 1(u) [y®],_, =Y (Lt uE)? (38)
and
1,1 e" p(u)
fwW=e"-Y,(H)=e"YU) =7 . 3.9
( ) u 1(u) ( ) U2(1+U2)2 ( )
The function f(u) has poles of order m=2 at 0 , i and —i . Therefore by using relation (2.2)

and equation (2.9) at s=u (or from the second equation of (3.5) ) we have
e"p(u)
y(t) = Z Res( 7 vz ) u) (3.10)
=A+At+Ae" +Ate" + Ae™" + Ate™,
where A,, A, are arbitrary constants .Hence
y(t) =c,cost+c,sint+c,tcost +c,tsint+c, +cgt, (3.11)
where ¢, = A+ A, ¢, =i(A-A), C;=A+A , C =i(A-A) ¢=Aand ¢, = A,

Since the differential equation (3.6) is of the fourth order then its general solution must contain
only four arbitrary constants therefore substitution y,y® and y“ in the differential equation (3.6)
gives ¢, =0 and c; =1 . Therefore the general solution of the LODE (3.6) is

y(t) =c,cost+c,sint+c,tcost+c,tsint +t, (3.12)
where c,,...,c, are arbitrary constants

Theorem 3.3. For the system of two LODE (2.25) suppose that X, (u) and Y,(u) represent the

Sumudu transforms of the functions x(t) and y(t) respectively |, L[f(t)]_:fllgsg and

L[ f,(t)]= Ezg . Also let %Xl(é) and %Yl(%) are meromorphic and satisfy inequality (1.7).

2
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Then the general solution of the system (2.25) by using the Sumudu transform is completely
determined via the system (2.26) at the point s=u and relation (2.27) .

Proof . Since
Xy (u) = S[x(®)],
Yl(u) = S[y(t)]’
then the general solution of the system (2.25) is gotten by taking S™' to both sides of the two

(3.13)

differential equations in the system (3.13) . Since 1Xl(l) and 1Yl(l) are meromorphic and
u “u u-u
satisfy inequality (1.7) then by taking S and using relation (1.8) we get
N
K =X, 1= Res(; X, (e u,)
j=1

N L1 (3.14)
y()=S7Y,(u)]=>_ Re S(EYl(E) e, u;).
j=1
From the second relation of the duality relation (1.4) we have
1,1
X(u)= " X1(E),
11 (3.15)
Y(u) ==Y, (=),
u-u
where
X(u) =L[x(t ,
(u)=LIx®]I,_, 316

Y(u)=Lly®l,_,,
are the Laplace transforms of x(t) and y(t) respectively in the system (2.25) at s=u .

Therefore by using the two systems (3.15) and (2.34) we get that the general solution (2.26) of the
system (2.25) can be written , by using the Sumudu transform , as follows

x(t):i Res(X(u)e“‘,uj):i Res( e"p(u) ;)

2m

= h, (u)h, (u)> eu’
=0 (3.17)

v =3 Resr(ue® u)=> Res(— 9@
bW ey

where e, , p(u) and qg(u) are defined as in theorem 2.4 .

4. Conclusion

In this paper we introduced a new method for finding the general solution of LODEs and for
systems of two LODEs using Laplace transform and the residues and then we show that the
Sumudu transform can be used exactly equivalently to Laplace transform in finding the general
solutions for these two types of differential equations . This equivalence comes from the relation
between the inverse Sumudu transform and the residues as well as the important relation between
these two integral transforms that is duality relation .
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