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Abstract

In this paper, we have proposed a modified hybrid partitioned VM-method for
minimizing a smooth partially separable nonlinear functions. Numerical results indicate
that the proposed (modified hybrid) method with it's two different versions was efficient

than the standard BFGS formula of VM-method.

Introduction
Our problem is to minimize a nonlinear function of n variables,
Minimize f(x) , xeR* L. )

where f is smooth, and its gradient g is available. We consider iterations
of the form

X =X+, d, (2)
where d, is a search direction and «, is a step length obtained by means of
a one-dimensional search, where the step size «, satisfies the Wolfe —
Powell conditions

f(x, +ed)<f(x)+8adlg. (3a)

g% +d)'d >s5d'9. (30)
where &, <1/2 and ¢, <5, <1. In Newton-type methods the search direction
is of the form

dey=-Blo, (4)
where B,,, IS a nonsingular symmetric matrix. Important special cases are
given by :

By, = Steepest Descent (SD) method

d =V?f(x,)  Newton method
Variable Metric (VM) methods are also of the form (4), but in this case

B,., 1S not only a function of x,, but depends also on B, and x, .
All these methods are implemented so that d, is a descent direction
I.e. so that d| g, < 0, which guarantees that the nonlinear function can be
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decreased by taking a small step along d,. For the Newton-type methods
(4), and optimization problem (1), we can ensure that d, is a descent
direction by defining B, to be positive definite (Nocedal, 1992).

The Hessian approximation matrix B, may be updated according to

the following formula:
B.,=B +U, . (5)

where U, is a nxn correction matrix .There are several strategies for
updating U, . The necessary condition which must be satisfied for this type
of correction matrices may be defined by:

Be(X —X1)=0x — % (6a)
which is known as the secant condition. Two vector definitions follow
below, they are introduced for simplicity and are used repeatedly further
on,

Vie = X = X

Ye = O — G-
Combining the secant condition (6a) with the two vector definitions (6b)
gives a simplified expression of the secant condition

BeaVe =Y, (7
See (Mikael, 2006) and (Nash & Sofer, 1996) for more details.

This condition is required to hold for the updated matrix B,,,. Note

that it is only possible to fulfill the secant equation if
viy,>0, ®)

which is known as the curvature condition (Nocedal, 1999). This condition
ensures the positive definiteness property of the matrix .

Li et al. (Wei et al., 2006) have proposed a modified BFGS method
based on a new Quasi-Newton (QN) equation defined by H,y, =v,, where

y, isthesumof y,_and Av,,and A_isany positive definite matrix.
In the following, we have been given some choices of A ; for
example taking A =m,1, yields:
H.y, =v, Where vy, =y +myv,. ... )
where m, is any positive constant. In fact, Li and Fukushima (Li &

Fukushima, 2001) have given another type of modified BFGS update
which ensures the global convergence property of the general nonlinear
objective function f by using this choice. Unfortunately, their numerical
results show that their modification does not outperform the BFGS method
even by choosing m, to be a very small number.
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Updating formulas for the correction matrix_u,:

The correction matrix U, can be calculated by different approaches.

In fact, one of these approaches is a the class of formulas which will be
used in details within this research. The variable metric (VM)-method is
given by

(BY)BM)" | Yk . g7 ro
=- v Y+ +3 (v.Bv)ww :yv0 . 10
k VIBka y[vk 4V BV IWW, 5 Y,V (10)
y B v
Where w, = Z*~—-—~*~—_ . (11

YeVi Vi B,
and g, is a scalar. This class is known as the Broyden class, (Nash & Sofer,
1996), or as the one-parameter family of updating formulas (Gill et al,
2003).

Mikael in (Mikael, 2006) proposed the following approach: let x, be

a starting point and B, an initial symmetric and positive definite Hessian
approximation matrix. Take an update of the Broyden family which for all
k satisfies that 9, is larger then the critical value for which the B, ., update
turns indefinite. For this type of methods, below there are two different
updating formulas for the correction matrix U, within the Broyden family
of VM-updates. The first is the symmetric rank-one updating formula, and
the second is the well-known BFGS formula.

The symmetric rank-one updating formula is denoted by (SR1) and
belongs to the Broyden family, this will be obtained by setting
_ VY provided that vy, =v,B,v,. However, it dose not belong

4= Vi Y, — Vi By,
to the restricted class, since 9, may be outside the interval [0,1]. The SR1
updating formula for the correction matrix U, takes the following form :
o Symmetric rank one method (SR1)
- (yk — Bkvv)(yk — Bva)T
‘ (Yk - Bva)T Yy
The second updating formula is the BFGS method which was named
after its developers Broyden, Fletcher, Goldfarb and Shanno discovered it's
correction formula in 1970. By setting 4, =0 in (10), the BFGS formula is

obtained. It is believed that it was the most effective updating formula for
the Broyden family. The BFGS updating formula for the correction matrix
U, takes the following form :
 Broyden, Fletcher, Goldfarb and Shanno method (BFGS)
CADICADISS N
Ve By, Yy Vi ’

, Where y, -Byv, =0 ... (12)

U, =-
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Where the vectors y,v are defined earlier.

Self-scaling (QN) methods appear in the mid 1970's. The general
strategy of self-scaling procedures is to scale the Hessian approximation
matrix B, before it is updated at each iteration. This is to avoid the large
difference in the eigen-values of the approximated Hessian of the objective
nonlinear function. A new type of Self-Scaling VM-Methods was
introduced by Al-Bayati (Al-Bayati, 1991). The Hessian approximated
matrix B, of Al-Bayati's self-scaling VM-method can be updated according
to the following updating formula:

BV B, YiYi _ VB,
ViBY, v T e e a4)
where p, is the self-scaling factor. More details for the convergence

analysis of the self-scaling VM-methods may be found in (Nocedal &
Yuan, 1993).

Bk+1 = Bk -

A Modified Hybrid Partitioned VM-Method:
Large-scale problems are frequently formulated in such a way that

F(x):zm:fk(x), xeR",n>k . (15)

k=1
The gradient and the Hessian matrix of the nonlinear function F:R" - R
can be expressed in the form

0W=3a.00. e (16)
60=36,0. an

where the gradient g, (x) and the Hessian matrices G, (x) of the nonlinear
function f:R" - R, 1<k<m, contain non-zero elements, so that they can
be stored in a packed form. Partitioned VM methods use approximations

B..s Of the packed Hessian matrices G, , 1<k <m. Therefore, the following

modified partitioned VM-formulas are investigated :
1: Modified Partitioned Al-Bayati (Al-Bayati, 1991) VM-Update:

n AT A /\/\TA

B«v, v, B nT
Bk” - Bk+p* ykTyk kA ¥ Ak . S Ve Ye>0 L (18)
Ve Y Vv Brv,
N N N T N
Bk+1 = Bk , Vk y; < O .......... (19)

AT A A AT &

where p, = v, Bev, /v, V..
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2: Modified Partitioned Broyden Rank-One Update :

N A N A A N N

" " 1 * " *
Bk =B+ ——— (V=B v )(y,— B« Vk)T :
by — ¢,

bk_ck

0 (20)

n N

Bk+1 = Bk b.—-c|=0 ... (21

Which can be used for indefinite matrices.
AT A A

Where c«=v, Buxv, and b« =v y, . Now, the reduced gradients g,., are

computed and the new approximations of reduced Hessian matrices ém,
1<k <m are obtained by VM-updates using differences questions, i.e.

" 0 " " " Lo S (22)
Vie =X Xe s Yo =0ka= 09k v Y = Yt My Vi
Usually, the latter updating formula works worse but can be useful in
some pathological cases. Therefore, the self-scaling VM-update may be
suggested for this type of method.

However, the idea of the hybrid technique in this proposed method

appears when a negative curvature by <0 appears in some iterations then

updating formula of (18)-(19) are switched to (20)-(21) for calculating B
and will be kept in all subsequent iterations. However, we have suggested
this hybrid strategy which was based on the observations that (18)-(19)
usually fails in the case when too many elements have indefinite Hessian
matrices. Therefore, in that case we have to start with the partitioned Al-
Bayati's self-scaling VM-update (18)-(19). If m >én, where m_ is a

neg — neg

number of element with a negative curvature and ¢ is a threshold value,
then (20)-(21) is used for all elements in all subsequent iterations (we have

recommended ¢ =1/2). The modified updating formula for B given in
(18-21) is identical to the updating formula which was defined in (Luksan
and Spedicato, 2000) with used vy, =y +my, instead of vy, =g9,-9.,.
Finally, as the standard BFGS method, we claim that the modified

proposed method has a global convergence property, proceeding as in
(Byrd et al, 1987).

Modified Hybrid Partitioned VM-Method (MHPVM):
The outline of the Partitioned VM-Methods is as follows :
Step 0 : Choose an initial point x, e R", set k =1. g =1.0E —14,
&, =10E-16, ¢ =1.0E -6, number of function evaluations
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£ =1000
Step 1 : If the hybrid stopping criterion is a satisfied stop : i.e.
ITERM=2-if |, - f,| was less than or equal to &,

ITERM=3-if f, , is less than or equal to ,,
ITERM= 4-if |g,| is lessthan orequal to &,
ITERM=12- if NOF exceeded ¢&.

N

Step 2 : Compute the search direction d, , =-B_, g,.,-
Step 3 : Find a step size «, which satisfy the rules (3a) and (3b).
Step 4 : Generate a new iteration point by x, ., =x,+¢«,d, and calculate the

modified hybrid updating |A3k+1 from (18-21).
Step 5: Set k =k +1 and go to Step 1.

Numerical Results:
In this section, we have reported the proposed numerical results for

the modified hybrid portioned methods MHPVM. We have tested, a
number of well-known test problems using the collection of test problems,
for general sparse and separable unconstrained optimization test problems
from (Luksan and Vlcek, 1999). We have used the dimension of the
problem (n), n=10,100,500,1000. For each problem, These Methods use a
line search technigue which was fully described in (Luksan and Vlcek,
2006) and satisfies the Wolfe conditions as in  which
o, =0.0001, &5, =0.2. For the purpose of these comparisons, we have
examined the following VM-methods:

1. Separable BFGS method (Original) .

2. Modified (1) stands for the Modified hybrid method defined in 3.1

and denoted by MHPVM with p, =1.
3. Modified (2) stands for the modified hybrid method defined in 3.1

AT A A AT &

and denoted by MHPVM with p; = v, Buv, /v, vy, .
Table (5.1) shows the computational results, where the columns have the
following meanings :
Problem : the name of the test problem .

NOI : Number of iterations .

NOF : Number of function evaluations .

f - Value of the objective function at the point x.
g : Value of the gradient function at the point X.

ITERM : the hybrid stopping criterion .
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From Table (5.1) ,we have observed that the average performances
of the modified (1) and modified (2) are better than the original separable

VM-method and especially for our selected test functions.

Table (1): Comparison results of all methods as a total of (15) test

functions.
Standard BFGS Method

N NOI NOF
10 3885 7703
100 5463 10332
500 4091 9164
1000 4065 9003
Total 17504 36202

Modified (1
N NOI NOF

10 381 676
100 694 1592
500 545 952

1000 718 1329
Total 2338 4549

Modified (2
N NOI NOF
10 1407 2663
100 1579 3708
500 1436 3585
1000 1487 3688
Total 5909 13644

The details of these test results are fully described in the subsequent tables

Table (2)

Method Standard BFGS N=10

Problem NOI NOF f g ITERM
1 398 1001 22.3407562 0.163E+01 12
2 654 1001 0.121328883E-03 0.125E-01 12
3 656 1000 0.921077850 0.620E-02 12
4 106 153 0.799804276E-10 0.702E-05 2
5 139 179 0.160886197E-09 0.788E-05 2
6 69 112 3.01929454 0.965E-06 4
7 423 1000 11.4354732 0.217E+01 12
8 57 92 -133.510600 0.233E-05 2
9 374 1002 1.05358706 0.316E-01 12
10 13 23 0.944550269E-13 0.428E-06 4
11 500 1001 0.105143334E-03 0.167E-02 12
12 262 698 1.92460901 0.698E-04 2
13 74 123 -8.05139211 0.877E-06 4
14 74 145 -0.385263183E-01 0.836E-06 4
15 86 173 -0.251419625E-01 0.968E-06 4

Total 3885 7703
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Table (3)

Method Standard BFGS N=100

Problem NOI NOF f g ITERM
1 357 1000 375.772751 0.416E+01 12
2 675 1000 0.417037296E-03 0.229E-01 12
3 642 1000 25.2065330 0.110E-01 12
4 94 126 0.736274182E-10 0.347E-05 2
5 195 259 0.353606890E-08 0.233E-04 2
6 84 145 33.3754297 0.800E-06 4
7 490 725 1039.41617 0.274E-04 2
8 56 57 -98.8560279 0.562E-06 4
9 350 1001 18.9030005 0.500E+00 12
10 7 14 0.512511155E-13 0.667E-07 4
11 500 1001 0.110666145E-05 0.118E-04 12
12 334 1002 2.39784602 0.109E+00 12
13 578 1000 -49.9997833 0.285E-04 12
14 501 1001 -0.133766122E-02 0.207E-01 12
15 600 1001 0.908528629E-02 0.334E-01 12

Total 5463 | 10332
Table (4)

Method Standard BFGS N=500

Problem NOI NOF f g ITERM
1 313 1000 1950.53768 0.506E+01 12
2 654 1000 0.190687684E-03 0.178E-01 12
3 615 1000 133.781367 0.107E-01 12
4 143 179 0.407524183E-10 0.174E-05 2
5 224 298 0.116517131E-08 0.108E-04 2
6 88 151 168.291764 0.134E-05 2
7 83 196 163899.853 0.740E-03 2
8 34 54 90.9672145 0.713E-06 4
9 406 1002 97.5181572 0.102E+01 12
10 6 12 0.315195199E-13 0.251E-06 4
11 132 265 0.101551041E-07 0.100E-05 4
12 334 1002 2.66906251 0.436E-01 12
13 390 1001 -218.394928 0.162E+01 12
14 335 1002 0.311487476 0.209E-01 12
15 334 1002 0.120585472 0.261E-01 12

Total 4091 | 9164
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Table (5)
Method Standard BFGS  N=1000
Problem NOI NOF f g ITERM
1 318 1002 3920.15325 0.250E+01 12
2 645 1000 0.1346751E-03 0.171E-01 12
3 592 1001 269.500609 0.302E-01 12
4 151 190 0.6588063E-10 0.233E-05 2
5 229 300 0.1429916E-08 0.119E-04 2
6 90 151 336.937181 0.225E-05 2
7 106 265 761774.954 0.242E-02 2
8 34 55 316.436141 0.433E-06 4
9 468 1002 196.256249 0.228E+01 12
10 5 10 0.7838838E-11 0.252E-06 4
11 10 21 0.1290320E-08 0.992E-06 4
12 334 1002 2.68842398 0.300E-01 12
13 414 1000 -423.279033 0.514E+01 12
14 335 1002 0.336253881 0.155E-01 12
15 334 1002 0.128686577 0.194E-01 12
Total 4065 9003
Table (6)
Method modified (1) N=10
Problem | NOI | NOF f g ITERM
1 82 123 0.330103577E-16 0.212E-06 3
2 36 71 0.118471352E-13 0.886E-06 4
3 34 64 0.920931745 0.450E-06 4
4 11 21 0.278029262E-12 0.360E-06 4
5 20 40 0.291894533E-11 0.950E-06 4
6 11 16 3.01929454 0.795E-06 4
7 33 65 10.2327785 0.863E-06 4
8 13 15 -133.510600 0.608E-06 4
9 90 180 0.107765879 0.538E-06 4
10 1 2 0.00000000 0.000E+00 3
11 11 18 0.445467779E-13 0.418E-06 4
12 9 13 1.92460901 0.916E-11 4
13 17 27 -8.05139211 0.739E-06 4
14 8 13 -0.385263183E-01 | 0.114E-07 4
15 5 8 -0.251419625E-01 | 0.607E-06 4
Total 381 676
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Table (7)
Method modified (1) N=100
Problem | NOI | NOF f g ITERM
1 199 678 7.14632070 0.386E-06 4
2 39 73 0.218549203E-13 0.487E-06 4
3 34 53 25.2061295 0.106E-06 4
4 14 26 0.534905949E-12 0.458E-06 4
5 30 56 0.176827215E-11 0.611E-06 4
6 23 37 31.6908719 0.119E-06 4
7 202 405 1059.36872 0.713E-05 2
8 16 30 -98.8560279 0.790E-06 4
9 68 113 1.07765879 0.535E-06 4
10 1 2 0.00000000 0.000E+00 3
11 23 43 0.156657278E-13 0.251E-06 4
12 8 13 1.92402295 0.178E-08 4
13 18 31 -49.9997833 0.393E-06 4
14 13 21 -0.379985307E-01 | 0.199E-06 4
15 6 11 -0.245807867E-01 | 0.858E-07 4
Total 694 | 1592
Table (8)
Method modified (1) N=500
Problem | NOI | NOF f g ITERM
1 106 171 38.3383609 0.146E-06 4
2 35 65 0.224048441E-13 | 0.970E-06 4
3 32 51 133.780980 0.956E-06 4
4 13 22 0.942820192E-12 | 0.723E-06 4
5 27 53 0.602713456E-11 | 0.823E-06 4
6 20 31 166.607206 0.947E-06 4
7 25 37 163899.853 0.258E-04 2
8 88 178 90.9672145 0.796E-07 4
9 122 211 5.38829394 0.568E-06 4
10 1 2 0.00000000 0.000E+00 3
11 24 45 0.356423455E-08 | 0.374E-06 4
12 8 15 1.92401620 0.495E-06 4
13 21 36 -218.910580 0.283E-06 4
14 15 21 -0.379923068E-01 | 0.382E-06 4
15 8 14 -0.245743245E-01 | 0.627E-08 4
Total 545 952
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Table (9)

Method modified (1) N=1000

Problem | NOI | NOF f g ITERM
1 100 167 89.5345927 0.178E-06 4
2 40 75 0.447527768E-13 | 0.783E-06 4
3 33 56 269.499543 0.442E-06 4
4 17 30 0.122409430E-11 | 0.962E-06 4
5 27 52 0.105565975E-10 | 0.764E-06 4
6 20 32 335.252624 0.443E-06 4
7 26 40 761774.954 0.276E-04 2
8 298 597 316.436141 0.207E-05 2
9 71 120 11.1589533 0.450E-06 4
10 1 2 0.00000000 0.000E+00 3
11 27 53 0.806589238E-09 | 0.697E-06 4
12 9 15 1.92401599 0.811E-06 4
13 26 50 -427.404476 0.761E-06 4
14 14 22 -0.379921091E-01 | 0.308E-06 4
15 9 18 -0.245741193E-01 | 0.140E-07 4

Total 718 | 1329
Table (10)

Method modified (2) =10

Problem | NOI | NOF f g ITERM
1 89 140 0.168569223E-15 | 0.456E-06 4
2 36 51 0.182521334E-13 | 0.985E-06 4
3 29 46 0.920931745 0.915E-06 4
4 10 20 0.396688126E-12 | 0.409E-06 4
5 16 29 0.547361777E-12 | 0.268E-06 4
6 11 16 3.01929454 0.586E-06 4
7 515 | 1000 10.2699784 0.413E+00 12
8 11 14 -133.510600 0.664E-07 4
9 60 105 0.107765879 0.677E-06 4
10 1 2 0.00000000 0.000E+00 3
11 8 13 0.683259631E-14 | 0.149E-06 4
12 500 | 1001 1.95538685 0.124E+01 12
13 21 36 -8.05139211 0.300E-06 4
14 9 12 -0.385263183E-01 | 0.424E-07 4
15 91 178 | -0.251419625E-01 | 0.949E-06 4

Total 1407 | 2663
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Table (11)

Method modified (2)  N=100

Problem | NOI | NOF f g ITERM
1 275 | 1000 129.808266 0.215E+02 12
2 36 48 0.189528096E-13 0.743E-06 4
3 29 46 25.2061295 0.649E-06 4
4 10 18 0.507411689E-12 0.343E-06 4
5 18 32 0.180055648E-13 0.582E-07 4
6 21 34 31.6908719 0.330E-06 4
7 162 328 1057.85018 0.228E-05 2
8 13 16 -98.8560279 0.843E-06 4
9 64 104 1.07765879 0.448E-06 4
10 1 2 0.00000000 0.000E+00 3
11 14 25 0.402468685E-14 0.764E-07 4
12 400 | 1000 2.53403514 0.249E+01 12
13 24 38 -49.9997833 0.781E-06 4
14 11 16 -0.379985307E-01 | 0.486E-06 4
15 501 | 1001 | -0.322322042E-02 | 0.245E-01 12

Total 1579 | 3708
Table (12)

Method modified (2) N=500

Problem | NOI | NOF f g ITERM
1 353 | 1000 371.225742 0.220E+02 12
2 37 59 0.537046032E-12 | 0.817E-06 4
3 24 38 133.780980 0.450E-06 4
4 11 20 0.336619161E-12 | 0.238E-06 4
5 18 31 0.738398667E-13 | 0.173E-06 4
6 27 42 166.607206 0.147E-06 4
7 11 15 163899.853 0.769E-07 4
8 95 169 90.9672145 0.426E-05 2
9 66 107 5.38829394 0.428E-06 4
10 1 2 0.00000000 0.000E+00 3
11 27 49 0.725609352E-09 | 0.853E-06 4
12 334 | 1000 2.67937417 0.163E+01 12
13 20 35 -218.910580 0.654E-06 4
14 11 17 -0.379923068E-01 | 0.785E-06 4
15 401 | 1001 0.115914327 0.172E+00 12

Total 1436 | 3585
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Table (13)

Method modified (2) N=1000

Problem | NOI | NOF f g ITERM
1 420 | 1000 3928.83427 0.167E+02 12
2 39 55 0.381233140E-14 | 0.588E-06 4
3 24 35 269.499543 0.219E-06 4
4 12 21 0.660759524E-12 | 0.354E-06 4
5 19 31 0.245209052E-12 | 0.333E-06 4
6 25 40 335.252624 0.695E-06 4
7 12 16 761774.954 0.437E-06 4
8 158 310 316.436141 0.251E-05 2
9 65 106 10.7765879 0.278E-06 4
10 1 2 0.00000000 0.000E+00 3
11 6 11 0.126662417E-08 | 0.670E-06 4
12 334 | 1001 2.69763968 0.159E+01 12
13 24 40 -427.404476 0.594E-06 4
14 13 18 -0.379921091E-01 | 0.154E-06 4
15 335 | 1002 0.126959008 0.113E+00 12

Total 1487 | 3688

Conclusions and Discussions:

In this paper, we have proposed two versions of a modified hybrid
VM-method, denoted by MHPVM, for solving unconstrained minimization
nonlinear problems. The computational experiments show that the modified
approaches given in this paper are successful. We claim that the two
modified (1) and (2) are better than the original formula. Namely, for the

modified (1) and (2) there are about (13 —33)% improvements in NOI and
there are about (12 —37)% improvement in NOF, overall, the calculations
and for different dimensions.

Table (14): Relative efficiency of the different methods discussed in the
pDaper.

Standard BFGS

Modified (1)
Modified (2)

Test Problems for General Sparse & Partially Separable
Unconstrained Optimization

In (Luksan & Vlcek, 1999), Test problems for general sparse and
partially separable unconstrained optimization. We seek a minimum of
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either a general objective function f(x) or a partially separable objective
function

F=f(x ., xeR

from the starting point X . For positive integers k & |, we use the notation
div (k,1) for integer division, i.e., maximum integer not greater than V
and mod (k,1) for the remainder after integer division, i.e.,
mod(k,l):l(%—div(k,l)). The description of individual problems is as
follows:

Problem 1: Chained Wood function.

() = 3000, — )2 + (% ~1)2 +900¢, —x,,)°

j=L

+ (X _1)2 +10(%; + X, — 2)2 +(x — Xi+2)2 /10]

i=2j, k= (n-2)/2
x. =-3, mod(i,2) =1, i <4, x =—2, mod(i,2) =1, i = 4

X, =—1, mod(i,2) =0, i<4, x, =0, mod(i,2) =0, i~ 4
Problem 2: Chained Powell singular function.

f(x)= i[(xi—l + Xi)2 +5(X;,, — Xi+2)2 +(% — 2xi+1)4 +10(x;_, — Xi+2)4]
=2 k= (n-2)/2
x. =3, mod(i,4) =1, x. =—1, mod(i,4) = 2

x. =0, mod(i,2) =3, x, =1, mod(i,4) =0
Problem 3: Chained Cragg and Levy function.

K

f(x)= Z[(eXF1 —%)* +100(X, = X,,1)° +tan* (X, = Xi.0) + X0y + (X, —1)°]
=

i=2j, k=(n-2)/2

x =1 i=1, x=2,i-1
Problem 4: Chained Cragg and Levy function.

TUI 5 R
i=1
p: 7/3, XO :Xn+1:O

x = -1, i>1
Problem 5: Generalized Broyden banded function.
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p

(2+5x7)% +1+ D" x; (1+X,)

jed;

(=3

p= 7/3, J;={j:max (Li—5)<min (n,i+1)}

X, =-1 121
Problem 6: Seven — diagonal generalization of the Broyden tridiagonal
function.

n n/2
f (X) = 2”(3_ 2Xi )Xi —Xiq — X +1”p + Z”Xi + Xi+n/2||
i=1 i=1

p=7/3, X,=X,,=0

X, =-1 i>1
Problem 7: Sparse modification of the Nazareth trigonometric function.
2
f(x) =%Z(n+i— D (asinx; + by cosxj)j

i=1 jed,
a; = 5[1+mod (i,5) +mod (j,5)], b, = (i+j)/10
3, = {j:max(Li-2) <min(n,i+2)}u{j:|j-i|=n/2}
x =1/n, i>1
Problem 8: Another trigonometric function.
f(x)= %Z[i(l—cos X;)— > (a; sinx; + by cos xj)j

i=1 jed,
a; = 5[1+mod (i,5)+mod (j,5)], b, = (i+j)/10
3, = {j:max(Li-2) <min(n,i+2)}u{j:|j-i|=n/2}
x =1/n, i>1
Problem 9: Chained Wood function.

2
5 5
f(x)= Z{exp P[H Xinj J +10(Z o —10—11]
jed j=1 j=1

+10(X, 4%, 5 —5X 1% — 4, ¥ +10(x%, + %2, +1—/13)2}
4, =-0.002008, A, = —0.001900, A, = —0.000261
j ={i, mod(i,5) = 0}
. =—2, mod(i5)=1, i<2, x =-1, mod(i,5)=1 i>2
x. =2, mod(i5)=2, i<2, x =-1 mod(i,5)=2, i=2
x. =2, mod(i,5)=3, x, =—1, mod(i,5) =4
x, =—1, mod(i,5) =0
Problem 10: Generalization of the Brown2 function.
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()= 200 + ()]

x. =—1.0, mod(i,2) =1, x. =1.0, mod(i,2) =0
Problem 11: Discrete boundary value problem.
n 2
f(X) =D [2% — X, — X, +h*(x, +ih+1)°/2]
i=1
h=1/(n+1), x,=X,,, =0
x. =ih (1—ih), i>1
Problem 12: Discretization of a variational problem.
f (X) = ZZ|:Xi (Xi - Xi+1)/ h"'ZhZ:[(exi+1 —e" )/(Xm - Xi)]:|
i=1 i=0
h=1/(n+1), x,=X,,, =0

x. =ih (1—ih), i>1
Problem 13: Banded trigonometric problem.

f(x)=>_i[(1—cos x;)+sin X,_; —sin x;,]
i=1
Xo = Xpyy =0, >2i =1/n,i>1
Problem 14: Variational problemLl.
This problem is a finite analogue of a variational problem defined as
a minimization of the functional:

f(x)= jE X2 (t) + e —1} dt

where x(0)=0 and x(1)=0. We use the trapezoidal rule together with 3-
points finite differences on a uniform grid having n+1 jnterval nodes. The
starting point is given by the formula

x. =x(t,) =ih (1—ih), where h=1/ (n+1).
Problem 15: Variational problem2.

This problem is a finite difference analogue of a variational problem
defined as a minimization of the functional:

f(x) = j[xz(t) — X (t)— 2t x(t)] dt

where x(0)=0 and x(1)=0. We use the trapezoidal rule together with 3-
points finite differences on a uniform grid having n+1 jnterval nodes. The
starting point is given by the formula

x. =x(t,) =ih (1—ih), where h=1/ (n+1).
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