SOME PROPERTIES OF g* COMPLETELY REGULAR SPACES

Taha* H .J.Sufyan* A. W.Suham** M.A.* Dep. of Mathematics, College of computer sciences and Math.
University of TikritUniversity of Tikrit** Dep. of Mathematics, College of science ,University of Kirkuk
received: 2010/11/4Accepted:2011/3/8

Abstract

In this paper, we introduced a new definitions

g, s, g, g, s, g^* , s, g^* , g^* s of completely regular spaces respectively and g, s, g, g, g, g^* , g^* , g^* s of regular spaces respectively. We study some relations among them and we show the hereditary and topological properties of its.

Introduction

In 1970,N. Levine introduced a new and significant notion in General Topology, namely the notion of a generalized closed set. A subset A of a topological space (X,τ) is called *generalized closed*, (briefly g-closed), if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) . This notion has been studied extensively in recent years by many topologists. The investigation of generalized closed sets has led to several new and interesting concepts. This notion has been studied extensively in recent years by many topologists because generalized closed sets are not only natural generalizations of closed sets.

(P.Bhattacharya and B.K. Lahiri,1987 and S.P.Arya ,1990), investigated semi g closed set, g semi closed set respectively. (P.Sundaramand A.Pushpalatha, 2001, Al-Ddoury A.F, 2009 and A.I.El-Maghrabi & A.A.Nasef , 2009) introduced and investigated strongly generalized closed sets ,semi strongly generalized closed set and strongly generalized semi closed , Respectively.We study all definitions was in abstract , Relations and some properties.

2. Preliminaries

Definitions 2.1: A subset A of a topological space is said to be :

(1) Generalized closed (briefly g-closed) if $cl(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X.(Jones and Bartlett)

- (2) Semi generalized closed (briefly sg-closed) if scl(A) ⊆ G whenever A ⊆ G and G is semi open in X.(N.Levine ,1970)
- (3) Generalized semi closed (briefly gs-closed) if scl(A) ⊆ G whenever A ⊆ G and G is open in X.(Alhawez,Z.T.(2008))
- (4) strongly generalized closed (briefly g^{*}closed) if cl(A) ⊆ G whenever A
 ⊆ G and G is g open in X .(Alshamary, A.G. (2008))
- (5) semi strongly generalized closed (briefly s g^* closed) if scl(A) \subseteq G whenever A \subseteq G and G is sg open in X .(Al-Ddoury A.F.(2009))
- (6) strongly generalized semi closed (briefly g*s-closed) if scl(A) ⊆ G whenever A⊆G and G is g-open in X (P.Sundaram, A.Pushpalatha, 2001).

The complements of the g-closed (sg-closed,gs-closed,g*closed, g*closed, g*closed and g*s-closed) sets are called g-open(sg- open,gs- open, g* – open, s g* – open and g*s- open)sets respectively.

Definitions 2.2: (J.Dugungji) A topological space (X,T) is called :

(1) completely regular if for every closed $F \subseteq X$ and $x \in X \setminus F$, there is a continuous function

 $f: X \Rightarrow [0,1]$, such that f(x) = 0 and $f(F) = \{1\}$.

(2) Regular space iff $\forall x \in X$ and $\forall F$ closed in X, $x \notin F$, $\exists U, V \in \tau$, such that $x \in V$ and $F \subseteq V \ni U \cap V = \phi$.

<u>3. Some Properties and Relations:</u>

Definitions 3.1: (J.Dugungji) A topological space (X,T) is called:

(1) g Complete regular space (briefly g [CR]) if g closed set F in X and

 $x \in X$, $x \notin F$; Then there exists a continuous mapping $g: X \to [0,1]$ such that $g(F) = \{1\}$ and g(x) = 0.

- (2) g regular space (briefly g [R]) iff the g closed set A and point $x \notin A$ there exist disjint g open sets U, $V \in \tau$, such that $A \subseteq U$ and $x \in V$
 - $\ni U \cap V = \phi.$
- (3) semi g completely regular (briefy sg [CR]) if for every semi g closed set $F \subseteq X$ and $x \in X \setminus F$, there is a continuous function $f : X \rightarrow [0,1]$, such that f(x) = 0 and $f(F) = \{1\}$.

- (4) semi g regular (briefy sg [R]) iff the sg closed set A and point $x \notin A$, There exists disjoint semi g open sets $U, V \subseteq \tau$ such that $A \subseteq U$ and $x \notin V \rightarrow U \cap V = \phi$.
- (5) g semi completely regular (briefy gs [CR]) if for every g semi closed set $F \subseteq X$ and $x \in X \setminus F$, there exists a continuous function $f : X \rightarrow [0,1]$, such that f(x) = 0 and $f(F) = \{1\}$.
- (6) g semi regular (briefy gs [R]) iff the gs closed set A and point $x \notin A$, There exist disjo int g semi open sets $U, V \in \tau$ such that $A \subseteq U$ and $x \notin V$, such that $U \cap V = \phi$.
- (7) g^* Complete regular space (briefly g^* [CR]) iff g closed set F in X and $x \in X$, such that $x \notin F$, Then there exists a continuous mapping $g: X \rightarrow [0,1]$, such that $g(F) = \{1\}$ and g(x) = 0.
- (8) g^* regular space (briefly $g^* [R]$) if for each g^* closed set A and point $x \notin A$ there exist disjoint g^* open sets $U, V \subseteq X$, such that $A \subseteq U$ and $x \in V$ $U \cap V = \phi$

(9) semi g^{*} completely regular (briefy sg^{*} [CR]) if for every semi g^*

closed set $F \subseteq X$ and $x \in X \setminus F$, there exists a continuous function $f: X \rightarrow [0,1]$, such that f(x) = 0 and and $f(F) = \{1\}$.

(10) semi g^{*}regular (briefy sg^{*} [R]) if for each sg^{*}closed set A and each point $x \notin A$; There exist disjo int semi g^{*}open sets $U, V \subseteq X$ such that $A \subseteq U$ and $x \notin V$.

- (11) g*semi completely regular (briefy g*s [CR]) if for every g semi closed set $F \subseteq X$ and $x \in X \setminus F$, there is a continuous function $f : X \rightarrow [0,1]$, such that f(x) = 0 and $f(F) = \{1\}$.
- (12) g*semi regular (briefy g*s [R]) if for each g*s closed set A and each point $x \notin A$; There exists disjo int g*semi open sets $U, V \subseteq X$ such that $A \subseteq U$ and $x \notin V$.

Theorem 3.2: Every regular space is g regular space.

Proof: Let (X, τ) be regular space then $\forall x \in X$ and $\forall F$ closed in $X, x \notin F \exists U, V \in \tau$ such that $x \in V, F \subseteq V, U \cap V = \phi$

But every closed set [3].

Then (X, τ) is g regular.

Theorem 3.3: Every g [CR] space is g [R] space.

Proof : Let (X,τ) is g [CR] space. Let F is g closed set in X and let $x \in X$ be a point of X not in F

, That is $x \in X - F$. By g completely, there exists a continuous mapping $f^*: X \rightarrow [0,1]$ such that $f^*(F) = \{1\}$ and $f^*\{x\} = 0$

Since [0,1] is T_2 – space then there exists two disjoint g open sets

H and G such that $G \cap H = \phi$, But f^* is a continuous map then

$$f^{*-1}(H)$$
 and $f^{*-1}(G)$ are disjoint g open sets such that $f^{*-1}(G) \cap f^{*-1}(H) = \phi$

$$:: f^*(x) = 0 \in G \Longrightarrow x \in f^{*-1}(G) \text{ and } f^*(F) = \{l\} \in H \Longrightarrow F \subseteq f^{*-1}(H)$$

Now are g open sets containing x and F respectively

It follows that (X, τ) is g[R]. The converse is not true as in (3.4) Exampel 3.4: Let $X = \{a, b, c\}$, and $\tau = \{\phi, X, \{a\}, \{b, c\}\}$.

The only closed sets are X, ϕ , $\{a\}$, $\{b, c\}$ Let the point $a \in \{a\}$ and the closed set $F = \{b, c\} \subseteq \{b, c\}$ open and $\{a\} \cap \{b, c\} = \phi$, Then (X, τ) is [R]. But every closed set is (g closed, sg close gs closed, g*closed, g*s closed, sg*closed) (Al-Ddoury A.F.(2009), (Alhawez,Z.T.(2008)) and (Alshamary, A.G. (2008))). Then (X, τ) is g[R], sg[R] gs[R], g*[R], g*s[R], sg*[R] respectively. Now to show (X, τ) is not g[CR] its very easy to show that because there is no continuous mapping from X to [0,1].

Theorem 3.5: A topological space (X, τ) is g [CR] iff $\forall x \in X$ and \forall g open set G containing x, there exists a continuous mapping $f^*: X \rightarrow [0,1]$, such that $f^*(x) = 0$ and $f^*(y) = \{1\}, \forall y \in X - G$. Proof : Let X be g [CR] and G is g open set containing $x \in X, x \in G$,

Then X – G is g closed set of X such that $x \notin X - G$. From definition of g [CR], there exists a continuous mapping f^{*} from X int o [0,1] such that f^{*}(x) = 0 and f^{*}(G – X) = {1}.

 $\Leftarrow \text{Let } F \text{ be g closed subset of } X, x \text{ any point such that } x \notin F \Longrightarrow X - F \text{ is } g^*$ containing x, By hypothesis there exists a continuous mapping f^* from X int o [0,1] such that $f^*(x) = 0$ and $f^*(y) = \{1\} \forall y \in X - (X - F) = F$ Then (X, τ) is g [CR].

Theorem 3.6: Let (X, τ) be g [CR] and (Y, τ^*) is a subregular space of (X, τ) Then a subset A is g closed in Y iff there exists a g closed set F in X such that (1) $A = F \cap Y$ (2) for every $A \subset Y$, $cl_v(A) = cl_v(A \cap Y)$ Proof: $(1) \Leftrightarrow Y - A \text{ is g} \text{ open in } Y$ \Leftrightarrow Y – A = G \cap Y (from some g open subset G of X) $\Leftrightarrow A = Y - (G \cap Y) = (Y - G) \cup (Y - Y)$ \Leftrightarrow A = Y - G sin ce (Y - Y = ϕ) \Leftrightarrow A = Y \cap G' (Where G' denoted the complement of G in X) \Leftrightarrow A = Y \cap F (Where F = G' is g closed in X sin ce G is g open in X) (2) $cl_{v}(A) = \bigcap \{k : k \text{ is g closed in } X \text{ and } A \subset k \}$ = $\bigcap \{F \cap Y : F \text{ is g closed in } X \text{ and } A \subset F \cap Y \text{ by } (1) \}$ = $\bigcap \{F \cap Y : F \text{ is g closed and } A \subset F\}$ = $\left[\bigcap \{F : F \text{ is g closed in } X \text{ and } A \subset F \} \bigcap Y \right] = cl_x(A) \bigcap Y.$ Theorem 3.7: g Completey regular is a hereditary property. Proof : Let (Y, τ^*) be a subspace of g completely regular (X, τ) . To show that (Y, τ^*) is also g completely regular. Let F^* be g closed subset of τ^* and y be a point of Y such that $y \notin F^*$. Since F^* is g closed set of $\tau^* \exists$ g closed set F of X such that $F^* = Y \cap F$, Also $y \notin F^* \Rightarrow y \notin Y \cap F \Rightarrow y \notin F$ ($\because y \in Y$). And $y \in Y \Rightarrow y \in X$. Thus F is a g closed subset of X and y is a point of X such that $y \notin F$. \therefore (X, τ^*) g completely regular, hence there exists a continuous mapping f of X int o [0,1] such that f(y) = 0 and $f(F) = \{1\}$. Let g_r denote the restriction of f to Y. (the restriction of continuous function is continuous [6]) g_{z} is a continuous mapping

of Y into [0,1]. Now by definition of $g_r g_r(x) = f(x) \quad \forall x \in Y$ Hence $f(y) = 0 \Rightarrow g_r(y) = 0$ and since $f(x) = 1 \quad \forall x \in F$ and $F^* \subset F$, we have $g_r(x) = f(x) = 1 \quad \forall x \in F^*$ So that $g_r[F^*] = \{1\}$..

Thus we have shown that for each g closed set subset F^* of Y and each point $y \in Y - F^*, \exists a$ continuous mapping g_r of Y int o [0,1] such that $g_r(y) = 0$ and $g_r(F^*) = \{1\}$,

Hence the space (Y, τ^*) is g completely regular.

Theorem 3.8: g completely regular is a topological property.

Proof : Let (X, τ) be a g completely regular space and let (Y, τ^*) be a homeomorphic to (X, τ) under a homeomorphism f. To show that (Y, τ^*) is also g completely regular. Let F be a g closed set int o Y and let y be a point of Y such that $y \notin F$. Since f is one to one, there exists a point $x \in X$ such that $f(x) = y \Leftrightarrow x = f^{-1}(y)$. Again sin ce f is a continuous mapping, $f^{-1}[F]$ is g closed set of X Farther $y \notin F \Rightarrow f^{-1}(y) \notin f^{-1}[F] \Rightarrow x \notin f^{-1}[F]$. Hence by g completely regular of X, there exists a continuous mapping f^* of X int o [0,1] such that $f^*[f^{-1}(y)] = f^*(x) = 0$ and $f^*[f^{-1}[F]] = \{1\}$ That is $(f^* \circ f^{-1})(y) = 0$ and $(f^* \circ f^{-1})[(F)] = \{1\}$, Since f is homeomorphism, f^{-1} is a continuous mapping of Y onto X. Also f^* is a continuous mapping

of X int o[0,1]. it follows from theorem

(The composition of continuous function is also continuous[6]) that $f^* \circ f^{-1}$ is a continuous mapping of Y int o[0,1]. Thus we have shown that for each g closed set F of Y and each point $y \in Y - F$, there exists a continuous mapping $h = f^* \circ f^{-1}$ of Y int o[0,1] such that h(y) = 0 and $h(F) = \{1\}$. Then (Y, τ^*) is g completely regular space and hence g completely regular is a topological property.

Theorem 3.9: Every regular space is sg regular space.

Proof:

Let (X, τ) be regular space then $\forall x \in X$ and $\forall F$ closed in $x, x \notin F$, there exist $U, V \in \tau$, such that $x \in V F \subseteq V$ such that $\ni U \cap V = \phi$.

But every closed set is sg closed set, [3]. Then (X, τ) is sg regular.

Theorem 3.10: Every sg [CR] space is sg [R] space.

Proof :

Let (X, τ) is sg [CR] space, then F is semi g closed set in X and $x \in X$ $\ni x \notin F$, Then there exists a continuous function $f^* : X \to [0,1]$ such that $f^*(F) = \{1\}$ and $f^*\{x\} = 0$. Since [0,1] is T_2 – space

Then there exists a two disjoint semig open sets G and H such that $1 \in H$ and $0 \in G$, $\ni G \cap H = \phi$. But f^{*} is continuous then f^{*-1}(H) and f^{*-1}(G) are disjoint semig open sets, such that f^{*-1}(G) \cap f^{*-1}(H) = \phi. $\therefore f^*(x) = 0 \in G \Rightarrow x \in f^{*-1}(G)$ And $f^*(F) = \{1\} \in H \Rightarrow F \subseteq f^{*-1}(H)$

Now $f^{*-1}(H)$, $f^{*-1}(G)$ are semig open sets containing x and Frespectively It follows that (X, τ) is s g [CR]. The converse is not truo see (3.4). **Theorem 3.11**: A topological space (X, τ) is sg [CR] iff

 $\forall x \in X \text{ and } \forall \text{ semi g open } G \text{ containing } x \text{ there exists a continuous}$ mapping f^* from X int o [0,1] such that $f^*(x) = 0$ and $f^*(y) = 1, \forall y \in X - G$ Proof :

Let (X, τ) is sg [CR] space and G is semi g open set continuing x,X-G is semi g closed set of X such that $x \notin X - G$ from defention of sg [CR] \Rightarrow there exists a continuous mapping f^{*} from X int o [0,1] such that $f^*(x) = 0$ and $f^*(G - X) = \{1\}$

⇐ Let F be semi g closed subset of X, x any point such that $x \notin F$ ⇒ X – F is semi g open set containing x, By hypothesis

there exists a continuous mapping f^* From X int o [0,1] such that $f^*(x) = 0$ and $f^*(y) = \{1\}, \forall y \in X - (X - F) = F$, Then (X, τ) is sg [CR].

Theorem 3.12: Let (X, τ) be sg [CR] and (Y, τ^*) is a sub sg [CR] of

 (X,τ) Then a subset A of (Y,τ^*) is semi g closed set in Y iff

there exists a set F in (X, τ) is semi g closed in X such that

(1)
$$A = F \cap Y$$
 (2) for every $A \subset Y$, $cl_y(A) = cl_x(A \cap Y)$

Proof:

 $(1) \Leftrightarrow Y - A$ is semi g open in Y

 \Leftrightarrow Y – A = G \cap Y (for some semig open subset G of X)

$$\Leftrightarrow A = Y - (G \cap Y) = (Y - G) \cup (Y - Y)$$

 \Leftrightarrow A = Y - G sin ce(Y - Y = ϕ)

 \Leftrightarrow A = Y \cap G' (Where G' denoted the complement of G in X)

 \Leftrightarrow A = Y \cap F (Where F = G' is semi g closed in X sin ce G is semi g open in X)

(2) $\operatorname{cl}_{v}(A) = \bigcap \{k : k \text{ is semi g closed in } X \text{ and } A \subset k \}$

= $\bigcap \{F \cap Y : F \text{ is semi g closed in } X \text{ and } A \subset F \cap Y \}$ by(1)

= $\bigcap \{F \cap Y : F \text{ is semi g closed and } A \subset F \}$

= $\left[\bigcap \{F: F \text{ is semi g closed in } X \text{ and } A \subset F \} \cap Y \right] = cl_x(A) \cap Y$.

Theorem 3.13: semi g completely regular is a hereditary property. Proof :

Let (Y, τ^*) be a subspace of semi g completel regular (X, τ) . To show that (Y, τ^*) is also semi g completely regular.

Let F^* be semi g closed subset of τ^* and y be a point of Y such that $y \notin F^*$. Since F^* is semi g closed of τ^* then there exists semi g closed set

F of X such that $F^* = Y \cap F$, Also $y \notin F^* \Rightarrow y \notin Y \cap F \Rightarrow y \notin F$ (:: $y \in Y$).

And $y \in Y \Rightarrow y \in X$. Thus F is a semi g closed subset of X and y is a point of X such that $y \notin F$. Hence by semi g completely regular of X, there exists a continuous mapping f of X into [0,1] such that f(y)=0 and $f(F)=\{1\}$. Let g_r denote the restriction of f to Y. (the restriction of a continuous function is continuous[6]) g_r is a continuous is mapping of Y into [0,1]. Now by definition of g_r $g_r(x)=f(x) \forall x \in Y$. Hence $f(y)=0 \Rightarrow g_r(y)=0$ and sin ce $f(x)=1 \forall x \in F$ and $F^* \subset F$, we have $g_r(x)=f(x)=1 \forall x \in F^*$. So that $g_r[F^*]=\{1\}$

Thus we have shown that for each semi g closed of τ^* subset F^*

of Y and each point $y \in Y - F^*$ there exists a continuous mapping g_r

of Y int o [0,1] such that, $g_r(y) = 0$ and $g_r(F^*) = \{1\}$

Hence the space (Y, τ^*) is semi g completely regular.

Theorem 3.14: semi g completely regular is a topological property. Proof :

Let (X, τ) be a semi g completely regular space and let $(Y, \tau^*)_{be}$ (X,τ) under a homeomorphism f. a homeomorphic to To show that (Y, τ^*) is also semi g completely regular. Let F be a semi g closed set into Y and let y be a point of Y such that $y \notin F$.Since f is one to one, there exists a point $x \in X$ such that $f(x) = y \Leftrightarrow x = f^{-1}(y)$. Again since f is a continuous mapping $f^{-1}[F]$ is semi g closed set of X. Farther $y \notin F \Rightarrow f^{-1}(y) \notin f^{-1}[F] \Rightarrow x \notin f^{-1}[F]$, Hence by semi g completely regular of X, there exists a continuous mapping f^* of X int o [0,1], such that $f^{*}[f^{-1}(y)] = f^{*}(x) = 0$ and $f^{*}[f^{-1}[F]] = \{1\}$, That is $(f^{*} \circ f^{-1})(y) = 0$ and $(f^* \circ f^{-1})(F) = \{1\}$ Since f is homeomorphism, f^{-1} is of Y onto X. Also f^* is a continuous mapping of X into [0,1]. it follows theorem (The composition of continuous map is also continuous [6]) that is $f^* \circ f^{-1}$ is a continuous mapping of Y int o[0,1]. Thus we have shown that for each semi g closed F of Y and each point $y \in Y - F$, There exists a continuous mapping $h = f^* \circ f^{-1}$ of Y int o[0,1] such that h(y) = 0 and $h(F) = \{1\}$. Then (Y, τ^*) is semi g completely regular space and hence semi g completely regular is a topological property.

Theorem 3.15: Every regular space is g s regular space.

Proof :

Let (X, τ) be regular space then $\forall x \in X$ and $\forall F$ closed in $X, x \notin F$, such that $U, V \in \tau$, such that $x \in V, F \subseteq V$ such that $U \cap V = \phi$.

But every closed set is g s closed set [6]. Then (X, τ) is g s regular.

Theorem 3.16: Every gs [CR] space is gs [R] space.

Proof:

Let is (X, τ) gs [CR] space, then F is g semi-closed set *in* X and $x \in X$ such that $x \notin F$, Then there exists a continuous function

 $f^*: X \rightarrow [0,1]$ such that $f^*(F) = \{1\}$ and $f^*\{x\} = 0$

Since [0,1] is T_2 – space Then there exists two disjoint g semi opensets G and H $\ni 1 \in$ H and $0 \in$ G such that $G \cap H = \phi$ But f^* is continuous map then $f^{*-1}(H)$ and $f^{*-1}(G)$ are disjoint g semi open sets, such that $f^{*-1}(G) \cap f^{*-1}(H) = \phi$

 $:: f^*(x) = 0 \in G \Longrightarrow x \in f^{*-1}(G) \text{ And } f^*(F) = \{1\} \in H \Longrightarrow F \subseteq f^{*-1}(H)$

Now $f^{*-1}(H)$, $f^{*-1}(G)$ are g semi open sets containing x and F, respectively It follows that (X, τ) is gs [R]. The converse is not true as in (3.4)

Theorem 3.17: A topological space (X, τ) is gs [CR] iff $\forall x \in X$ and \forall g semi open G containing x, there exists a continuous mapping f^* from X int o $[0,1] \ni f^*(x) = 0$ and $f^*(y) = \{1\}, \forall y \in X - G$. Proof:

Let (X,τ) is gs [CR] space and G is g semi open set, such that $x \in X$, X-G is g semi closed set of X such that $x \notin X-G$. From defention of gs [CR]

 $\Rightarrow \text{ there exists } g^* \text{ continuous mapping } f^* \text{ from } X \text{ int } o [0,1] \\ f^*(x) = 0 \text{ and } f^*(G - X) = \{1\}$

 $\leftarrow \text{Let } F \text{ be g semi closed subset of } X, x \text{ any point }, \text{ such that } x \notin F \\ \Rightarrow X - F \text{ is g semi openset containing } x \text{ By hypothesis there exists } a \\ \text{continuous mapping } f^* \text{ From } X \text{ int } o [0,1] \Rightarrow f^*(x) = 0 \text{ and } f^*(y) = \{1\}, \\ \forall y \in X - (X - F) = F. \text{ Then } (X, \tau) \text{ is gs } [CR].$

Theorem 3.18: Let (X, τ) be gs $[CR]_{and}(Y, \tau^*)$ is a sub gs [CR] of (X, τ) Then a subset A of (Y, τ^*) is g semi-closed set in Y iff there exists a g semi-closed set F in X such that

(1) $A = F \cap Y$ (2) for every $A \subset Y$, $cl_y(A) = cl_x(A \cap Y)$

Proof:

(1) \Leftrightarrow *Y* – *A* is g semi open in *Y*

 \Leftrightarrow Y – A = G \cap Y (for some gsemi open subset G of X).

$$\Leftrightarrow A = Y - G \sin ce(Y - Y = \phi) \iff A = Y - (G \cap Y) = (Y - G) \cup (Y - Y)$$

 \Leftrightarrow A = Y \cap G' (Where G' denoted the complement of G in X)

 \Leftrightarrow A = Y \cap F (Where F = G' is g semi closed in X sin ce G is g semi open in X)

(2) $\operatorname{cl}_{x}(A) = \bigcap \{k : k \text{ is g semi closed in } X \text{ and } A \subset k \}$

= \bigcap {F \cap Y : F is g semi closed in X and A \subset F \cap Y by (1)}

 $= \bigcap \{ F \cap Y : F \text{ is g semi closed and } A \subset F \}$

= $\left[\bigcap \{F: F \text{ is g semi closed in } X \text{ and } A \subset F \} \cap Y \right] = cl_x(A) \cap Y$.

Theorem 3.19: g semi completely regular is a hereditary property.

Proof :

Let (Y, τ^*) be a subspace of g semi completely regular (X, τ) . To show that (Y, τ^*) is also g semi completely regularity. Let F^* be g semi closed subset of τ^* and y be a point of Y such that $y \notin F^*$. Since F^* is g semi closed of τ^* then there exists a g semi closed set F of X such that $F^* = Y \cap F$, Also $y \notin F^* \Rightarrow y \notin Y \cap F \Rightarrow y \notin F$ ($\because y \in Y$). And $y \in Y \Rightarrow y \in X$. Thus *F* is a g semi closed subset of X and y is a point of X such that $y \notin F$. Hence byg semi completely regular of X, there exists a continuous mapping f of X int o [0,1] such that f(y)=0 and $f(F)=\{1\}$. Let g_r denote the restriction of f to y (the restriction of continuous function

is continuous[6]) g_r is continuous mapping of Y into [0,1].Now by definition of g_r , $g_r(x) = f(x) \quad \forall x \in Y$. Hence $f(y) = 0 \Rightarrow g_r(y) = 0$ and

since $f(x) = \{1\} \forall x \in F$ and $F^* \subset F$, we have $g_r(y) = f(x) = \{1\} \forall x \in F^*$

So that $g_r[F^*] = \{1\}$. Thus we showen that for each g semi closed subset F^* of Y and each point $y \in X - F^*$ there exists a continuous

mapping g_r of Y into [0,1] such that $g_r(Y) = 0$ and $g_r(F^*) = \{1\}$ Hence the space (Y, τ^*) is g semi completely regular.

Theorem 3.20: g semi completely regular is a topological property. Proof :

Let (X, τ) be a g semi-completely regular space and let (Y, τ^*) be a homeomorphism of (X, τ) under a homeomorphism f. To show that (Y, τ^*) is also g semi-completely regular. Let F be a g semi-closed set int o Y and let y be a point of Y such that $y \notin F$. Since f is one to one, there exists a point $x \in X$ such that

f(x) = y ⇒ x = f⁻¹(y). Again sin ce f is a continuous mapping , f⁻¹[F] is g semi closed set of X. Farther y ∉ F ⇒ f⁻¹(y) ∉ f⁻¹[F] ⇒ x ∉ f⁻¹[F] Hence by g semi completely regular of X, there exists a continuous mapping f^{*} of X int o [0,1] such that f^{*}[f⁻¹(y)]=f^{*}(x)=0 and f^{*}[f⁻¹[F]]={1} That is (f^{*} ∘ f⁻¹)(y)=0 and (f^{*} ∘ f⁻¹)[(F)]={1}. Since f is hom eomorphism, f⁻¹ is a continuous mapping of Y onto X. Also f^{*} is a continuous mapping of X int o [0,1]. it follows from theorem (The composition of continuous map is also continuous [6]) that f^{*} ∘ f⁻¹ of Y int o[o,1]. Thus we have shown that for each g semi closed set F of Y and each point y ∈ Y – F, There exists a continuous mapping h = f^{*} ∘ f⁻¹ of Y int o[0,1] such that h(y) = 0 and h(F) = {1}. Then (Y, τ^{*}) is g semi completely regular space and hence g semi completely regular is a topolog ical property.

 $x \notin F$, there exists $U, V \in \tau, x \in V$, $F \subseteq V$ such that $U \cap V = \phi$ But every closed set is g^* closed set.

Theorem 3.21: Every regular space is g^{*} regular space. Proof :

Theorem 3.22: Every $g^*[CR]$ space is $g^*[R]$ space. Proof :

Let (X,τ) g^{*} [CR] space then F is g^{*} closed set in X and $x \in X$ such that $x \notin F$ Then there exists a continuous mapping f^{*} : X \rightarrow [0,1] such that f^{*}(F)= {1} and f^{*}{x}=0.Since[0,1]isT₂ – space .Then there exists two disjoint g^{*} open sets H and G, such that $1 \in H$ and, $0 \in G$, such that $G \cap H = \phi$. But f^{*} is a continuous then f^{*-1}(H) and f^{*-1}(G) are disjoint g^{*} open such that f^{*-1}(G) \cap f^{*-1}(H)= ϕ , \because f^{*}(x)=0 \in G \Rightarrow x \in f^{*-1}(G) And f^{*}(F)={1} \in H \Rightarrow F \subseteq f^{*-1}(H), Now f^{*-1}(H), f^{*-1}(G) are g^{*} open sets containing x and F respectively it follows that (X, τ) is g^{*}[R]. The converse is not true see (3.4)

Theorem 3.23: A topological space (X, τ) is g^* [CR] if and only if $\forall x \in X \text{ and } \forall g^* \text{ openset } G \text{ containing } x, \text{ there } exists$ a continuous mapping f^* from X int o [0,1] such that $f^*(x) = 0$ and $f^{*}(y) = \{1\}, \forall y \in X - G.$ Proof: Let X be g^* [CR] and G is g^* open set, $x \in X, X - G$ is g^* closed set of X, and $x \notin X - G$ from definition of g^* [CR] \Rightarrow there exists a continuous mapping f^{*} from X int o [0,1] $f^*(x) = 0$ and $f^*(G - X) = \{1\}$. such that \leftarrow Let F be g^{*} closed subset of X, x any point $\ni x \notin F \Longrightarrow X - F$ is g open containing x, By hypothesis there exists a continuous mapping f^* From X int o $[0,1] \ni f^*(x) = 0$ and $f^*(y) = \{1\} \forall y \in X - (X - F) = F$ Then (X,τ) is g^* [CR]. **Theorem 3.24**: Let (X, τ) be g^* [CR] and (Y, τ^*) is a subregular space of $(X,\tau), \exists a \text{ set } F \text{ is } g - c \text{ losed}$ set in X Then a subset A is g^{*} closed in Y iff such that (1) $A = F \cap Y$ (2) for every $A \subset Y, cl_v(A) = cl_v(A \cap Y)$ **Proof:** $(1) \Leftrightarrow Y - A$ is g^{*}open in Y (from some g^{*} open subset G of X) $\Leftrightarrow Y - A = G \cap Y$ $\Leftrightarrow A = Y - (G \cap Y) = (Y - G) \cup (Y - Y)$ \Leftrightarrow A = Y - G sin ce (Y - Y = ϕ) \Leftrightarrow A = Y \cap G' (Where G' denoted the complement of G in X) \Leftrightarrow A = Y \cap F (Where F = G' is g^{*} closed in X sin ce G is g^{*} open in X) (2) $\operatorname{cl}_{v}(A) = \bigcap \{k : k \text{ is } g^{*} \text{ closed in } X \text{ and } A \subset k \}$ $= \bigcap \{F \cap Y : F \text{ is } g^* \text{ closed in } X \text{ and } A \subset F \cap Y \text{ by } (1) \}$ $= \bigcap \{ F \bigcap Y : F \text{ is } g^* \text{ closed and } A \subset F \}$ = $\left[\bigcap \{F: F \text{ is } g^* \text{ closed in } X \text{ and } A \subset F \} \cap Y \right] = cl_x(A) \cap Y.$ **Theorem 3.25**: g^{*} Completely regular is a hereditary property. Proof: Let (Y, τ^*) be a subspace of g^{*} completely regular (X, τ) . To show that (Y, τ^*) is also g^{*} completely regular. Let F^* be g^{*} closed subset of τ^* and y

be a point of Y such that $y \notin F^*$. Since F^* is g^* closed set of τ^* then

there exists g^* closed set F of X such that $F^* = Y \cap F$, Also $y \notin F^* \Rightarrow y \notin Y \cap F \Rightarrow y \notin F$ ($\because y \in Y$). And $y \in Y \Rightarrow y \in X$. Thus *F* is a g^* closed subset of X and *y* is a point of X such that $y \notin F$. Hence by g^* completely regular of X, there exist a continuous mapping f of X int o [0,1] such that f(y)=0 and $f(F)=\{1\}$. Let g_r denote the restriction of f to Y. (the restriction of continuous function is continuous[6]) g_r is a continuous mapping of Y int o [0,1]. Now by definition of g_r ,

$$g_r(x) = f(x) \quad \forall x \in Y.$$

Hence $f(y) = 0 \Rightarrow g_r(y) = 0$ and since $f(x) = 1 \forall x \in F$ and $F^* \subset F$, we have $g_r(x) = f(x) = 1 \forall x \in F^*$ So that $g_r[F^*] = \{1\}$.

Thus we have shown that for each g^* closed set F^* of Y and each point $y \in Y - F^*$, there exists a continuous mapping g_r of Y int o [0,1] such that $g_r(y) = 0$ and $g_r(F^*) = \{1\}$,

Hence the space (Y, τ^*) is g^* completely regular.

Theorem 3.26: g^* completely regular is a topological property. Proof :

Let (X, τ) be a g^{*} completely regular space and let (Y, τ^*) be a homeomorphic to (X, τ) under a homeomorphism f. To show that (Y, τ^*) is also g^{*} completely regular. Let F be a g^{*} closed set int o Y and let y be a point of Y such that $y \notin F$. Since f is one to one,

there exists a point $x \in X$ such that $f(x) = y \Leftrightarrow x = f^{-1}(y)$. Again since f is a continuous mapping, $f^{-1}[F]$ is g^* closed set of X. Farther $y \notin F \Rightarrow f^{-1}(y) \notin f^{-1}[F] \Rightarrow x \notin f^{-1}[F]$

Hence by g^* completely regular of X, \exists a continuous mapping f^* of X int o[0,1] such that $f^*[f^{-1}(y)] = f^*(x) = 0$ and $f^*[f^{-1}[F]] = \{1\}$ That is $(f^* \circ f^{-1})(y) = 0$ and $(f^* \circ f^{-1})[(F)] = \{1\}$ Since f is homeomorphism, f^{-1} is a continuous mapping of Y onto X. Also f^* is a continuous mapping of X int o[0,1]. it follows from theorem

(the composition of continuous maps is continuous[6]) that $f^* \circ f^{-1}$ is a continuous mapping of Y int o [0,1]. Thus we have shown that for each g^* closed set F of Y and each point $y \in Y - F$, There exists a continuous mapping $h = f^* \circ f^{-1}$ of Y int o[0,1] such that h(y) = 0 and $h(F) = \{1\}$. Then (Y, τ^*) is g^* completely regular space and hence g^* completely regular is a topological property.

Theorem 3.27: Every g^* closed set is s g^* closed set.

Proof:

Let A be a g^{*} closed set that is $cl(A) \subseteq U$, $A \subseteq U$ and U is g open in X, But, $scl(A) \subseteq cl(A) \Rightarrow scl(A) \subseteq U$ and s g open \subseteq g open \Rightarrow $scl(A) \subseteq U$

 $,A \subseteq U$ and U is s g open set in X. Then A is s g^{*}open set

Theorem 3.28: Every regular space is sg^{*} regular space. Proof :

Let (X, τ) be regular space then $\forall x \in X$ and $\forall F$ closed in X, $x \notin F$, there exists $U, V \in \tau, x \in V, F \subseteq U$,

such that $U \cap V = \phi$, But every closed set is sg^{*} closed set [3] by theorem 3.27 .we get (X, τ) is sg^{*} regular.

Theorem 3.29: Every $sg^*[CR]$ space is $sg^*[R]$ space.

Proof :

Let (X, τ) is sg^{*} [CR] space, then F is semi g^{*} closed set in X and $x \in X$ such that $x \notin F$, Then there exists a continuous function $f^*: X \to [0,1]$ such that $f^*(F) = \{1\}$ and $f^*\{x\} = 0$ Since [0,1] is $T_2 -$ space Then there exists two disjo int semi g^{*} open sets G and H such that $1 \in H$ and $0 \in G$, such that $G \cap H = \phi$ But f^{*} is continuous then $f^{*-1}(H)$ and $f^{*-1}(G)$ are disjo int semi g^{*} open sets such that $f^{*-1}(G) \cap f^{*-1}(H) = \phi \because f^*(x) = 0 \in G \Longrightarrow x \in f^{*-1}(G)$ And $f^*(F) = \{1\} \in H$ $\Rightarrow F \subseteq f^{*-1}(H)$ Now $f^{*-1}(H)$, $f^{*-1}(G)$ are semi g^{*} opensets containing x and F, respectively It follows that (X, τ) is s g^{*} [CR]. The converse is not truo see(3.4).

Theorem 3.30: A topological space (X, τ) is sg^{*} [CR] if and only if $\forall x \in X$ and \forall semig^{*} open G containing x there exists a continuous mapping f^{*} from X int o $[0,1] \ni f^*(x) = 0$ and $f^*(y) = 1$, $\forall y \in X - G$ Proof:

Let (X, τ) is sg^{*} [CR] space and G is semi g^{*} openset such that $x \in X$, X – G is semi g^{*} closed set of X, such that $x \notin X - G$ From defention of sg [CR] \Rightarrow ther exists a continuous mapping f^{*} from X int o [0,1] f^{*}(x) = 0 and f^{*}(G – X) = {1}.

 $\Leftarrow Let F be semig^* closed subset of X, x any point such that x \notin F$

 \Rightarrow X – F is semi g^{*} open set containing x, By hypothesis there exists а continuous mapping f^* From X int $o[0,1] \ni f^*(x) = 0$ and $f^*(y) = \{1\}$, $\forall y \in X - (X - F) = F$ Then (X, τ) is sg^{*} [CR]. **Theorem 3.31**: Let (X, τ) be $sg^*[CR]$ and (Y, τ^*) is a sub $sg^*[CR]$ of (X,τ) , then a subset A of (Y,τ^*) is semi g^{*} closed set in Y iff there exists a set F in (X, τ) is semi g^{*} closed in X such that: (2) for every $A \subset Y$, $cl_v(A) = cl_v(A \cap Y)$ (1) $\mathbf{A} = \mathbf{F} \cap \mathbf{Y}$ Proof: (1) \Leftrightarrow Y – A is semi g^{*} open in Y $\Leftrightarrow Y - A = G \cap Y$ (for some semig^{*} open subset G of X) $\Leftrightarrow A = Y - (G \cap Y) = (Y - G) \cup (Y - Y)$ \Leftrightarrow A = Y - G sin ce(Y - Y = ϕ) \Leftrightarrow A = Y \cap G' (Where G' denoted the complement of G in X) $\Leftrightarrow A = Y \cap F$ (Where F = G' semig * closed in X since Gsemi g * open in X) (2) $cl_{v}(A) = \bigcap \{k : k \text{ is semi g closed in } X \text{ and } A \subset k \}$ $= \bigcap \{F \cap Y : F \text{ is semi } g^* \text{ closed in } X \text{ and } A \subset F \cap Y \text{ by } (1) \}$ $= \bigcap \{F \cap Y : F \text{ is semi } g^* \text{ closed and } A \subset F \}$ $= \left[\bigcap \{F: F \text{ is semi } g^* \text{ closed in } X \text{ and } A \subset F \} \cap Y \right] = cl_v(A) \cap Y.$ **Theorem 3.32**: semi g^{*} completely regular is a hereditary property. Proof: Let (Y, τ^*) be a subspace of semi g^{*} completely regularity (X, τ) . To show that (Y, τ^*) is also semi g^{*} completely regularity. Let F^* be semi g^{*} closed subset of τ^* and y be a point of Y such that $y \notin F^*$ Since F^* is semi g^{*} closed of τ^* , there exists semi g^{*} closed set F of X such that $F^* = Y \cap F$, Also $y \notin F^* \Rightarrow y \notin Y \cap F \Rightarrow y \notin F$ (:: $y \in Y$). And $y \in Y \implies y \in X$. Thus *F* is a semi g^{*} closed subset of X and y is a point of X such that $y \notin F$. *Hence by* semi g^{*} completely regular of X, there exists a continuous mapping f of X int o[0,1] such that f(y) = 0 and $f(F) = \{1\}$. Let g, denote the restriction of f to Y (the restriction of continuous function is continuous [6]) g_{z} is a continuous mapping of Y int o [0,1]. Now by definition of g_r $g(x) = f(x) \quad \forall x \in Y.$

Hence $f(y)=0 \Rightarrow g_r(y)=0$ and since $f(x)=1 \forall x \in F$ and $F^* \subset F$, we have $g_r(x)=f(x)=1 \forall x \in F^*$. So that $g_r[F^*]=\{1\}$

Thus we have shown that for each semi g^{*} closed of τ^* subset F^*

of Y and each point $y \in Y - F^*$, there exists a continuous mapping g_r

of Y int o [0,1] such that , $g_r(y) = 0$ and $g_r(F^*) = \{1\}$

Hence the space (Y, τ^*) is semi g^{*} completely regular.

Theorem 3.33: semi g^* completely regular is a topological property. Proof:

Let (X, τ) be a semi g^{*} completely regular space and let (Y, τ^*) be a homeomorphism of (X, τ) under a homeomorphism f. To show that (Y, τ^*) is also semi g^{*} completely regular Let F be a semi g^{*} closed set int o Y and let y be a point of Y such that $y \notin F$. Since f is one to one, there exists a point $x \in X$ such that $f(x) = y \Leftrightarrow x = f^{-1}(y)$. Again since f is a continuous mapping, $f^{-1}[F]$ is semigled set of X. Farther $y \notin F \Longrightarrow f^{-1}(y) \notin f^{-1}[F] \Longrightarrow x \notin f^{-1}[F]$ Hence by semi g completely regular of X, there exists a continuous mapping f^* of X int o [0,1] such that $f^*[f^{-1}(y)] = f^*(x) = 0$ and $f^*[f^{-1}[F]] = \{1\}$. That is $(f^* \circ f^{-1})(y) = 0$ and $(f^* \circ f^{-1})(F) = \{1\}$ Since f is homeomorphism, f^{-1} is a continuous mapping of Y onto X. Also f^* is a continuous mapping of X int o[0,1]. it follows from theorem (The composition of continuous map is also continuous [6]) that $f^* \circ f^{-1}$ is a continuous mapping of Y int o[0,1]. Thus we have shown that for each semi g^* closed set *F* of *Y* and each point $y \in Y - F$, there exists a continuous mapping $h = f^* \circ f^{-1}$ of Y int o[0,1] such that h(y) = 0 and $h(F) = \{1\}$. Then (Y, τ^*) is semi g^{*} completely regular space and hence semi g^{*} completely regular is a topological property. **Theorem 3.34**: Every regular space is g^{*}s regular space. Proof : Let (X, τ) be regular space then $\forall x \in X$ and $\forall F$ closed in $X, x \notin F$. there exists $U, V \in \tau, x \in V, F \subseteq V$ such that $U \cap V = \phi$. But every closed set is g^*s closed set [2] Then (X, τ) is g^*s regular. **Theorem 3.35**: Every $g^*s[CR]$ space is $g^*s[R]$ space. Proof : Let (X, τ) is $g^*s[CR]$ space, then F is g^* semi-closed set in X and $x \in X$ such that $x \notin F$. Then there exists a

continuous function $f^*: X \to [0,1]$ such that $f^*(F) = \{1\}$ and $f^*\{x\} = 0$ Since [0,1] is T_2 – space Then there exists two disjo int g*semi open sets G and H $\ni 1 \in$ H and $0 \in G, \ni G \cap H = \phi$, But f* is continuous then f*^{-1}(H) and $f^{*-1}(G)$ are disjo int g* semi open sets , such that $f^{*-1}(G) \cap f^{*-1}(H) = \phi$ $\therefore f^*(x) = 0 \in G \Rightarrow x \in f^{*-1}(G)$ And $f^*(F) = \{1\} \in H \Rightarrow F \subseteq f^{*-1}(H)$ Now $f^{*-1}(H), f^{*-1}(G)$ are g* semi open sets containing x and F, respectively It follows that (X, τ) is g*s [R]. The converse is not true see (3.4).

Theorem 3.36: A topological space (X, τ) is g^*s [CR] iff $\forall x \in X \text{ and } \forall g^* \text{ semi-open } G \text{ containing } x \text{ there} \text{ exists}$ a continuous mapping f^* from X int o $[0,1] \ni f^*(x) = 0$ and $f^*(y) = 1$ $\forall y \in X - G$ Proof : Let (X, τ) is gs [CR] space and G is g^* semi-open set containing x, X - G is g^{*}semi closed set of X, such that $x \notin X - G$ From defention of $g^*s[CR] \Rightarrow$ there exists a continuous mapping $f^*: X \rightarrow [0,1]$, $f^{*}(x) = 0$ and $f^{*}(G - X) = \{1\}$. \Leftarrow Let F be g^{*} semi closed subset of X, x any point $\exists x \notin F \Longrightarrow X - F$ is g^{*}semi open set containing x, By hypothesis, there exists a continuous mapping f^* From X int $o[0,1] \ni f^*(x) = 0$ and $f^*(y) = \{1\}$, $\forall y \in X - (X - F) = F$. Then (X, τ) is g^*s [CR]. **Theorem 3.37**: Let (X, τ) be $g^*s[CR]$ and (Y, τ^*) is a sub $g^*s[CR]$ of (X,τ) Then a subset A of (Y,τ^*) is g^{*} semi-closed set in Y iff a set F in (X,τ) is g^{*} semi closed in X such that there exists (1) $A = F \cap Y$ (2) for every $A \subset Y, cl_v(A) = cl_v(A \cap Y)$ Proof: (1) \Leftrightarrow Y – A is g^{*} semi open in Y \Leftrightarrow *Y* – *A* = *G* \cap *Y* (for some g^{*} semi open subset G of X) $\Leftrightarrow A = Y - (G \cap Y) = (Y - G) \cup (Y - Y)$ \Leftrightarrow A = Y \cap G' (Where G' denoted the complement of G in X) \Leftrightarrow A = Y \cap F (Where F = G' is g^{*} semi closed in X sin ce G is g^{*} semi open in X) (2) $cl_v(A) = \bigcap \{k : k \text{ is } g^* \text{ semi closed in } X \text{ and } A \subset k \}$ $= \bigcap \{F \cap Y : F \text{ is } g^* \text{ semi closed and } A \subset F \}$ $= \left[\bigcap \{F: F \text{ is } g^* \text{ semi closed in } X \text{ and } A \subset F \} \cap Y \right] = cl_x(A) \cap Y.$ **Theorem 3.38**: g^{*} semi completely regular is a hereditary property.

Proof : Let (Y, τ^*) be a subspace of g^* semi completely regularity (X, τ) . To show that (Y, τ_y) is also g^{*} semi completely regularity. Let F^* be g^{*}semi closed subset of τ^* and y be a point of Y such that $y \notin F^*$. Since F^* is g^{*} semi closed of τ^* , there exists a g^{*} semi closed set F of X such that $F^* = Y \cap F$, Also $y \notin F^* \Rightarrow y \notin Y \cap F$. $\Rightarrow y \notin F$ (:: $y \in Y$). And $y \in Y \implies y \in X$. Thus F is a g^{*}semi closed subset of X and y is a point of X such that $y \notin F$. Hence by g^{*} semi completely regular of X, there exists a continuous mapping f of X into [0,1] such that f(y) = 0 and $f(F) = \{1\}$. Let g_r denote the restriction of f to Y (the restriction of continuous function is continuous[6]) g_r is a continuous mapping of Y int o [0,1]. Now by definition of g_r , $g_{r}(x) = f(x) \quad \forall x \in Y.$ Hence $f(y) = 0 \Rightarrow g_r(y) = 0$ and since $f(x) = 1 \forall x \in F$ and $F^* \subset F$. We have $g_r(x) = f(x) = 1 \forall x \in F^*$. So that $g_r[F^*] = \{1\}$ Thus we shown that for eachg* semi closed subset F* of Yand for each $y \in Y - F^*$, there exist a continuous mapping g_r of Y into [0,1] such that $g_r(y) = 0$ and $g_r(F^*) = \{1\}$, Hence the space (Y, τ_y) is g^{*} semi completely regular. **Theorem 3.39**: g^{*}semi completely regular is a topological property.

Proof : Let (X, τ) be a g*semi completely regular space and let (Y, τ^*) be a homomorphic to (X, τ) under a homeomorphism f. To show that (Y, τ^*) is also g*semi completely regular . Let F be a g*semi closed set int o Y and let y be a point of Y such that $y \notin F$ Since _ is one to one, there exists a point $x \in X$, such that $f(x) = y \Leftrightarrow x = f^{-1}(y)$. Again since f is a continuous mapping, $f^{-1}[F]$ is g*semi closed set of X. Farther $y \notin F \Rightarrow f^{-1}(y) \notin f^{-1}[F] \Rightarrow x \notin f^{-1}[F]$ since X is g*semi completely regular, there exists a continuous mapping f* of X int o [0,1] such that $f^*[f^{-1}(y)] = f^*(x) = 0$ and $f^*[f^{-1}[F]] = \{1\}$ That is $(f^* \circ f^{-1})(y) = 0$ and $(f^* \circ f^{-1})[(F)] = \{1\}$ Since f is homeomorphism, f^{-1} is a continuous mapping of Y onto X. Also f* is a continuous mapping of X int o [0,1]. it follows from theorem

(the composition of continuous maps is continuous[6]) that $f^* \circ f^{-1}$ of Y int o[0,1]. Thus we have shown that for each

 g^* semi closd set F of Y and each point $y \in Y - F$, there exists a continuous mapping $h = f^* \circ f^{-1}$ of Y int o[0,1] such that

h(y) = 0 and $h(F) = \{1\}$. Then (Y, τ^*) is g*semi completely regular space and hence g*semi completely regular is a topological property.

Reference :

- A.I. El-Maghrabi and A.A.Nasef (2009): Between semi-closed and GS-closed sets Journal for science of taibah university,vol.37,pp78-87
- Al-Ddoury A.F.(2009): On Bitopological Spaces M.S.C. Thesis College of Education Tikrit University.
- Alhawez,Z.T.(2008): Generalizations of Slightly Continuous Function between ITS M.S.C. Thesis College of Education Tikrit University
- Alshamary, A.G. (2008): On Generalized Homeomorphism between ITS M.S.C. Thesis College of Education Tikrit University.
- J.Dugungji (1994): topology, library of congress catalog card number:66-1094 printed in the united States of America
- Jones and Bartlett Foundations of topology second edition.printed in India by sanat printers Kundli-131028,sonepat,Haryara.
- N.Levine ,(1970): Generalized closed sets in topology , Rend.Circ. Mat.Palermo,19, (2) ,pp 89-96.
- P.Bhattacharyya and B.K.Lahiri, (1987): Semi generalized closed sets in topology, Indian J. Math. , 29 ,pp.375-382
- P.Sundaram , A.Pushpalatha,(2001): Strongly generalized closed sets in topological spaces, Far East J. Math. Sci. (FJMS) 3(4) , pp.563-575
- S.P.Arya and T.Nour, (1990): Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21, pp.717-719.

بعض خواص فضاءات g* كاملة الانتظام

سبهام محمد علي كلية علوم الحاسبات والرياضيات_جامعة تكريت كلية العلوم_جامعة كركوك تاريخ الاستلام:٤/١١/٢٠١٠ تاريخ القبول:٢٦/٤/٢٠١١

الخلاصة

في هذا البحث تم تقديم تعاريف جديدة g,sg,gs,g^*,sg^*,g^*s للفضاء التبولوجي الكامل الأنتظام والمنتظم ودراسة العلاقات بين تلك الفضاءات والتحقق من الصفات الوراثية والصفات التبوولوجية