(2005/3/7 2004/12/7)

.(0.331-2.65) Mrad

(300-900) nm

_ _ _ _ _ _

. (50-400)°C

.(0.25) hr

Study the Effect of Gamma-Ray and Annealing on the Optical Absorption of Glass

Ahmed K. Mheemeed

Sulaiman H. Mohammed

Department of Physics College of Education Mosul University

ABSTRACT

A study of Gamma-ray effects on the optical absorption of glass for a range of wavelengths (300-900) nm with doses varied between (0.331-2.65) Mrad. The effect of annealing treatment on the optical absorption within the range of (50-400)°C has been also studied, then the calibration line for measuring the irradiation dose for Gamma-ray on the glass was established. Two models were used to measure the activation energy at fixed annealing time (0.25) hr.

Ibrahim et al.,) (1968)	(2000) (1002) (1079
	.(2000) (1993) (1978
(Segovia and Herrera, 1980) (Friebele et al., 1983	5) .	(Brekhovaskik (10 ⁸ Rad)	h, 1959)
(350) nm	(2000) .	
(GD-450)		(Norimichi, 2	2001)
(10 keV - 10 MeV)	(20 tra)	$2 M_{\rm eV}$	
0.025 eV - 15	(30 KeV - 1	3 MeV)	(MeV
	(Slides)		
(α p)
(Norgett et al., 1975) (Norris a .(20	und Ernisse, 1974) (Er 000) (198	rnisse and Norris,1 88) (Burns e	974) et al, 1982)

(2000) (1988)

•

 $E_{a}(eV) = 8.625 \times 10^{-5} |slope|$(3)

) (Atomic Energy of Canada) (Specification, 1982) (5.27) Yr (⁶⁰Co) .(/ (48) .(5/1982) (6430) Ci .(20.9) Cm (Model C198) .(0.535) Mrad/hr

	•					
	(397.54) Ci					
			.(7/20)03)		
.(0.0331) Mrad/hr					
	(10)	. hrs (10, 2	20, 30, 40, 50, 70,	80)		
(0.25)			(10)		(8)	
	. (50, 100, 150, 200), 250, 300, 3	50, 400) °C			hr
	. (30-12	200)°C	(Thermo l	ine)		
	:					-1
(SECIL						
()					1021)
			.(300-900) nm			
						-2
						-
·						
			:			-3
			.(8)	(3)	(2)	

 (η_t) (2) (1) .(2.65) Mrad (0.662) Mrad

.

Doses (Mrad)

.

•

.320 nm

(6) (320) nm

)

(438 \pm .((Holbert, .($\eta_t = \eta_o$) .(13) °C (400) °C .(1) hr (1)

(7)

. (3-2-3)

 $η_o = 0.159$ ε λ = 320 nm t = 0.25 hr $\ln \frac{\eta_t - \eta_o}{1 - \eta_o}$ $T\ ^{o}K$ $\frac{1}{T}\left(K^{-1}\right)$ T°C $\underline{\eta_t - \eta_o}$ $V_a = \frac{\eta_t - \eta_o}{t}$ $\eta_t - \eta_o$ $\ln V_a$ η_{o} $\eta_{\,{}_o}$ 150 423 0.002364 0.204 0.816 -0.2031.283 0.249 0.644 200 473 0.002114 0.161 -0.440 1.012 0.012 250 523 0.524 0.823 -0.193 0.001912 0.131 -0.646 300 573 0.001745 0.089 0.356 -1.032 0.559 -0.580 -1.570 350 623 0.001605 0.052 0.208 0.327 -1.117 400 673 0.001486 0.192 -1.650 -1.197 0.048 0.301

D = 0.662 Mrad

_			η_{o}	, = 0.159	$\lambda = 320 \text{ nm}$	1	t = 0.25 hr	
	T °C	Τ°Κ	$\frac{1}{T}\left(K^{-1}\right)$	$\eta_t - \eta_o$	$V_a = \frac{\eta_t - \eta_o}{t}$	lnV _a	$\frac{\eta_t - \eta_o}{\eta_o}$	$\ln \frac{\eta_t - \eta_o}{\eta_o}$
	150	423	0.002364	0.31	1.24	0.215	1.949	0.667
	200	473	0.002114	0.24	0.96	-0.040	1.509	0.411
	250	523	0.001912	0.171	0.684	-0.379	1.075	0.072
	300	573	0.001745	0.074	0.296	-1.217	0.465	-0.764
	350	623	0.001605	0.06	0.24	-1.427	0.377	-0.974
	400	673	0.001486	0.034	0.136	-1.99	0.213	-1.542

D = 0.993 Mrad

$η_o = 0.159$ و $λ = 320$ nm					t = 0.25 hr		
T °C	Τ°Κ	$\frac{1}{T}(K^{-1})$	$\eta_t - \eta_o$	$V_a = \frac{\eta_t - \eta_o}{t}$	lnV _a	$\frac{\eta_t - \eta_o}{\eta_o}$	$\ln \frac{\eta_t - \eta_o}{\eta_o}$
150	423	0.002364	0.333	1.332	0.286	2.094	0.739
200	473	0.002114	0.257	1.028	0.027	1.616	0.480
250	523	0.001912	0.228	0.912	-0.092	1.434	0.360
300	573	0.001745	0.129	0.516	-0.661	0.811	-0.209
350	623	0.001605	0.08	0.32	-1.139	0.503	-0.686
400	673	0.001486	0.044	0.176	-1.737	0.276	-1.284

$$\eta_o = 0.159$$
 و $\lambda = 320$ nm

:3

:1

133

D = 1.325 Mrad

 $\eta_o = 0.159$ $\lambda = 320$ nm t = 0.25 hr

T°C	Τ°Κ	$\frac{1}{T}\left(K^{-1}\right)$	$\eta_t - \eta_o$	$V_a = \frac{\eta_t - \eta_o}{t}$	$\ln V_a$	$\frac{\eta_t - \eta_o}{\eta_o}$	$\ln \frac{\eta_t - \eta_o}{\eta_o}$
150	423	0.002364	0.42	1.68	0.518	2.641	0.971
200	473	0.002114	0.33	1.32	0.277	2.075	0.730
250	523	0.001912	0.207	0.828	-0.188	1.301	0.263
300	573	0.001745	0.105	0.42	-0.867	0.660	-0.414
350	623	0.001605	0.072	0.288	-1.244	0.452	-0.792
400	673	0.001486	0.032	0.128	-2.055	0.201	-1.603

D = 1.656 Mrad

 $\eta_o = 0.159$ g $\lambda = 320$ nm t = 0.25 hr

•	~
٠	J

:6

T °C	Τ°K	$\frac{1}{T}(K^{-1})$	$\eta_t - \eta_o$	$V_a = \frac{\eta_t - \eta_o}{t}$	$\ln V_a$	$\frac{\eta_t - \eta_o}{\eta_o}$	$\ln \frac{\eta_t - \eta_o}{\eta_o}$
150	423	0.002364	0.458	1.832	0.605	2.880	1.057
200	473	0.002114	0.372	1.488	0.397	2.339	0.85
250	523	0.001912	0.262	1.048	0.046	1.647	0.499
300	573	0.001745	0.191	0.764	-0.269	1.201	0.183
350	623	0.001605	0.098	0.392	-0.936	0.616	-0.483
400	673	0.001486	0.043	0.172	-1.760	0.270	-1.307

D = 2.319 Mrad

n = 0.159	$\lambda = 320 \text{ nm}$
$\eta_0 = 0.157$	$3 \lambda = 320 \text{ mm}$

t = 0.25 hr

T °C	Τ°K	$\frac{1}{T}(K^{-1})$	$\eta_t - \eta_o$	$V_a = \frac{\eta_t - \eta_o}{t}$	lnV _a	$\frac{\eta_t - \eta_o}{\eta_o}$	$\ln \frac{\eta_t - \eta_o}{\eta_o}$
150	423	0.002364	0.508	2.032	0.709	3.194	1.161
200	473	0.002114	0.451	1.804	0.590	2.836	1.042
250	523	0.001912	0.363	1.452	0.372	2.283	0.825
300	573	0.001745	0.203	0.812	-0.208	1.276	0.244
350	623	0.001605	0.096	0.384	-0.957	0.603	-0.504
400	673	0.001486	0.029	0.116	-2.154	0.182	-1.701

:4

	$\eta_o = 0.159$ و $\lambda = 320 \text{ nm}$			t = 0.2	5 hr		
T °C	Τ°Κ	$\frac{1}{T}(K^{-1})$	$\eta_t - \eta_o$	$V_a = \frac{\eta_t - \eta_o}{t}$	$\ln V_a$	$\frac{\eta_t - \eta_o}{\eta_o}$	$\ln \frac{\eta_t - \eta_o}{\eta_o}$
150	423	0.002364	0.569	2.276	0.822	3.578	1.274
200	473	0.002114	0.454	1.816	0.596	2.855	1.049
250	523	0.001912	0.331	1.324	0.280	2.081	0.733
300	573	0.001745	0.253	1.012	0.012	1.591	0.464
350	623	0.001605	0.189	0.756	-0.279	1.188	0.172
400	673	0.001486	0.056	0.224	-1.496	0.352	-1.043

(8) (7)

(fitting)

(0.662) Mrad

:7

(0.15-0.21) eV

: 8

Doses (Mrad)	Ea (eV)
0.331	0.15
0.662	0.22
0.993	0.19
1.325	0.25
1.656	0.22
2.319	0.26
2.650	0.19

.

.1993 .1988 . .1968 .2000

Brekhovaskikh, S.M., 1959. Resistance of Industrial Glasses to the Action of Radioactive Radiations, Proceeding of the 3rd All-Union Conference on the Glassy State, Vol.2, 314 p., USSR.

.(43)

- Burns, W.G., Savides, E. and Charalambous, S., 1982. Effects of Radiation on the Leach Rates of Vitrified Radioactive Waste, Journal of Nuclear Materials, 107, pp.245-270.
- Ernisse, E.P. and Norris, G.B., 1974. Introduction Rates and Annealing of Defects in Ion-Implanted SiO Layers on Si, Journal of Applied Physics, Vol. 45, No. 12.
- Friebele, E.J., Adams, J.A. and Beahm, L.P., 1985. The Optical Absorption and Luminescence Bands Near 2 eV in Irradiated and Drawn Synthetic Silica, Journal of Non- Crystalline Solids 71, pp.133-144.
- Green, P.F., Duddy, I.R., Gleadow, A.J.W. and Tingate, P.R., 1985. Fission-Track Annealing in Apatite: Track Length Measurements and the form of the Arrhenius plot. Nucl. Tracks. 10(3), pp.323-328.
- Holbert, K.E., 1995. Radiation Effects and Damage.http://www.eas.asu.edu/holbert/eee-460/Radiation Effects Damage.pf.
- Ibrahim, E.M., Sayed, A.M. and Dawood, R.I., 1978. Gamma Dose Measurements by Optical Absorption, Electrical Conductivity and Mechanical Hardness, Nucl. Inst. Meth., 150, pp.555-560.
- Modgil, S.K. and Virk, H.S., 1985. Annealing of Fission Fragment Tracks in Inorganic Solids, Nucl. Inst. and Meth. In Phys. Resear. B12, pp.212-218.
- Norgett, M.J., Benton, E.V. and Andrus, C.H., 1975. A properties Method of Calculating Displacement Dose Rates, Nuclear Engineering and Design, 33, pp.50-54.

137

-2

-3

-4

- Norimichi, Juto., 2001. Glass Badge Dosimetry System for Large Scale Personal Monitoring, Oarai Research Center Chiyoda Technol Corpoation 3681 Narita-Cho Oarai-machi Higashi- ibaraki-gun, Ibaraki-pref. 311-1311, Japan.
- Norris, G.B. and Ernisse, E.P., 1974. Ionization Dilation Effects in Fused Silica from 2 to 18 KeV Electron Irradiation, Journal of Applied Physics, Vol.54., No. 9.
- Segovia, N. and Herrera, R., 1980. Latent Track Annealing in Glass: A Comparison of Thermal and Gamma Induced Annealing, Proc. 10th Int. Conf. Solid State Nuclear Track Detectors, Lyon and Suppl. 2, Nucl. Tracks. Pergamon, Oxford, pp.191-198.
- Specification, 1982. Gamma Cell-220 Irradiation Unit, Catalog.

- Tittel, F. and Kamel, N., 1967. Radiation Effects in Glass Lasers, Interaction of Radiation with Solids, Bishary, 261 p.
- Virk, H.S., Modgil, S.K., Singh, G. and Bhatia, R.K., 1988. Annealing Characteristics of Heavy Ion Radiation Damage un SSNTDs and Concept of Single Activation Energy, Nucl. Inst. and Meth. In Phys. Resear. B32, pp.401-404.