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ABSTRACT

         Finite strip method (FSM) is an effective method for analysis of slabs, slab 

bridges, slab girder bridges, box girder bridges and other different type of structures. 

In most previous studies the derivations of the stiffness matrix based on the 

assumption, that the boundary condition is hinged at both ends.  

In this study the derivations are extended to determine the stiffness matrix and load 

vector for the fixed ended slab strip using the minimum total potential energy 

method. Two slab girder bridges are analyzed by finite strip method and the results 

are compared with the exact and finite element method solutions and showed good 

agreement. 

KEYWORDS: Finite strip method, Fixed ended bridges, Harmonic function, 

Polynomial function and Slab girder bridges.
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NOTATIONS: 

[Bbm
I
] = bending coefficient matrix. 

[Db
I
] = bending rigidity matrix. 

E = modulus of elasticity of the material 

fm(x) = polynomial function in (x) direction. 

{k
I
} = curvature vector. 

[Kbm
I
] = bending stiffness matrix. 

[Km
I
] = combine bending and in-plane stiffness matrix. 

Mx, My = bending moments in x and y directions respectively. 

Mxy =  twisting moment in xy plane. 

{Pbm
I
} = bending load vector. 

q(x, y) = the loading function subjected on the plane of the plate. 

t = thickness of the plate. 

U = total strain energy. 

V = total kinetic energy. 

w(x, y) = displacement function in (z) direction. 

wim and wjm = deflections at nodal line (i and j) for strip (m). 

m(y) = Harmonic function in (y) direction. 

 = Poisson’s ratio. 

 = total potential energy = U – V 

im and jm = slopes at nodal line (i and j) for strip. 

INTRODUCTION: 

             Many computer programs have been developed using the finite element 

method and used extensively in the analysis of box girder bridges and developed to 

include the elastic and inelastic of the material.  

Finite strip method (FSM) is an effective method for analysis of different types of 

structures such as slabs, slab bridges, slab girder bridges, box girder bridges. The 

finite strip method first presented [1 and 2] to analyze the simply supported bridge 

deck structures. The solution based on an orthotropic plate theory and presented in 

the form of design curves in [3 and 4], using only the 1
st
 term of the harmonic 

deflection function.  

Finite strip method uses the advantages of both the orthotropic plate theory and finite 

element concept, and applied for both slabs and slab girder and box girder bridges. In 

this method, the displacement function assumed to be a combination of a one way 

polynomial function in transverse direction and harmonic function in longitudinal 

direction. The harmonic function satisfies the boundary conditions of both ends. In 

most of previous studies hinged boundary conditions are assumed at both ends to 

derive the stiffness matrix. This study presents the derivations of the stiffness matrix 

and load vector of the fixed ended boundary conditions. The harmonic function in 

longitudinal direction, which satisfies the boundary condition of the fixed ends has 

been used. 

Petrolito and Golley [5, 6] considered the use of finite strip element method for the 

vibration analysis of thick plates, the shape function are obtained as the product of 
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combined trigonometric and polynomial functions in the x-direction and polynomial 

function in y-direction. The simplest displacement approximation within the finite 

strip element is obtained by using a linear approximation in the y-direction. Higher 

order approximation in the y-direction can be achieved by using internal nodal lines. 

The global equations are derived in the usual manner of the finite element method 

and natural frequencies of vibration can be found by solution a linear Eigen values 

problem. 

Azhari et al. [7], presented an analysis of the local buckling of composite laminated 

plates and folded plate assemblies subjected to arbitrary loading using the spline 

finite strip method. Because the spline finite strip method is fairly well-known in 

buckling analysis, its direct application to the local buckling of composite laminates 

has been more limited. The method is programmed to study the local buckling of 

laminated flat plated and L-sections. 

Lirkov and morgenov [8] used the finite strip method to solve the fourth order 

boundary value problem (Bi-harmonic equation) for boundary conditions correspond 

to clamped, joint and free edges. The standard computational procedure reduced the 

problem to a set of linear systems of equations with seven diagonal matrices. 

Lau et al. [9] presented a numerical analysis procedure for the 3D flutter analysis of 

bridges based on the spline finite strip method. The method has been extended to the 

area of bridge aerodynamic in wind engineering. The significant improvement of the 

presented formulation is that the effect of the spatial distribution of the aerodynamic 

forces on a bridge deck structure can be taken into account by distributing the 

aerodynamic forces over the cross section of the bridge deck.   

DREIVATIONS: 

          Fig.(1) shows the deflection surface of fixed-fixed slab bridges under an 

arbitrary loading, the assumed displacement function must be general and flexible 

enough to represent the actual displacement filed of the slab bridge. The figure shows 

that the slab divided into rectangular strips spanning between the two fixed ends, the 

actual deformed surface can be represented by simple cosine displacement function in 

longitudinal direction and polynomial function in the perpendicular direction. The 

boundary conditions at the both ends must be satisfied by the assumed function, the 

displacement and the slope must be zero at the fixed ends. Fig.(2) show the 

displacement filed for typical fixed ended finite strip. The assumed function for a 

strip takes the form of a combination of cosine series in span wise direction and 

polynomial function of 3
rd

 degree in the transverse direction. 

w(x, y) = m=1 fm(x) m(y) = m=1 (A + Bx + Cx
2
+ Dx

3
+….) [1 – cos(2 my/a)] ----(1) 
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where A, B, C, D, ……etc, are the polynomial coefficients, (m) represent the m
th

harmonic term and (M) the number of harmonic terms to be used for the solution. 

m(y) = 1 – cos(2 my/a) 

Let Km = m/a, then     m(y) = 1 – cos(2Kmy)  

and  'm(y) = 2 Km sin(2 my/a)       

The above function satisfies the boundary function at fixed ended plate: 

at y = 0 and a, m(y) = 0 and  'm(y) = 0 

The deflection amplitudes (wim and wjm) and slopes ( im and jm) at the two nodal 

lines (i and j) for the fixed ended finite strip can be chosen the displacement and slope 

parameters at (x=0 and x=b), where (b) is the width of the strip element and (a) is the 

span of the strip element. 

i = ( w/ x)i = m=1 im [1 – cos(2Kmy)]                                                            ------(2) 

j = ( w/ x)j = m=1 jm [1 – cos(2Kmy)]                                                            ------(3) 

It is necessary to use third order polynomial with four constants to incorporate the 

four unknowns (wim , wjm , im and jm ). 

fm(x) = A + Bx + Cx
2
+ Dx

3
                                                                               ------(4)                                   

fm(x)/ x = B + 2Cx + 3Dx
2
                                                                               ------(5) 

where A, B, C and D are arbitrary constants can be written in term of displacement 

unknown by applying the compatibility conditions: 

at x = 0, wim = fm(0) and im = fm(0)/ x

at x = b, wjm = fm(b) and jm = fm(b)/ x

Substitute in above equations fm(x) and f'm(x) to obtain: 

A = wim

B = im

A + B b + C b
2

+ D b
3
 =  wjm                                                                                         ------(6)                                        

B + 2C b + 3D b
2
 = jm

Rearrange the above equation in matrix form and solve for the constants (A, B, C and 

D):

1      0      0       0              A           wim

0      1      0       0              B           im

1      b      b
2
     b

3
             C           wjm                                                                                     ------(7) 

0      1     2b     3b
2
           D           jm

or in compact form : [ ] {Ci} = {wbm}; and (Ci} = [ ]
-1

 {wbm}

where [ ] is the coefficient matrix, {Ci} is the unknown vector and {wbm}is the nodal 

displacement amplitudes vector in bending. 

The resulting constants are: 



Fahmi : Finite Strip Method For Fixed Ended Plates 

7

C0i = 1 – 3x
2
/b

2
 + 2x

3
/b

3

C1i = x – 2x
2
/b + x

3
/b

2

C2i = 3x
2
/b

2
 – 2x

3
/b

3                                                   
                                                         ------(8) 

C3i = – x
2
/b + x

3
/b

2

The final displacement function w(x,y) can be written in matrix form as: 

w(x,y) = m=1[C0i    C1i     C2i     C3i] [wim    wjm       im     jm]
T
 [1 – cos(2Kmy)]  ----(9) 

or simply: 

w(x,y) = m=1[Cb
I
]
T
 {wbm

I
} [1 – cos(2Kmy)]                                               ----------(10) 

where [Cb
I
] is the coefficient matrix. 

The total potential energy of the strip in bending may be given as [10 and 11]:- 

= 0 0[1/2[–Mx
2
w/ x

2
–My

2
w/ y

2
+2Mxy

2
w/ x y]–q(x,y)w(x,y)]dx dy       ----(11)      

In matrix form: 

= 0 0[1/2[Mx My Mxy][–
2
w/ x

2
  –

2
w/ y

2
  2

2
w/ x y]

T
–q(x,y)w(x,y)]dx dy --(12)      

or in compact form: 

 = 0 0 [1/2 [M
I
]
T
 {k

I
} – q(x,y) w(x,y)] dx dy                                          ----------(13)    

where Mx, My, Mxy are the bending moments in x and y directions and the twisting 

moment respectively.   

[M
I
] is the bending moment vector, {k

I
} is the curvatures vector and q(x,y) is the 

loading function subjected on the plane of the plate. The 1
st
 term represents the strain 

energy and the 2
nd

 represents the kinetic energy of the strip element in bending  

apply the 2
nd

 derivatives of the displacement function w(x,y), the curvature vector can 

be written as the following: 

{k
I
}= [–

2
w/ x

2
     –

2
w/ y

2
    2

2
w/ x y]

T
 = m=1 [Bbm

I
] {wbm

I
}          ------------(14) 

where: 

                    –C"0i m(y)        –C"1i m(y)        –C"2i m(y)        –C"3i m(y)                         

[Bbm
I
 ] =      –C0i "m(y)        –C1i "m(y)        –C2i "m(y)        –C3i "m(y)   -----(15)       

                    2C'0i 'm(y)        2C'1i 'm(y)        2C'2i 'm(y)         2C'3i 'm(y)                        

The moment vector at any point in a strip can be also expressed in term of the 

curvatures as the following: 

{M
I
} = [Mx     My    Mxy]

T
 = [Db

I
] {k

I
}= m=1 [Db

I
] [Bbm

I
] {wbm

I
}                  --------(16) 

                                                                                Dx               D1             0 

where [Db
I
] is the rigidity matrix in bending =      D1               Dy             0    ------(17) 

                                                                                0                 0              Dxy
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and Dx and Dy are the transverse and longitudinal flexural rigidity, Dxy is the torsional 

rigidity and D1 is the coupling rigidity as defined in [12]    

Substitute {M
I
} and {k

I
} in the equation of total potential energy to get: 

= m=1{wbm
I
)

T
0 0[1/2[Bbm

I
]
T
[Db

I
][Bbm

I
]{wbm

I
)–[Cb

I
]
T
q(x,y)[1–cos(2Kmy)]]dxdy (18)    

The total potential energy is minimized with respect to the nodal displacements: 

/ {wbm
I
}= 0                                                                                                 ------(19) 

Applying the integration and then minimizing the total potential energy, the following 

equation is obtained: 

m=1[Kbm
I
] {wbm

I
) = {Pbm

I
}                                                                      -------------(20)     

where: [Kbm
I
] = 1/2 0 0  [Bbm

I
]
T
[Db

I
] [Bbm

I
]   dx dy                                -------------(21)   

and {Pbm
I
) = 0 0 [Cb

I
]
T

q(x,y) [1 – cos(2Kmy)]   dx dy                            -------------(22) 

[Kbm
I
] is a (4 by 4) stiffness matrix for conventional strip in bending and {Pbm

I
) is a (4 

by 1) loading vector. 

The resulting stiffness matrix will be: 

                       K1      K2       K3          K4 

                       K2      K5      -K4         K6 

[Kbm
I
] =          K3     -K4       K1        -K2                                               -------------(23) 

                       K4       K6      -K2         K5 

In compact form: 

[Kii]b [Kij] b[Kbm
I
] =  

[Kji] b [Kjj] b

   

Sample integration of one element of the stiffness matrix (Ki)is: 

K1= 0 0 [ (b11 Dx +  b21 D1) b11 + (b11 D1 + b21 Dy) b21 + b31
2

Dxy ] dx dy    ----------(24) 

Then applying the integration to get: 

K1 = 18 a/b
3
 Dx + 104/35 ab Km

4
Dy + 48/5 a/b Km

2
Dxy + 24/5 a/b Km

2
D1   -------(25) 

K2 = 9 a/b
2
 Dx + 44/105 ab

2
 Km

4
Dy + 4/5 a Km

2
Dxy + 12/5 a Km

2
D1                 --------(26) 

K3 = - 18 a/b
3
 Dx + 36/35 ab Km

4
Dy - 48/5 a/b Km

2
Dxy - 24/5 a/b Km

2
D1    --------(27)

K4 = 9 a/b
2
 Dx - 26/105 ab

2
 Km

4
Dy + 4/5 a Km

2
Dxy + 2/5 a Km

2
D1              --------(28)

K5 = 6 a/b Dx + 8/105 ab
3
 Km

4
Dy + 16/15 ab Km

2
Dxy + 8/15 ab Km

2
D1         --------(29)

K6 = 3 a/b Dx - 2/35 ab
3
 Km

4
Dy - 4/15 ab Km

2
Dxy - 2/15 ab Km

2
D1              -------(30)

In matrix form:   

K1              18       104/35         48/5            24/5                

K2              9b       44/105b       4/5b           12/5b               a/b
3
 Dx
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K3     =      -18        36/35         -48/5           -24/5              ab Km
4
 Dy            

K4             9b       -26/105b      4/5b            2/5b                a/b Km
2
 Dxy             -----(31) 

K5             6b
2
       8/105b

2
      16/15b

2
       8/15b

2
             a/b Km

2
 Dxy         

K6             3b
2
      -2/35b

2
        -4/15b

2
       -2/15b

2
   

                

Load vectors for load types shown in Fig.(3): 

1- Concentrated load (Po) acts at coordinates (xo and yo): 

                      Zim          1 – 3xo
2
/b

2
 + 2xo

3
/b

3
   

{Pbm
I
}   =      Mim   =    xo – 2xo

2
/b + xo

3
/b

2
       Po [1 – cos(2Kmy)]                   ----(32) 

                      Zjm          3xo
2
/b

2
 – 2xo

3
/b

3
   

                      Mjm         – xo
2
/b + xo

3
/b

2

2- Patch load (Qo) acts on the area bounded by two points (x1,y1) and (x2,y2): 

                        X' – X'
3
/b

2
 + X'

4
/2b

3

{Pbm
I
}   =        X'

2
/2 – 2 X'

3
/3b + X'

4
/4b

2
                    Qo Cmy                        -------(33) 

                        X'
3
/b

2
 – X'

4
/2b

3

– X'
3
/3b + X'

4
/4b

2
   

–

where: X' = x2 – x1 and Cmy = (y2-y1) – 1/(2Km)  [sin(2Kmy2) – sin(2Kmy1)]  

3- Distributed load (Qo) over the entire area of the strip: 

                         b/2   

{Pbm
I
}   =         b

2
/12               Qo [ a – 1/(2Km) sin(2Km a)]                           -------(34) 

                         b/2   

                        -b
2
/12   

The total equation of the load – displacement relationship becomes: 

m=1 [Km
I
] {wm

I
) = {Pm

I
}                                                                              ---------(35) 

   

where: [Km
I
] is a (4 by 4) total stiffness matrix for the finite strip in bending analysis. 

Two slab girder bridges shown in Fig.(4) are solved by finite strip method and 

compared with the finite element method (FEM) as shown below: 

Application1: The bridge shown in Fig.(4) is divided into three elements and four 

nodes, span=10m, =0.25 and P=44.5 kN. The nodal displacements determined by 

(FSM) are given in Table (1). The central displacement and central bending moment 

are compared with finite element method and given in Table(2).  
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Table (1): The nodal displacement determined by (FSM). 

Nodal line 
Central displacement 

  Pa3/EI 

1 0.00558 

2 0.0056 

3 0.0056 

4 0.00558 

                            Table(2): Comparison of (FSM) and (FEM) results.  

Method of analysis 
Average central deflection 

  Pa3/EI 

Central bending 

moment 

  P a 

Finite strip method (FSM) 0.0056 0.1254 

Exact method (Analytical) 0.0053 0.125 

Application2: The bridge shown in Fig. (4) divided into seven elements and eight 

nodes, span=10m, =0.25 and P=445 kN. The nodal displacements determined by 

(FSM) are given in Table (3). The central displacement and central bending moment 

are compared with finite element method and given in Table (4).  

Table (3): The nodal displacement determined by (FSM). 

Nodal line 
Central displacement 

  Pa3/EI (FSM) 

Central displacement 

  Pa3/EI (FEM) 

1 0.00808 0.00861 

2 0.00813 0.00866 

3 0.00837 0.00895 

4 0.00846 0.00906 

Table (4): Comparison of (FSM) and (FEM) results. 

Method of analysis 
Central bending moment 

  P a 

Finite strip method (FSM) 0.12 

Finite element method (FEM) 0.125 
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CONCLUSIONS: 

1-Finite strip method is an effective method for analysis of different types of 

structures such as slabs, slab bridges, slab girder bridges, box girder bridges and its 

uses the advantages of both the orthotropic plate theory and finite element concept 

2-The derivation of the equations and programming in the finite strip method is 

simpler than finite element method. Finite strip method needs smaller number of 

strips and smaller size of total stiffness matrix, thus shorter computing time in 

comparison with finite element method. 

3-Results obtained by finite strip method showed good agreement with that obtained 

by finite element method.    
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