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Abstract

In this paper we introduce the linear operator of fractional integral equation of the
second kind (FIESK) in the framework of the Riemann-Liouville fractional calculus.
Some results concerning the existence and uniqueness have been also obtained.
Particular attention is devoted to the technique of Laplace transform for treating
FIESK. By applying this technique we shall derive the analytical solutions of the
most linear FIESK.Other main objective concern here is to give an approximate scheme
using collocation method to solve FIESK. Two fundamental questions concerning this
method: its stability and convergence are discussed. We show that the analytical
stability bounds are in excellent agreement with numerical tests. Comparison between
exact solutions and approximate predictions is made.

Introduction

Fractional calculus have been a highly specialized and isolated field of
mathematics for many years. However, in the last decade there have been
increasing interest in the description of physical and chemical processes by
means of equations involving fractional derivatives and integrals. This
mathematical technique has a board potential range of applications (Delves
&Walsh, 1997,Faycal & Jacky 2005,Irmak & Raina,2004,0rtigueira.,2000,
Wheeler,1997).In recent years considerable interest in fractional calculus
has been stimulated by the applications that this calculus finds in numerical
analysis and different areas of physics and engineering, possibly including
fractal phenomena (Oldham & Spanier,2004, Zeidler,1995). This paper
deals with the solution of the fractional integral equation of the second
kind, such kind of equations appears in many problems. In particular, we
have find a fractional integral equation related to many physical
phenomena, such as heat flux at the boundary of a semi-infinite rod where
the temperature at the boundary can be written as a fractional integral
equation (Loverro ,2004).This paper is organized into three main parts.
The first part begins with the proof of the existence and uniqueness of the
solution of FIESK. The second part gives an analytic solution for eq. (1)
based on Laplace transform. While the third part considers an approximate
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solution with the aid of the collocation method to treat eq. (1). Also the
stability and convergence analysis of this method are studied.
We first define a fractional integral operator 1« as follows.

Definition (1):
Let « be a nonnegative real number. For a given function u(x), x>0,
its integral of order « is defined as follows:

1“u(x) = T K(a;x—t)u(t)dt

1°u(x) = u(x)
where K(a;x)is a monomial given by
K(oc;x—t)s(x_t)a_1 x>0,a>0
I'(a)
The fractional integral equation of the second kind has the form
u(x) = f(X)+A1%u(x) (1)

where «>0is any fractional number, 1=0is any real number, f(x) is a
known function, u(x)is a continuous function on [0,b], i.e., u(x)<eCI[0,b]
while 1“ is the integral operator and is taken in the Riemann-Liouville

(Delves & Walsh ,1997) sense which has the form as in the above
definition.

1. Existence and Uniqueness of the Solution of FIESK
This section is directed toward proving the existence and uniqueness of
the solution of FIESK using the following Banach fixed point theorem.

Theorem (1): Banach fixed point theorem (Zeidler,1995)
We assume that:
1. M isaclosed nonempty set in the Banach space X over R,
2. The operator A:M — M is contractive. Then the equation
u=Au, ueM

has exactly one solution u, i.e., the operator A has exactly one fixed point
u on the set M.

It had been shown in (Zeidler, 1995) that the set C[a,b] (with the norm

JuC3)], =max|u(x)), for any two real numbers a and bsuch that a<b, is a

Banach space. This fact will also be used in this section. The following
lemma is needed in the proof of the existence and uniqueness results.
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Lemma (1):

The Riemann-Liouville integral operator 1, «>0 ia a linear mapping
from c[0,b] into C[0,b], i.e., 1 :C[0,b]— C[O,b].
Proof:

First, let us prove that 1“is linear, Let u,veC[0,b] and B, 8, R, then

1“(BU(X) + BV(X) = —— j (X=)*H{Bu(t) + Byv(t) ot

- )j(x t) 1u(t)dt+ ﬂz _[(x £)“Ly(t) dt

= B 17u(x) + B, 1 “v(X)
Therefore 1% is linear.

Now, let {u,(x)}”, be asequence in C[0,b] such that u,(x) —u,(x) and
u, (X) e C[0,b], we shall prove 1%u,(x)— 1“U,(X).
Since u_ (x) > u,(x)then Ve >0,3k eN such that (Faycal. & Jacky, 2005)
T +1
o, 00 -u ()], < e -(2)

Now, from equ.(1) we have
= 1u ()], =1 (U, 00 = U (),

LT, 09 o

F( )
X))|| dt
r( ) (),
INa+1e | et
“T(a) ! (x—t)“dt

LIRS

b* «
Therefore, 17,0 =170, (0)] < X ¢
Since x<bthen

-1 “uO(X)HC<8

That is 19U, (X) = 1 Uy (X).

From this we conclude that for any u [0,b] we get1“uec[0,b] and this
completes the proof.
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Theorem (2):

Let uec[o,b]. If [4< @D

..(3)

then the equation (1) has a unique solution in [0,b].
Proof:
For any veC[0,b], define

A% et
Tv(x) = f(X) R ! (x—t)“v(t)dt

From lemma (1) we have 1“ueC[0,b], since f eC[0,b] this implies that
TveC[0,b], i.e. T:C[0,b]—C[0,b].
To prove that T is contractive, let v,,v, €C[0,b] then

|ﬁw—Twn=mxv—v>n

T 00 ()

F( )%
| | a-1
SF( )||v L=V, O<t<XJ'(x t)“dt
Ax
F(a+1) ” V2||c
_ A
F(a+1) ” V2||c
Hence,
L LA vy
L N R ) R
Since 0<[|< F(“jl) then 0< wa ) <1, thatis T is contractive.

o+
Thus, by using theorem (1) we can conclude that T has a unique fixed point
in [0,b], say u(x), i.e. Tu(x) =u(x). This means that eqg. (1) has a unique
solution in [0, b].

2. The Laplace Method For Fractional Integral Equation

The Laplace transform is a function commonly used in the solution of
complicated equations. The formal definition of the Laplace transform is
given by (Oldham & Spanier ,1974)

L(g(x)) = [e g (x)dx -..(4)
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The Laplace transform of the function g(x) exists if the integral in (4) is
convergent . The requirement for this is that g(x)dose not grow at a rate

higher than the rate at which the exponential term e decreases. Also,
commonly used is the Laplace convolution[Oldham & Spanier,1974],
given by

L(f(x)*g(x)) = L(f(x))L(g(x)) ...(5)
where = is the convolution of two functions in the domain of xwhich is
defined by h

F()*g0) =] f(x-t)(g()dt

Other important property of Lgplace transform is the Laplace transform
of Riemann-Liouville integral operator of the function g(t), given by
(Oldham & Spanier , 1974)

L(1*g(x)) =s™L(g(x)) ...(6)
Now by taking Laplace transform of both sides of eq. (1), yields
L(u(x)) = L(f (x)) + A L(1"u(x))
Using eq. (6) to obtain
L(u(x)) = L(f(x))+As “L(u(x)) ...(7)
Simple rearrangements of eq. (7) gives
L(u(xy =10

_A
SlZ
which is equivalent to
0= 5 - (®)
The left hand side of eq. (8) can be written as
Sa B Safl ~
(s“ _/JL(f(x)) _[Ss“ — 1]L(f(x))+ L(f(x)) ...(9)
Substitute eg. (9) into eq. (8) to obtain
L(u(x)) = [s Sfa_ll —1j|_( f (X)) + L(f (x)) ...(10)

Now we want to take the inverse Laplace transform of both sides of eq.
(10). In order to do this , we must address comprehend the Laplace
transform of a special form of the first derivative of the Mittag-Leffler
function given by (Loverro,2004)

a-1

d ax)_ . S B
L(&Ea(ﬂx )j_ss”‘ 7 1 ...(11)
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where the Mittag-Leffler function has the form
0 Zk
E“(Z)_go:l"(ak+1) ,  a>0
Combining eq. (10) and eq. (11), yields
L(u(x)) = L[% E. (/”LX“)JL( f(x))+ L(f(x))
Taking the inverse Laplace transform and using eg. (5) we get

u(x) = f(x)+ f(x)*:—XEa(ﬂx“) ...(12)

Eq. (12) represents a general analytic solution of eq. (1).
Example (1): Consider the following FIESK
u(x)=ex(1—erf (ﬁ))+ 12u(x) , 0<x<1
Since a=%, A=1 and f(x)=ex(1—erf (&)) then the analytic solution of

this problem with the aid of Laplace method is given by
u(x) =ex(1—erf (\/;))+ ex(l—erf (\/;))% El(‘/;)

2
which is equivalent to

Kt
2

u(x)=ex(1—erf(\/;))+ex(1—erf(\/;))z Kx
k=t F[k+1j

2

where erf (x) is the error function defined by
2 7 ~w2dw
erf (x)—\/;_([e

3. Collocation Method For Fractional Integral Equation

In this method the solution is assumed to be a finite linear combination
of some sets of analytic basis functions. However, as the number of basis
functions increases we might be able to get more accurate solution to
FIESK. The most important practical issue regarding such method is the
choice of the basis functions {p,}”, . First, we set {p, }",to be a set of linearly
independent elements of our space such that the span of {p,} is dense in
such space. In this paper, the following approximate solution to eq. (1) of
the unknown function u(x) is proposed

un(x):zn:ajxj ...(13)
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An approximate solution u,(x) will not, in general, satisfy eq. (1) exactly,
and associated with such an approximate solution is the residual defined by
R(x;a) =u, (x) — f(x) — Al “u, (x) ...(14)

By substituting eq. (13) into eq. (14), we get

R(x;a):iajxj—f(x)—ﬂulc‘zn:ajxj
j=0 j=0
Hence the residual function is equal to
R(x;a) = boi—>2 x*lla —f ...(15
)= 3w i et st 09)

The collocation method insists that the residue in eg. (15) vanishes at (n+1)
collocation points x, €(0,b] ; i=01,...,n, this yields
n . ir .
Joa e yeilaf(x)=0, i=01... ...(16
S n - ap e xR 1)-0, 1010 .10
Equation (16) represents a system of (n+1) equations with (n+1) unknowns
a,,a,,...,a, . Rewrite eqg. (16) in matrix form as

Ha=B ...(17)
where

H :[hijJ(n+1)X(n+l), a=(aya,...a,) , B=]b ](m)
and

: ir ! .
h:XJ—/l J a X-OHJ i
ij i F(O!+j+1) i y 1) 01,..., n (18)

b =f(x),i=04...n

Note that x,° denotes the constant 1 for any value of x, , i=01,...,n.

Finally,the system,eq.(17)can be solved by using Jacobi iterative method
(Ortigueira.,2000).

4. Stability and Convergence of the Collocation Method

This section is devoted to the study of the stability and convergence of
the scheme (17). The discussion is based on the fact that the Jacobi iterative
method is stable and converges if the following condition holds

n
max
0<i<n jZO

J#

Now, the main result of this section will be proved by the following theorem.

hij
—<1
h
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Theorem (3):
Assume that the following conditions holds:
(1) x =x,+iAx, i=1,...,n, where x, >0 and Ax is the step size that must be
chosen such that x, <b.
| AT,
I'a+j+1
Al
CT(a+i+1)
Then the collocation method is stable and converges to the solution of (1) if

Axsl_xo_fR(AX) ..(19)

(xo +iAX)"

(ii) R(AX)= max

0<i, j<n

(xo +iAX)” ‘

Proof:

n

Let =

j=0
J#

Since x =x,+iAx, i=1...,n, using eq. (18) to obtain

1_/117!1“51()(0 +iAX)*
L INa+j+1)
=2, AT
O1-— " (x, +iAx)”
INa+i+1)

ij

hii

(x, + iAx)."
(x, +iAX)

- i ﬂ«-!l—‘ - o+ |
(%, +iAx)’ —r(aijf’Jrl)(onAx) )
‘ . i /1I'F - a+i
101 (X, +iAX) _m(xo +iAX)

n

< R(AX)> (%, +iAx)"™

That is
R(Ax)

fi s 1—(x, +NAX)

, i=01...,n

Therefore;
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R(Ax)
1-x, —nAX
It is clear that if the right hand side of equ.(20) is less than or equal to one
then eq. (19) will satisfied, i.e., if

R(Ax)
1- X, —nAX
which leads to the required condition
Ax < 1-x, —R(AX)

n
Example (2): Consider the following FIESK

maxr, <

h i
0<i<n

...(20)

<1

1

u(x)=ex(1—erf (\/;))-i-lEU(X), 0<x<1
where erf (x) is the error function defined in example (1)
The exact solution of this problem is u(x) =e*.
Let n=6, then the approximate solution takes the form

Us(X) =a, +a,X+a,X° +a,X° +a,X" +a,x° +a,x°
to find the parameters a,; i=01,...,6, let x, =0.3+0.05i for i=01,...,6.
The obtained results is listed in table (1)

Table (1)

X u(x) =e* ue(X)=;aiX‘
0 1 0.99995800
0.1 1.10517092 1.10492750
0.2 1.22140276 1.22055711
0.3 1.34985881 1.34800960
0.4 1.49182470 1.48857012
0.5 1.64872127 1.64365883
0.6 1.82211880 1.81484444
0.7 2.01375271 2.00385880
0.8 2.22554409 2.21261250
0.9 2.45960311 244321135
Least Square Error 0.00062706

5.Conclusions

Using the Jacobi iterative technique, the conditions for which the
collocation method is stable and converge was provided. The present algorithm
led to approximate solution which are in excellent agreement with the exact
solution. The proposed method produce two sources of errors one due to the
approximation and the other in the numerical treatment of the resulting system.

Yy



Journal of Kirkuk University —Scientific Studies , vol.1, No.2 ,2006

References
e Anatoly A.and Megumi, S.,(2002): Solution of Volterra integro-
Differential Equations with Generalized Mittag-Leffler Function in
the Kernels, Journal of Integral Equation and Applicatios,Vol.14 .

e Delves L. M. and Walsh J., (1997): Numerical Solution of Differential
Equation of Fractional Order, Electronic Transactions on Numerical
Analysis, Vol. 5, pp. 1-6.

e El-Sayed A. M. and EI-Mesiry, A. E.,(2004): Numerical Solution for
Multi-Term Fractional (arbitrary) Orders Differential Equations, Mat.
Apl. Comput. Vol. 23, Petropolis.

e Faycal B. A. and Jacky, C., (2005): Fractional Differential Equations
and the Schrodinger equation, Applied Mathematics and
Computation, Vol.161, pp. 323-345.

¢ Irmak H. and Raina R. K.,(2004): Some Applications of Generalized
Fractional Calculus Operators to a Novel Class of Analytic Functions
With Negative Coefficients, Taiwanese Journal of Mathematics,Vol.
8, pp. 443-452.

e Loverro A.,(2004): Fractional Calculus: History, Definitions and
Applications for the Engineer, A report, University of Notre Dame.

e Nagai A.,(2003): On a Certain Fractional g-Difference and its Eigen
Function, Journal of Nonlinear Mathematical Physics, Vol. 10,
supplement 2,pp. 133-142.

¢ Oldham K. B. and Spanier J., (1974): The Fractional Calculus: Theory
and Applications of Differentiation and Integration to Arbitrary Order,
Academic Press, New York and London.

e Ortigueira M. D., (2000): Introduction to Fractional Linear Systems,
IEE Proceedings vision, Image and Signal Processing, Vol. 147 .

e Podlubuy 1.,(1994): The Laplace Transform Method for Linear
Differential Equations of the Fractional Order; RNDr. Igor. Podlubny,
CSc.

¢ Rangarajan G. and Ding M. , (2000): First Passage Time Problem for
Biased Continuous-Time Random Walks, Fractals,Vol. 8, pp.139-145.

AR



Journal of Kirkuk University —Scientific Studies , vol.1, No.2 ,2006

e Tudor C. A. and Viens F. G., Statistical Aspects of the Fractional

Stochastics Calculus, e.print:pageperso. aol.fr/cipriantudor/Statfom?7.
pdf.

e Wheeler N.,(1997): Construction and Physical Application of the
Fractional Calculus, Notes for a Reed College Physics Seminar.

e Yuste S. B. and Acedo, L.,(2003): On an Explicit Finite Difference
Method for Fractional Diffusion Equations, ar Xiv:cs.NA 10311011
Vol.10.

e Zeidler E.,Applied Functional Analysis, (1995): Applications to
Mathematical Sciences, VVol. 108, Springer-Verlag, New York, Inc..

\ve



Journal of Kirkuk University —Scientific Studies , vol.1, No.2 ,2006

A pul) Aolalsal) el slaal) Gy Ja Jsa

S quad g
Len 5li3Y) daala)

ADAY

iy sl Aelua b S & sl (e 2 5 ALl Alslaall sl figall Candl 13a b Lied
Agdan ) 5 asa gl Aalal) il (amy I Jea sl 5 Cum

1A 3uliing o AU & sl e By 5l ALl Aabeadldallaal GO Jisad Gkl 2 Gl
LA e il e Ay sl ALASE) e aleadl e Jlal) il (Sal o slad)

A LalSsl) A Taleall Jad aanil) 4y ke aladinly (o 56 elae) s Canll 3 & B i 5l aLaiaYl
Al Js Il o 4l el 5 A8 k) Al i 5 8 Al LS, B gl e By 5]
A i

A\



